JPH0115815B2 - - Google Patents

Info

Publication number
JPH0115815B2
JPH0115815B2 JP55130291A JP13029180A JPH0115815B2 JP H0115815 B2 JPH0115815 B2 JP H0115815B2 JP 55130291 A JP55130291 A JP 55130291A JP 13029180 A JP13029180 A JP 13029180A JP H0115815 B2 JPH0115815 B2 JP H0115815B2
Authority
JP
Japan
Prior art keywords
detection element
moisture
moisture detection
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55130291A
Other languages
Japanese (ja)
Other versions
JPS5754848A (en
Inventor
Katsuhisa Enjoji
Kazuo Katsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP55130291A priority Critical patent/JPS5754848A/en
Publication of JPS5754848A publication Critical patent/JPS5754848A/en
Publication of JPH0115815B2 publication Critical patent/JPH0115815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水分の存否を抵抗分と容量分から成る
インピーダンスの変化によつて電気的に感知する
ようにした水分検出素子の改良に関する。 近来、一般建築用窓ガラス、航空機用或は自動
車用窓ガラス等において、窓ガラスに貴金属薄
膜、金属酸化物薄膜或は導電細線等で加熱回路を
形成し、これに電流を通じることによりガラスの
温度を上昇させ、窓ガラス表面に凝集した又は凝
集しようとする水分を蒸発させるようにした防曇
効果を持たせたものがあることは知られている。 一般に上記の如き窓ガラスの防曇作用は自動化
が図られるが、この自動化のためには前記加熱回
路と併せ、ガラス表面の水分の存否を感知しこれ
に基づき加熱回路への通電、遮電をするシステム
が必要となる。このシステムは基本的にガラス表
面の水分の存否を感知する水分検出素子と、水分
検出素子の状態変化に係る信号により加熱回路へ
の通電、遮電を制御する制御回路とから成り、特
に防曇装置の性能は水分検出素子の性能に大いに
依存する。 従来の水分検出素子には、狭い間隙で対向させ
てガラス表面に設けた一対の導電線条の電極から
成る水分検出素子(以下A素子と呼ぶ)と、絶縁
基板上に導電性組成物を焼付けて形成した一対の
対向電極の少なくともその間を覆つて微量溶出性
の電荷担体を含む化合物を被覆したものから成る
水分検出素子(以下B素子と呼ぶ)とがある。 A素子は、ガラス表面に空気中の水分が付着
し、水分検出素子の一対の導電線条の電極間に水
滴乃至水層が形成されることによつて流れる電極
間電流を加熱制御回路に送り加熱回路を作動さ
せ、加熱用抵抗線に通電してガラスを加熱させる
ものである。加熱抵抗線の通電によりガラスの温
度が上昇し、除曇効果が発揮され、それに伴つて
ガラス表面に付着した水が蒸発し、水分検出素子
の一対の導電線条の電極間に存在した水分が減少
し、遂には水分検出素子の電極間の通電がなくな
り、加熱回路は遮断されて加熱用抵抗線の通電が
止まる。 然し乍ら、上記A素子では水分が付着したとき
の水分検出素子の電極間抵抗が、電極間間隙のガ
ラスの表面性状、周囲雰囲気、或は時間経過によ
り変化し、電極間の抵抗値と付着水分量との対応
関係を得るのが困難であつた。例えば、化学的安
定性が高い導電性組成物、RuO2、In2O3、SnO2
V2O5等の導電性金属酸化物、又はAu、Pd、Pt
等の導電性貴金属等から成る電極を配したA素子
は、時間の経過とともに電極間抵抗が高くなり加
熱制御回路のリレーが作動しなくなるという欠点
があつた。 前記A素子の欠点を除去するように改良された
水分検出素子がB素子である。B素子は水分検出
素子の電極間に一定量の水滴が付着した時、決ま
つた範囲の抵抗値を得るように、伝導性を与える
電荷担体を水分中に極く微量溶出し、かつ平衡状
態を保つ化合物、例えばZn3(PO42、Pb3(PO42
等を含む被覆を電極間に施すことによつて前記欠
点を解決したものである。 ところが、上記A、B両素子は水分が付着した
時の電極間抵抗が温度により変化するという共通
の欠点を有する。例えば、A素子の被検出量は、
水のイオンH+、OH-の電荷担体の伝導性による
電気抵抗であるため、水分が付着した時の電極間
抵抗の温度依存性は、水のイオンH+、OH-のイ
オン解離の平衡定数の温度依存性に略々従い、そ
の変化量は20℃での水の付着した時の電極間抵抗
を基準にして、30℃の水の付着では約0.6倍にな
り、0℃の水の付着では約3倍になり、−10℃の
氷の付着では約44倍になる。同様にしてB素子の
被検出量は水に微量溶出したイオンの電荷担体の
伝導性による電気抵抗であるため、溶解度の温度
依存性に従つて電極間抵抗は大きく変化し、特に
0℃以下の氷結においては微量溶出性の電荷担体
を含む化合物を被覆することは何の効果も示さな
い。従つて従来の水分検出素子は冬期にしばしば
生じる0℃以下の気象条件の下での氷結を感知し
て制御回路に信号を送るという作用を生じないと
いう欠点を有していた。 以上の欠点を解消する水分検出素子として本出
願人は先に新規な水分検出素子(特願昭54−3730
号)を提案したが、本発明はその改良に係るもの
である。 本発明は、対向する2つの電極の間に導電性物
質の微粉末を分散させて混入した多孔性の絶縁膜
を形成し、電極間のインピーダンスを乾燥時と水
分発生時とで異ならせて水分発生時を検出できる
ように構成し、且つ時間の経過による前記インピ
ーダンスの変化が非常に少なく長期間安定に使用
でき、更に氷結を感知することのできる水分検出
素子を提供することを目的とする。 以下に本発明の一実施例を添付図面に基づいて
詳述する。 水分検出素子は、一端に端子1を備えた電極2
と端子3を備えた電極4とを、導電性物質の微粉
末を分散させて混入した多孔質の絶縁膜5を介在
して重ね合せ、この三層構造を絶縁物である厚み
0.4mmのアルミナ基板6の上面に形成することに
より構成される。 上記水分検出素子7の形成方法を説明する。先
ず、アルミナ基板6の上面にパイロクロア型結晶
の金属酸化物Bi2Ru2O7の5μ以下の径の粉末を主
成分とする導電ペーストをスクリーン印刷により
図示されるパターン形状に印刷し、850℃にて10
分間焼成し、寸法3mm×12mm、厚み5μの多孔質
の電極2を形成する。この電極2上に、少なくと
も後に形成する他の一つの電極4に対面する部分
を覆う如く、80体積部の径が5μ以下のガラス粉
末と20体積部のパイロクロア型結晶の金属酸化物
Bi2Ru2O7の5μ以下の粉末との粉末混合体よりな
るペーストをスクリーン印刷により図示されるパ
ターン形状に印刷し、150℃にて充分乾燥する。
上記ガラス粉末は30重量部のSiO2と25重量部の
BaOと10重量部のAl2O3と10重量部のTi2O3と10
重量部のZnOを主成分に含む。次に、電極2の形
成に使用した導電ペーストを用いてスクリーン印
刷により図示されるパターン形状に印刷し、更に
この電極となり得る部分の端子部と電極4の端子
部に、電気的に接続するように重ねて銀を主成分
とする導電ペーストをスクリーン印刷により図示
