JPH01158323A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH01158323A
JPH01158323A JP62175166A JP17516687A JPH01158323A JP H01158323 A JPH01158323 A JP H01158323A JP 62175166 A JP62175166 A JP 62175166A JP 17516687 A JP17516687 A JP 17516687A JP H01158323 A JPH01158323 A JP H01158323A
Authority
JP
Japan
Prior art keywords
thin film
light
electrode
layer
signal output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62175166A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62175166A priority Critical patent/JPH01158323A/en
Publication of JPH01158323A publication Critical patent/JPH01158323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To implement miniaturization and to implement high density when a two-dimensional array is provided, by providing a superconductive thin film layer on a condenser lens through a light receiving electrode, and providing a signal output electrode on the superconductive thin film layer. CONSTITUTION:As a light receiving electrode 2, a transparent indium oxide thin film is provided on a sapphire condenser lens 1 by a sputtering evaporation. A Perovskite type oxide superconductor BaYCu3O7 is provided as a superconductor thin film 3 thereon by sputtering evaporation. Platinum is provided as a signal output electrode 4 thereon by sputtering evaporation. When a bias voltage is applied across the electrode 2 and the electrode 4, a tunnel current is made to flow through a Josephson junction, which is formed in the layer 3 below a critical temperature. The current/voltage characteristic of the tunnel junction is changed when light (a) is projected on the layer 3. The change can be taken out as the change in voltage or current. At this time, the current flows in the direction perpendicular to the plane of the layer 3. The most part of the layer 3 can be utilized as a sensitive part. Since the condenser lens 1 is used, all the light, which is inputted into a part that is not a sensitive part originally, can be condensed at the sensitive part.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光計測、光による位置計測、動体を撮像するカ
メラ及び熱像を観測する赤外カメラ等に用いる集光レン
ズ付の光検出素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a light detection element with a condenser lens used in optical measurement, position measurement using light, cameras for imaging moving objects, infrared cameras for observing thermal images, etc. It is.

従来の技術 超電導体を利用した光検出素子は超電導体中で光照射に
より準粒子が励起され、エネルギ・ギャップが変化する
という現象を利用しており、BaPbt−xBix03
を用いた例が報告されている(複本、村上、NTT研究
実用化報告第34巻第1)号PP1597〜1605 
)。この光検出素子について第4図を参照しながら説明
する。第4図に示すように低キャリア濃度酸゛化物超電
導体51はその中央部を細く形成し、その部分の電流密
度を高くして臨界電流値を越える状態にする。これによ
りその細い部分には電圧が印加された状態になる。この
状態で、光が照射されるとその部分に形成されているト
ンネル接合の電流−電圧特性が準粒子の光励起により変
化し、この変化を電気信号として取り出すことができる
Conventional technology Photodetection elements using superconductors utilize the phenomenon that quasiparticles in the superconductor are excited by light irradiation and the energy gap changes.BaPbt-xBix03
An example using this has been reported (duplicate, Murakami, NTT Research Practical Application Report Vol. 34, No. 1) No. PP1597-1605
). This photodetecting element will be explained with reference to FIG. As shown in FIG. 4, the low carrier concentration oxide superconductor 51 is formed to have a narrow central portion, and the current density in that portion is increased to exceed the critical current value. As a result, a voltage is applied to the thin portion. In this state, when light is irradiated, the current-voltage characteristics of the tunnel junction formed in that part change due to optical excitation of the quasiparticle, and this change can be extracted as an electrical signal.

第4図では省略しであるが、酸化物超電導体51は蒸着
基板の上に形成された薄膜であり、この薄膜内には基板
に垂直な粒界52が形成されている。
Although not shown in FIG. 4, the oxide superconductor 51 is a thin film formed on a vapor deposition substrate, and grain boundaries 52 perpendicular to the substrate are formed in this thin film.

この粒界52の存在により、いわゆるジョセフソン接合
、すなわちトンネル接合が形成されている。
Due to the existence of this grain boundary 52, a so-called Josephson junction, that is, a tunnel junction is formed.