されるパターン形状に印刷し、800℃に10分間焼
成し、これにより厚み30μの絶縁性物質中に導電
性物質の微粉末を分散させて混入した多孔質の絶
縁膜5と、電極2に対面する寸法3mm×12mm、厚
み3μの多孔質の膜電極4と、端子1,3とを同
時に形成する。 上記のように作られた水分検出素子7の電気的
特性をインピーダンスZ〓で表わすと Z〓=(1/Rw+j・2πCs-1 ………(1) となる。ここでRwは水分検出素子の抵抗成分で、
実質的に多孔質の絶縁膜5により与えられ、絶縁
膜の孔に水分が浸入することによりその値が小さ
くなるように変化し得る量である。Csは対面する
電極1,4の間の容量成分で、これは絶縁膜の孔
に水分が浸入することによりその値が大きくなる
ように変化し得る量であり、水、氷の誘電率を検
出する。は水分検出素子に与えられる交流電気
の周波数である。 水分検出素子7の抵抗Rw、容量Cs、及びイン
ピーダンスの大きさ|Z〓|を、温度、湿度の測定
条件を種々に変えて求めると、表1の如くなる。
The present invention relates to an improvement in a moisture detection element that electrically senses the presence or absence of moisture by a change in impedance consisting of resistance and capacitance. Recently, in window glass for general architecture, aircraft, automobiles, etc., a heating circuit is formed on the window glass using a thin film of noble metal, a thin film of metal oxide, or a thin conductive wire, and a current is passed through this to heat the glass. It is known that there are windows that have an anti-fogging effect by increasing the temperature and evaporating moisture that has aggregated or is about to aggregate on the surface of the window glass. Generally, the above-mentioned anti-fog effect on window glass is automated, but in order to automate this, in conjunction with the heating circuit, the presence or absence of moisture on the glass surface can be sensed, and based on this, the heating circuit can be energized or shut off. A system is needed to do this. This system basically consists of a moisture detection element that senses the presence or absence of moisture on the glass surface, and a control circuit that controls energization and interruption of the heating circuit based on signals related to changes in the state of the moisture detection element. The performance of the device is highly dependent on the performance of the moisture sensing element. Conventional moisture detection elements include a moisture detection element (hereinafter referred to as A element) consisting of a pair of conductive wire electrodes placed on the glass surface facing each other with a narrow gap, and a moisture detection element (hereinafter referred to as A element) consisting of a pair of conductive wire electrodes placed on the glass surface facing each other with a narrow gap, and a moisture detection element (hereinafter referred to as A element) consisting of a pair of conductive wire electrodes placed on the glass surface facing each other with a narrow gap. There is a moisture detection element (hereinafter referred to as B element) which is made of a pair of opposing electrodes formed by the above method, and at least the space between them is coated with a compound containing a trace amount of charge carrier. The A element sends an interelectrode current that flows when moisture in the air adheres to the glass surface and a water droplet or a water layer is formed between the pair of conductive wire electrodes of the moisture detection element to the heating control circuit. The heating circuit is activated and electricity is applied to the heating resistance wire to heat the glass. By energizing the heating resistance wire, the temperature of the glass rises and a defogging effect is exerted.As a result, the water adhering to the glass surface evaporates, and the moisture present between the electrodes of the pair of conductive wires of the moisture detection element is removed. Eventually, the current flow between the electrodes of the moisture detection element is cut off, the heating circuit is cut off, and the current flow to the heating resistance wire is stopped. However, in the above A element, when moisture adheres, the inter-electrode resistance of the moisture detection element changes depending on the surface properties of the glass in the gap between the electrodes, the surrounding atmosphere, or the passage of time, and the resistance value between the electrodes and the amount of attached moisture change. It was difficult to find a correspondence between the two. For example, conductive compositions with high chemical stability, RuO 2 , In 2 O 3 , SnO 2 ,
Conductive metal oxides such as V 2 O 5 , or Au, Pd, Pt
Element A, which is equipped with electrodes made of conductive noble metals, etc., had the disadvantage that the resistance between the electrodes increased over time, causing the relay in the heating control circuit to become inoperable. The B element is a moisture detection element that has been improved to eliminate the drawbacks of the A element. When a certain amount of water droplets adhere between the electrodes of the moisture detection element, the B element elutes a very small amount of charge carriers that provide conductivity into the moisture and maintains an equilibrium state so that a resistance value within a certain range is obtained. Compounds that preserve the _ _
The above-mentioned drawbacks are solved by applying a coating containing the above between the electrodes. However, both elements A and B have a common drawback in that the resistance between the electrodes changes depending on the temperature when moisture is attached. For example, the detected amount of element A is
Since the electrical resistance is due to the conductivity of the charge carriers of water ions H + and OH - , the temperature dependence of the interelectrode resistance when water is attached is the equilibrium constant of ionic dissociation of water ions H + and OH - . Based on the interelectrode resistance when water is attached at 20℃, the amount of change is approximately 0.6 times when water is attached at 30℃, and the amount of change is approximately 0.6 times that when water is attached at 30℃. In the case of ice at -10°C, it increases by about 44 times. Similarly, the detected amount of the B element is the electrical resistance due to the conductivity of the charge carrier of the ions eluted in water, so the interelectrode resistance changes greatly depending on the temperature dependence of solubility, especially at temperatures below 0°C. Coating compounds containing trace-eluting charge carriers has no effect on freezing. Therefore, conventional moisture detection elements have the disadvantage that they do not detect icing under weather conditions of 0° C. or lower, which often occur in winter, and do not send a signal to a control circuit. As a moisture detection element that solves the above-mentioned drawbacks, the present applicant has developed a new moisture detection element (Japanese Patent Application No. 54-3730).