そこで、上記酸化物超電導体51を用いた光検出素子5
3を適当な抵抗値を有する負荷抵抗54と直列に結線し
、電源55よりバイアス電流を流すと、光検出素子53
の両端に接続されたアース端子56、出力端子57間の
印加電圧が光照射により変動することになる。
Therefore, the photodetector element 5 using the oxide superconductor 51 described above
3 is connected in series with a load resistor 54 having an appropriate resistance value, and when a bias current is applied from a power source 55, the photodetector element 53
The voltage applied between the ground terminal 56 and the output terminal 57 connected to both ends of the output terminal 57 changes due to the light irradiation.

発明が解決しようとする問題点 しかし、上記従来の超電導光検出素子53に流す信号電
流の方向は基板面に平行であり、第4図から明らかなよ
うに、中央有感部の左右の幅広な部分が電極引出しの役
割を果たすために必要であり、中央部の有感部面積より
桁違いに大きな寸法になってしまう。したがって、光検
出素子の小型化を図ることができず、アレイ素子を形成
する場合には、高密度化の妨げとなる。
Problems to be Solved by the Invention However, the direction of the signal current flowing through the conventional superconducting photodetector 53 is parallel to the substrate surface, and as is clear from FIG. This part is necessary to play the role of leading out the electrodes, and the size is an order of magnitude larger than the area of the sensitive part in the central part. Therefore, it is not possible to reduce the size of the photodetecting element, and when forming an array element, it becomes a hindrance to increasing the density.

そこで、本発明は、微小化を図ることができ、アレイ化
、特に2次元アレイ化する場合に高密度化を図ることが
できるようにし、更には集光効率の向上を図ることがで
きるようにした集光レンズ付光検出素子を提供しようと
するものである。
Therefore, the present invention enables miniaturization, high density when forming an array, especially a two-dimensional array, and further improves light collection efficiency. It is an object of the present invention to provide a photodetecting element with a condensing lens.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、内面に透明な受光電極を有し、若しくは受光電極
゛を兼用する集光レンズに超電導薄膜層が受光電極を介
し、若しくは直接膜けられ、この超電導薄膜層上に信号
出力電極が設けられたものである。
Means for solving the problems and the technical means of the present invention for solving the above problems are to provide a superconducting thin film layer on the condensing lens that has a transparent light-receiving electrode on the inner surface or that also serves as the light-receiving electrode. is layered either through a light-receiving electrode or directly, and a signal output electrode is provided on this superconducting thin film layer.

作    用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

すなわち、超電導薄膜層内には集光レンズ平面と平行な
面に粒界が形成され、いわゆるジョセフソン接合が形成
されているので、バイアス電圧な受光電極、若しくは受
光電極を兼用する集光レンズと信号出力電極との間に印
加すると、臨界温度以下で超電導薄膜層に形成されてい
るジョセフソン接合にトンネル電流が流れる。このトン
ネル接合の電流・電圧特性は、超電導薄膜層に光が照射
されると変化し、これを電圧変化、あるいは電流変化と
して取り出すことができる。このような構造の集光レン
ズ付光検出素子では、電流は超電導薄膜層の平面に垂直
に流れ、超電導薄膜層のほとんどの部分を有感部として
有効に利用することができる。また、集光レンズを用い
ているので、本来感度のない部分に入射する光がすべて
有感部に集光される。
In other words, grain boundaries are formed in the superconducting thin film layer on a plane parallel to the plane of the condensing lens, forming a so-called Josephson junction, so that it can be used as a bias voltage light-receiving electrode or a condensing lens that also serves as a light-receiving electrode. When applied between the signal output electrode and the signal output electrode, a tunnel current flows through the Josephson junction formed in the superconducting thin film layer at a temperature below the critical temperature. The current/voltage characteristics of this tunnel junction change when the superconducting thin film layer is irradiated with light, and this can be extracted as a voltage change or current change. In a photodetecting element with a condenser lens having such a structure, current flows perpendicularly to the plane of the superconducting thin film layer, and most parts of the superconducting thin film layer can be effectively used as a sensitive part. Furthermore, since a condensing lens is used, all light incident on areas that are originally insensitive is condensed onto the sensitive area.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

まず、本発明の第1実施例について説明する。First, a first embodiment of the present invention will be described.

第1図は本発明の第1実施例における集光レンズ付光構
出素子の断面とその動作のための回路図である。第1図
に示すようにサファイヤ製の集光レンズ1上に受光電極
2として透明な酸化インジウム薄膜がスパッタ蒸着され
、この受光電極2上に超電導薄膜層3としてペロプスカ
イト型酸化物超電導体BaYCu307−yがスパッタ
蒸着され、この超電導薄膜層3上に信号出力電極4とし
て白金がスパッタ蒸着されている。受光電極2はリード
取出しのために一部周辺が超電導薄膜層3より露出され
、この露出部に金が蒸着され、超音波ボンディングによ
りリード線5として金線が接続されている。同様に信号
出力電極4の隅部に金が蒸着され、超音波ボンディング
によりリード線6として、金線が接続されている。
FIG. 1 is a cross-sectional view of an optical structure element with a condensing lens and a circuit diagram for its operation in a first embodiment of the present invention. As shown in FIG. 1, a transparent indium oxide thin film is sputter-deposited as a light receiving electrode 2 on a sapphire condensing lens 1, and a perovskite oxide superconductor BaYCu307- as a superconducting thin film layer 3 is formed on this light receiving electrode 2. y is sputter-deposited, and platinum is sputter-deposited on this superconducting thin film layer 3 as a signal output electrode 4. A part of the periphery of the light-receiving electrode 2 is exposed from the superconducting thin film layer 3 for lead extraction, gold is vapor-deposited on this exposed part, and a gold wire is connected as a lead wire 5 by ultrasonic bonding. Similarly, gold is deposited on the corners of the signal output electrode 4, and a gold wire is connected as a lead wire 6 by ultrasonic bonding.

このようにして構成された集光レンズ付光検出素子に負
荷抵抗9を直列に結線し、電源10より電圧を印加すれ
ば、臨界温度以下で、光照射に応じた電圧出力信号をア
ース端子7、信号出力端子8から出力して測定すること
ができる。
If a load resistor 9 is connected in series to the photodetecting element with a condensing lens configured in this manner and a voltage is applied from a power source 10, a voltage output signal corresponding to light irradiation will be output to the ground terminal 7 at a temperature below the critical temperature. , can be output from the signal output terminal 8 and measured.

このような構造の集光レンズ付光検出素子では、電流は
集光レンズ1の平面に垂直にカコれ、超電導薄膜層3の
ほとんどの部分を有感部として有効に利用することがで
き、しかも集光レンズ1を用いているので、本来感度の
ない部分に入射する光がすべて有感部に集光される。こ
こで、光が照射される側の受光電極2は光に対し、透明
でなければならない。また、裏面の信号出力電極4は光
に対して反射率が高いことが望ましい。すなわち、入射
光は透明な集光レンズ及び受光電極2を透過し、超電導
薄膜層3で十分吸収されるが、吸収されずに裏面の信号
出力電極4に到達した一部の光はほとんど反射され、再
び超電導薄膜層3に戻って吸収されることにより、光吸
収効率が向上し、感度向上に寄与する。
In the photodetecting element with a condensing lens having such a structure, the current is deflected perpendicularly to the plane of the condensing lens 1, and most of the superconducting thin film layer 3 can be effectively used as a sensitive part. Since the condenser lens 1 is used, all the light incident on the originally insensitive part is focused on the sensitive part. Here, the light-receiving electrode 2 on the side to which the light is irradiated must be transparent to the light. Further, it is desirable that the signal output electrode 4 on the back surface has a high reflectance to light. That is, although the incident light passes through the transparent condenser lens and the light receiving electrode 2 and is sufficiently absorbed by the superconducting thin film layer 3, the part of the light that is not absorbed and reaches the signal output electrode 4 on the back surface is almost reflected. By returning to the superconducting thin film layer 3 and being absorbed again, the light absorption efficiency improves, contributing to improved sensitivity.