The present invention relates to an improvement thereof. The present invention forms a porous insulating film in which fine powder of a conductive substance is dispersed and mixed between two opposing electrodes, and changes the impedance between the electrodes when drying and when moisture is generated, thereby reducing the moisture content. To provide a moisture detection element which is configured to be able to detect the occurrence of icing, can be stably used for a long period of time with very little change in the impedance over time, and is further capable of sensing icing. An embodiment of the present invention will be described in detail below based on the accompanying drawings. The moisture detection element includes an electrode 2 having a terminal 1 at one end.
and an electrode 4 equipped with a terminal 3 are stacked together with a porous insulating film 5 interposed in which fine powder of a conductive substance is dispersed, and this three-layer structure is
It is constructed by forming it on the upper surface of a 0.4 mm alumina substrate 6. A method for forming the moisture detection element 7 will be explained. First, on the upper surface of the alumina substrate 6, a conductive paste mainly composed of powder of pyrochlore-type crystal metal oxide Bi 2 Ru 2 O 7 with a diameter of 5 μ or less was printed in the pattern shape illustrated by screen printing, and the paste was heated at 850°C. at 10
It is baked for a minute to form a porous electrode 2 having dimensions of 3 mm x 12 mm and a thickness of 5 μm. On this electrode 2, 80 parts by volume of glass powder with a diameter of 5μ or less and 20 parts by volume of a metal oxide of pyrochlore type crystal are applied so as to cover at least the part facing another electrode 4 to be formed later.
A paste made of a powder mixture of Bi 2 Ru 2 O 7 powder with a size of 5 μm or less is printed in the illustrated pattern shape by screen printing, and thoroughly dried at 150°C.
The above glass powder contains 30 parts by weight of SiO 2 and 25 parts by weight.
BaO and 10 parts by weight Al 2 O 3 and 10 parts by weight Ti 2 O 3 and 10
Contains part by weight of ZnO as main component. Next, the conductive paste used to form the electrode 2 is printed into the illustrated pattern by screen printing, and the terminal portion of this potential electrode is electrically connected to the terminal portion of the electrode 4. A conductive paste containing silver as the main component was screen-printed into the illustrated pattern shape and baked at 800℃ for 10 minutes, thereby dispersing fine powder of the conductive material into the 30μ-thick insulating material. The mixed porous insulating film 5, the porous membrane electrode 4 having dimensions of 3 mm x 12 mm and thickness of 3 μm facing the electrode 2, and the terminals 1 and 3 are simultaneously formed. When the electrical characteristics of the moisture detection element 7 manufactured as described above are expressed in terms of impedance Z〓, it becomes Z〓=(1/R w +j·2πC s ) −1 (1). Here, R w is the resistance component of the moisture detection element,
This is an amount given by the substantially porous insulating film 5, and the value of which can change as water enters the pores of the insulating film. C s is the capacitance component between the electrodes 1 and 4 facing each other, and this is an amount that can change so that its value increases as moisture enters the pores of the insulation film, and the dielectric constant of water and ice is To detect. is the frequency of alternating current electricity applied to the moisture detection element. The resistance R w , the capacitance C s , and the impedance magnitude |Z〓| of the moisture detection element 7 are determined as shown in Table 1 by varying the measurement conditions of temperature and humidity.