次に本発明の第2実施例について説明する。第2図は本
発明の第2実施例における集光レンズ付光検出素子の断
面とその動作のための回路を示している。本実施例にお
いては、主として上記第1実施例と異なる構成について
説明する。
Next, a second embodiment of the present invention will be described. FIG. 2 shows a cross section of a photodetecting element with a condensing lens and a circuit for its operation in a second embodiment of the present invention. In this embodiment, mainly the configuration different from the first embodiment described above will be explained.

サファイヤ製の集光レンズ1は凸面が複数のりニアアレ
イ配列に形成され、超電導薄膜層3及び信号出力電極4
が集光レンズ1に対応してアレイ状に分離されて配列さ
れている。
A condensing lens 1 made of sapphire has a plurality of convex surfaces formed in a linear array arrangement, and has a superconducting thin film layer 3 and a signal output electrode 4.
are separated and arranged in an array corresponding to the condenser lens 1.

本実施例においては、集光レンズ1のピッチ間隔を0.
1mmとし、超電導薄膜層3及び信号出力電極4からな
る素子を0.03mm平方とし、負荷抵抗9は各素子毎
に配置し、共通電源10にて動作させた。信号出力端子
8は各素子毎に取り出すが、アース端子7は一本のみで
よい。受光電極2も各素子に共通でよいが、電圧はプラ
スに印加される。
In this embodiment, the pitch interval of the condenser lens 1 is set to 0.
The element consisting of the superconducting thin film layer 3 and the signal output electrode 4 was 0.03 mm square, and a load resistor 9 was placed for each element, and the element was operated with a common power supply 10. Although the signal output terminal 8 is taken out for each element, only one ground terminal 7 is required. The light receiving electrode 2 may also be common to each element, but a positive voltage is applied thereto.

上記第2実施例によれば、o、immピッチで128の
素子を有し、全長13 +nn+弱のりニアアレイ集光
レンズ付光検出素子を形成することができた。
According to the second embodiment, it was possible to form a photodetecting element with a near array condensing lens having 128 elements with a pitch of o, imm, and a total length of 13 + nn + weakly linear.

次に本発明の第3実施例について説明する。第3図は本
発明の第3実施例における集光レンズ付光検出素子の断
面とその動作のための回路を示している。本実施例にお
いては、主として上記第2実施例と異なる構成について
説明する。
Next, a third embodiment of the present invention will be described. FIG. 3 shows a cross section of a photodetecting element with a condensing lens and a circuit for its operation in a third embodiment of the present invention. In this embodiment, a structure different from that of the second embodiment described above will be mainly explained.

アレイ状の集光レンズ1はゲルマニウムにょυ形成し、
その電導性を利用して受光電極を兼用している。この場
合、ゲルマニウム2μmより長波長の赤外線に透明であ
るので、赤外センサとして動作する。ゲルマニウム製の
集光レンズ1は屈折率が高く、反射損失を無視し得ない
ので、赤外入射側凸面には反射防止膜1)として硫化要
鉛薄膜を蒸着するが、本実施例では10μmの赤外線に
対して反射損失が最小になるようnd=2.5μmとし
た(但し、ndは光学的厚さで、nは硫化亜鉛の屈折率
、dは膜厚である。)負荷抵抗9は素子の抵抗より十分
大きくし、バイアス電流が一定のもとで、各素子の印加
電圧変化を信号として取り出した。本実施例では、受光
電極を兼用するアレイ状の集光レンズ1がアースになっ
ている。また、超電導薄膜層3にはBaPbo、7Bi
o、303を用いた。
The array-shaped condensing lens 1 is made of germanium,
Utilizing its conductivity, it also serves as a light-receiving electrode. In this case, since germanium is transparent to infrared rays with wavelengths longer than 2 μm, it operates as an infrared sensor. Since the condenser lens 1 made of germanium has a high refractive index and reflection loss cannot be ignored, a thin lead sulfide film is deposited on the convex surface on the infrared incident side as an antireflection film 1). nd was set to 2.5 μm to minimize reflection loss for infrared rays (where nd is the optical thickness, n is the refractive index of zinc sulfide, and d is the film thickness).The load resistor 9 is the element The voltage applied to each element was taken out as a signal under a constant bias current. In this embodiment, the array-shaped condenser lens 1, which also serves as a light receiving electrode, is grounded. In addition, the superconducting thin film layer 3 contains BaPbo, 7Bi
o, 303 was used.

上記第3実施例によれば、0.1mmピッチで128×
128の素子を有し、全長13X13mm平方弱の2次
元アレイ集光レンズ付赤外検出素子を形成することがで
きた。
According to the third embodiment, 128× with a pitch of 0.1 mm
It was possible to form an infrared detection element with a two-dimensional array condenser lens having 128 elements and a total length of 13 x 13 mm square.

発明の効果 以上述べたように本発明によれば、内面に透明な受光電
極を有し、若しくは受光電極を兼用する集光レンズに受
光電極を介し、若しくは直接超電導薄膜層を設け、この
超電導薄膜層上に信号出方電極を設けている。これによ
り超電導薄膜層内には集光レンズ平面と平行な面に粒界
が形成され、いわゆるジョセフソン接合が形成されてい
る。そして電流は集光レンズ平面に垂直に流れるので、
超電導薄膜層の大部分を有感部として利用することがで
きる。しかも集光レンズを用いているので、光学的収差
が少ない条件で、素子部分に光を集めることかできる。
Effects of the Invention As described above, according to the present invention, a superconducting thin film layer is provided through the light receiving electrode or directly on a condensing lens that has a transparent light receiving electrode on the inner surface or also serves as the light receiving electrode, and this superconducting thin film A signal output electrode is provided on the layer. As a result, grain boundaries are formed in the superconducting thin film layer on a plane parallel to the plane of the condenser lens, forming a so-called Josephson junction. And since the current flows perpendicular to the plane of the condenser lens,
Most of the superconducting thin film layer can be used as a sensitive part. Furthermore, since a condensing lens is used, light can be focused on the element portion under conditions with little optical aberration.