【表】 〓
(R)、容量(C)より(1)式で計算し
たZの絶対値である。
表1から明らかなように、例えば温度30℃、相
対湿度95%のインピーダンスの大きさ500KΩを
基準値としてインピーダンスの大きさがその基準
値より高いときドライ状態、それよりも低いとき
ウエツト状態であるように表示すれば温度10℃、
1℃、−10℃及び−20℃において、相対湿度が100
%のときには夫々の温度でインピーダンスの大き
さが7.8KΩ、8.1KΩ、180KΩ、350KΩとなり、
特に0℃以下の氷結時でもウエツト状態であるこ
とを確実に識別し得、又相対湿度が95%以下であ
るときには、夫々の温度で580KΩ、650KΩ、
1200KΩ、及び1200KΩとなり、ドライ状態であ
ることを確実に識別し得る。 更にこの水分検出素子は、表2に示すようにド
ライ、ウエツトの繰返しを1万回行なうテスト、
及び6ケ月間の高温、高湿通電テストをしたとこ
ろ、夫々インピーダンスの大きさの変化が5%以
下、及び7%以下の減少にとどまり、実用に耐え
ることが示された、上記ドライ、ウエツトの繰返
しテストは、冷蔵庫の開口部に抵抗加熱線、水分
検出素子を設けたガラスを、水分検出素子の装着
面を外にして嵌め込み、ガラスを冷却することに
より水分を結露させ、水分検出素子のウエツト状
態でリレーを作動させることにより抵抗加熱線に
電流を流してガラスを加熱し、水分検出素子をド
ライ状態にし、これらの動作を自動的に繰返し
た。又高温、高湿通電テストは温度40℃、湿度95
〜100%の雰囲気内で水分検出素子にAC3Vを印
加して行なつた。更にまたテスト結果は、温度30
℃、湿度95%の雰囲気内で測定したインピーダン
スの大きさを初期値と比較した結果である。
[Table] 〓
(R W ) and the absolute value of Z calculated using equation (1) from the capacitance (C S ).
As is clear from Table 1, for example, if the impedance is higher than the standard value of 500KΩ at a temperature of 30°C and relative humidity of 95%, it is a dry state, and when it is lower than that, it is a wet state. If it is displayed as follows, the temperature is 10℃,
At 1°C, -10°C and -20°C, the relative humidity is 100
%, the impedance size is 7.8KΩ, 8.1KΩ, 180KΩ, 350KΩ at each temperature,
In particular, it is possible to reliably identify wet conditions even when freezing at temperatures below 0℃, and when the relative humidity is below 95%, 580KΩ, 650KΩ,
1200KΩ and 1200KΩ, and it can be reliably identified that it is in a dry state. Furthermore, this moisture detection element was tested by repeating dry and wet conditions 10,000 times as shown in Table 2.
In addition, when conducting a high temperature and high humidity energization test for 6 months, the change in impedance was limited to less than 5% and the decrease was less than 7%, respectively, and it was shown that the above dry and wet wires could withstand practical use. In the repeated test, a glass equipped with a resistance heating wire and a moisture detection element is inserted into the opening of a refrigerator with the surface on which the moisture detection element is attached facing outward, and the glass is cooled to cause moisture to condense. By activating the relay in this state, current was passed through the resistance heating wire to heat the glass and dry the moisture detection element, and these operations were automatically repeated. In addition, the high temperature and high humidity energization test was conducted at a temperature of 40℃ and a humidity of 95℃.
The test was carried out by applying AC3V to the moisture detection element in an atmosphere of ~100%. Furthermore, the test results show that the temperature is 30
This is the result of comparing the magnitude of impedance measured in an atmosphere of ℃ and 95% humidity with the initial value.