したがって、素子を微小化することができ、特に素子な
アレイ化する場合、その集積度を大幅に向上させること
ができ、しかも集光効率を高めることができる。
Therefore, the elements can be miniaturized, and especially when arrayed, the degree of integration can be greatly improved, and the light collection efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例における集光レノ・′、゛
ズ付光検出素子の氏=零ネ功動作のための回路劇示す図
、第2図は本発明の第2実施例における集で゛ 光レンズ付光検出素子のn動作のためのIi回路を示す
図、第3図は本発明の第3実施例における集光レンズ付
光検出素子の舛≠≠喚坤動作の′]′・;し ための回路を示す図、第4図は従来の光検出素子゛の斜
視図である。 1).・集光レンズ、2・・・受光電極、3・・・超電
導薄膜層、4.・・信号出力電極、7・・・アース端子
、8・・・信号出力端子、9・・・負荷抵抗、10・・
・電源、1)・・・反射防止膜。 代理人の氏名 弁理士 中 尾敏 男 ほか1名第1図 第2図 第3図
FIG. 1 is a diagram showing a circuit diagram for the successful operation of a photodetector element with condensing lenses ' and ' in a first embodiment of the present invention, and FIG. Figure 3 is a diagram showing an Ii circuit for n operation of a photodetecting element with a light lens in the third embodiment of the present invention. ]'.; FIG. 4 is a perspective view of a conventional photodetecting element. 1). - Condensing lens, 2... Light receiving electrode, 3... Superconducting thin film layer, 4. ...Signal output electrode, 7...Earth terminal, 8...Signal output terminal, 9...Load resistance, 10...
・Power supply, 1)...Anti-reflection film. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)内面に透明な受光電極を有し、若しくは受光電極
を兼用する集光レンズに超電導薄膜層が受光電極を介し
、若しくは直接設けられ、この超電導薄膜層上に信号出
力電極が設けられたことを特徴とする光検出素子。
(1) A superconducting thin film layer is provided either through the light receiving electrode or directly on a condensing lens that has a transparent light receiving electrode on its inner surface or that also serves as the light receiving electrode, and a signal output electrode is provided on this superconducting thin film layer. A photodetecting element characterized by:
(2)集光レンズが複数のアレイ状に形成されると共に
、超電導薄膜層及び信号出力電極が上記集光レンズに対
応して複数のアレイ状に分離配列されている特許請求の
範囲第1項記載の光検出素子。
(2) Claim 1, wherein condenser lenses are formed in a plurality of arrays, and superconducting thin film layers and signal output electrodes are arranged separately in a plurality of arrays corresponding to the condenser lenses. The photodetecting element described.
(3)信号出力電極が観測すべき光に対して反射率が高
い材料により形成されている特許請求の範囲第1項また
は第2項記載の光検出素子。
(3) The photodetecting element according to claim 1 or 2, wherein the signal output electrode is formed of a material having a high reflectance for the light to be observed.
(4)集光レンズが赤外線に透明で、電導性を有する材
料により形成されている特許請求の範囲第1項ないし第
3項のいずれかに記載の光検出素子。
(4) The photodetecting element according to any one of claims 1 to 3, wherein the condenser lens is made of a material that is transparent to infrared rays and has electrical conductivity.
JP62175166A 1987-07-14 1987-07-14 Photodetector Pending JPH01158323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62175166A JPH01158323A (en) 1987-07-14 1987-07-14 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62175166A JPH01158323A (en) 1987-07-14 1987-07-14 Photodetector

Publications (1)

Publication Number Publication Date
JPH01158323A true JPH01158323A (en) 1989-06-21

Family

ID=15991417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62175166A Pending JPH01158323A (en) 1987-07-14 1987-07-14 Photodetector

Country Status (1)

Country Link
JP (1) JPH01158323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104772A (en) * 2010-11-15 2012-05-31 Nippon Signal Co Ltd:The Superconducting tunnel junction detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104772A (en) * 2010-11-15 2012-05-31 Nippon Signal Co Ltd:The Superconducting tunnel junction detector

Similar Documents

Publication Publication Date Title
US5479018A (en) Back surface illuminated infrared detector
EP0407166B1 (en) Light detecting device and light detection method
JPH04395B2 (en)
US4965212A (en) Optical sensor
Schuster et al. A monolithic mosaic of photon sensors for solid-state imaging applications
WO2001075977A1 (en) Semiconductor energy detector
JP2002083995A (en) Multi-wavelength photodiode
CA1283968C (en) Edge illuminated impurity band conduction detector arrays
CN109668627B (en) Optical detector with Helmholtz resonator
JPH01158323A (en) Photodetector
JPH01152321A (en) Photo detector
US4475040A (en) Pyroelectric infrared detector
JPH01308928A (en) Photodetector array and photoelectric device
JPH01152322A (en) Array-like photo detector
US5117270A (en) Photosensor with AU diffused Pb2 CrO5 or similar film
Martins et al. Thin film position sensitive detectors: from 1D to 3D applications
JP2737003B2 (en) Signal detection method
JPH01115170A (en) Semiconductor device for incident position detection
JPS62280627A (en) Array type pyroelectric sensor
JP2759508B2 (en) Photo detector
JP2737006B2 (en) Signal detector
JP2715321B2 (en) Photo detector
JPH0219725A (en) Pyroelectric type infrared detecting element array, pyroelectric type infrared detector and their production
JP2748167B2 (en) Optical signal detection element
JPS63174244A (en) Light receiving element