【表】 上記実施例ではアルミナ基板を絶縁基板とした
が、ガラス板、結晶化ガラス板その他セラミツク
ス基板等を絶縁基板として用いることもできる。 又、電極2,4は導電性の電気化学的に安定な
物質、例えばRuO2、V2O5、Ti2O3等の金属酸化
物、又はAu、Pd、Pt等の貴金属粉末と、ガラス
フリツト、ビヒクル、粘結剤その他各種添加物と
を充分に混練して作られた導電ペースト等によつ
ても形成される。 多孔質の絶縁膜5に含まれる導電性物質は、金
属酸化物Bi2Ru2O7の代わりにRuO2、V2O5
Ti2O3等の金属酸化物、或はAu、Pd、Pt等の貴
金属の微粉末、又はそれらの微粉末の混合物でも
よく、又その体積混合割合が5%から40%の範囲
で混合されるのが好ましい。 以上の説明で明らかなように本発明によれば、
多孔質の絶縁膜の含浸水分による誘電率の変化
と、導電性物質の微粉末間に極微量の水分が付着
することによつて導電性物質の微粉末間を電気的
導通状態にするスイツチのように作用する電気抵
抗の変化とを利用するものであるから、経年変化
が少なく、且つ使用温度による検出誤差も少ない
上、水分が凍つた場合にも水分の検出を行なうこ
とができる。 又本発明に係る水分検出素子は基板上に積層さ
れ、且つ絶縁層を狭んだ一対の対向電極をもつも
のであるから、同一面上に一対の対向電極を設け
たものに比べて、電極の対向面積を大にでき、且
つ電極間距離に小にできるので絶縁膜の静電容量
の変化を大きな変化とし、且つ電気抵抗の変化を
大きな変化として検出することができる。 更に又、本発明に係る水分検出素子は静電容量
を抵抗が変化する絶縁膜が電極によつて覆われて
いるから、絶縁膜がゴミ、油等によつて汚される
ことが少なく、電気的特性の変化がほとんどない
等の諸効果を発揮する。
[Table] In the above embodiment, an alumina substrate was used as an insulating substrate, but a glass plate, a crystallized glass plate, a ceramic substrate, etc. can also be used as an insulating substrate. Further, the electrodes 2 and 4 are made of a conductive electrochemically stable substance such as metal oxide such as RuO 2 , V 2 O 5 , Ti 2 O 3 or noble metal powder such as Au, Pd, Pt, etc., and glass frit. It can also be formed from a conductive paste made by sufficiently kneading a vehicle, a binder, and various other additives. The conductive substances contained in the porous insulating film 5 include RuO 2 , V 2 O 5 , and V 2 O 5 instead of the metal oxide Bi 2 Ru 2 O 7 .
It may be a metal oxide such as Ti 2 O 3 , a fine powder of a noble metal such as Au, Pd, Pt, etc., or a mixture of these fine powders, and the volume mixing ratio may be in the range of 5% to 40%. It is preferable to As is clear from the above description, according to the present invention,
The change in dielectric constant due to moisture impregnating the porous insulating film and the adhesion of a very small amount of moisture between the fine powders of the conductive material create a switch that creates electrical continuity between the fine powders of the conductive material. Since it utilizes the change in electrical resistance that acts like this, there is little change over time, there is little detection error due to the operating temperature, and it is possible to detect moisture even when the moisture freezes. Furthermore, since the moisture detection element according to the present invention is laminated on a substrate and has a pair of opposing electrodes with an insulating layer between them, the electrode Since the facing area of the insulating film can be increased and the distance between the electrodes can be reduced, a change in the capacitance of the insulating film can be detected as a large change, and a change in the electrical resistance can be detected as a large change. Furthermore, since the moisture detection element according to the present invention has an insulating film whose capacitance changes and resistance is covered with an electrode, the insulating film is less likely to be contaminated by dust, oil, etc., and electrical It exhibits various effects such as almost no change in characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は水分
検出素子の平面図、第2図は第1図中2−2線断
面図である。 尚図面中、1,3は端子、2は電極、4は多孔
質の電極、5は絶縁膜、6はアルミナ基板であ
る。
The drawings show an embodiment of the present invention, and FIG. 1 is a plan view of a moisture detection element, and FIG. 2 is a sectional view taken along the line 2--2 in FIG. In the drawings, 1 and 3 are terminals, 2 is an electrode, 4 is a porous electrode, 5 is an insulating film, and 6 is an alumina substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板と、該絶縁基板上に形成した電極
と、該電極上に形成した多孔質の絶縁膜と、該絶
縁膜上に形成した多孔質の膜電極とからなる水分
検出素子において、前記絶縁膜の絶縁性物質中に
Bi2Ru2O7、RuO2、V2O5、Ti2O3等の導電性金属
酸化物及びAu、Pd、Pt等の貴金属からなる群の
内少なくとも一種の微粉末を混入したことを特徴
とする水分検出素子。
1. In a moisture detection element comprising an insulating substrate, an electrode formed on the insulating substrate, a porous insulating film formed on the electrode, and a porous membrane electrode formed on the insulating film, the insulating In the insulating material of the membrane
Contains at least one fine powder from the group consisting of conductive metal oxides such as Bi 2 Ru 2 O 7 , RuO 2 , V 2 O 5 , Ti 2 O 3 and noble metals such as Au, Pd, and Pt. Characteristic moisture detection element.
JP55130291A 1980-09-19 1980-09-19 Moisture detecting element Granted JPS5754848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55130291A JPS5754848A (en) 1980-09-19 1980-09-19 Moisture detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55130291A JPS5754848A (en) 1980-09-19 1980-09-19 Moisture detecting element

Publications (2)

Publication Number Publication Date
JPS5754848A JPS5754848A (en) 1982-04-01
JPH0115815B2 true JPH0115815B2 (en) 1989-03-20

Family

ID=15030796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55130291A Granted JPS5754848A (en) 1980-09-19 1980-09-19 Moisture detecting element

Country Status (1)

Country Link
JP (1) JPS5754848A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694400A1 (en) * 1992-07-31 1994-02-04 Inst Nat Polytech Grenoble Electrode material for a potentiometric oxygen sensor operating at a temperature below 250degree C, and method for obtaining it.
KR100680237B1 (en) * 2004-05-03 2007-02-08 이엠씨마이크로시스템 주식회사 Capacitive humidity sensor, its fabrication method and its connection method
AU2009243933A1 (en) * 2008-05-09 2009-11-12 Commonwealth Scientific And Industrial Research Organisation A composite material for use in a sensing electrode for measuring water quality

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595857A (en) * 1979-01-16 1980-07-21 Nippon Sheet Glass Co Ltd Moisture detection element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595857A (en) * 1979-01-16 1980-07-21 Nippon Sheet Glass Co Ltd Moisture detection element

Also Published As

Publication number Publication date
JPS5754848A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
US4052691A (en) Humidity sensor
US4307373A (en) Solid state sensor element
US4193965A (en) Circuit assembly for exhaust emission monitoring
US7543477B2 (en) Sensor for detecting particles
CA1044294A (en) Defogging glass plate
WO1983001339A1 (en) Humidity sensor
US2613302A (en) Humidity indicator
GB2158585A (en) Electrical moisture sensors
EP0238081B1 (en) Thick-film gas-sensitive element
US4481813A (en) Dew sensor
JPH0115815B2 (en)
US4280115A (en) Humidity sensor
Rahman et al. Hopping and Ionic Conduction in Tin Oxide‐Based Thick‐Film Resistor Compositions
RU2086027C1 (en) Method for manufacturing of thick-film resistors
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
JP3770456B2 (en) Measuring method of gas concentration
JPH0658900A (en) Moisture sensor
EP0180577A1 (en) Humidity sensor comprised of compound metal oxides with perovskite structure
JP3074901B2 (en) Humidity sensor
JPS62223054A (en) Humidity sensor material and manufacture
JPS58142252A (en) Sensing element for dew condensation
JP2834680B2 (en) Carbon dioxide sensor element
JPS6139503A (en) Moisture sensitive element
JPH08145932A (en) Humidity sensor and its production method
JPS6263851A (en) Humidity detecting device