JPH01157758A - Method for casting nickel aluminum bronze - Google Patents

Method for casting nickel aluminum bronze

Info

Publication number
JPH01157758A
JPH01157758A JP31531487A JP31531487A JPH01157758A JP H01157758 A JPH01157758 A JP H01157758A JP 31531487 A JP31531487 A JP 31531487A JP 31531487 A JP31531487 A JP 31531487A JP H01157758 A JPH01157758 A JP H01157758A
Authority
JP
Japan
Prior art keywords
mold
casting
molten metal
liquid nitrogen
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31531487A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kawazoe
強 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31531487A priority Critical patent/JPH01157758A/en
Publication of JPH01157758A publication Critical patent/JPH01157758A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve mechanical property and to reduce casting defect by rapidly cooling a nickel/aluminum/bronze molten metal after its casting, refining the interposed body of Ni3Al, FeAl and precipitating it in a metal structure. CONSTITUTION:A NiAlBz molten metal is poured from a molten metal pouring port 2 at specified temp. in a mold (sand mold) 1. When the temp. drops, NiAlBz is solidified, so is measured by a thermocouple type thermometer 7 and at the time when it becomes at specified temp., it is rapidly cooled by flowing a cooling water into the cooling water pipe 4 imbedded into a mold material 3. In the mold (sand mold) 1 also it is poured from the pouring port 3 at specified temp., measured by the thermometer 7 and when it becomes at specified temp. with the molten metal temp. being dropped, it may be also rapidly cooled by blowing a liquid nitrogen to the mold 1 via a liquid nitrogen feeding steel pipe 9 from a liquid nitrogen bomb 8 by opening a stop valve 10. The thinning, miniaturization, lightening of the NiAlBz product, the reduction of the necessary base metal and the curtailment of man/hour can be realized and cavitation resistance and errosion resistance can be improved as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は舶用ブロベフ、海水ポンプ及び泥水ポンプの羽
根、ケージングなどに使用されるニッケfi17J%、
’ミニウム青銅(以下、N1ALB2と略記する)の鋳
造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to nickel fi 17J%, which is used for marine blobef, seawater pump and mud pump impellers, casings, etc.
'Regarding a casting method for minium bronze (hereinafter abbreviated as N1ALB2).

〔従来の技術〕[Conventional technology]

従来、NiAtB2鋳物は鋳物砂型法によって製造され
ていた。その態様を第4図によって説明する。第4図の
(a)はその斜視図、わ)は断面図を示す。第4図にお
いて1は鋳型(砂型)、2はN i ALB 2溶湯注
入口、3は鋳型材料、AはN i ktB 、鋳物を示
し、数値は鋳型1及び鋳物人の各寸法(−)を示す。
Conventionally, NiAtB2 castings have been manufactured by the foundry sand casting method. The aspect will be explained with reference to FIG. FIG. 4(a) is a perspective view, and FIG. 4(a) is a sectional view. In Fig. 4, 1 indicates the mold (sand mold), 2 indicates the N i ALB 2 molten metal inlet, 3 indicates the mold material, A indicates the N i ktB, and the casting, and the numerical values indicate the dimensions (-) of the mold 1 and the caster. show.

第4図から分るように従来のものは、鋳型材料3として
鋳物砂で対象製品(こ−ではN1A−1Bz鋳物)の鋳
型1を作り、これにN i ALB7.溶湯を溶湯注入
口2より注湯する。溶湯は鋳型1の中で時間の経過とと
もにゆっくり冷却し鋳物Aができ上る。
As can be seen from FIG. 4, in the conventional method, a mold 1 of the target product (N1A-1Bz casting in this case) is made using molding sand as the mold material 3, and Ni ALB7. The molten metal is poured from the molten metal injection port 2. The molten metal slowly cools down in the mold 1 over time, and a casting A is completed.

その後、鋳物Aが常温近くになった時点で鋳物砂を取去
シ、即ち、鋳型1を砕いて鋳物人を取出すことになる。
Thereafter, when the temperature of the casting A reaches near room temperature, the foundry sand is removed, that is, the mold 1 is crushed and the caster is removed.

表1にN i ktB 2の化学成分を示す。Table 1 shows the chemical components of NiktB2.

表I  NiAtB2の化学成分 (%)〔発明が解決
しようとする問題点〕 表1に示すように、N i AtB 2はCuの他、N
i、 AL、 Feなどを含む析出硬化型合金である。
Table I Chemical components of NiAtB2 (%) [Problems to be solved by the invention] As shown in Table 1, NiAtB2 contains not only Cu but also N
It is a precipitation hardening alloy containing i, AL, Fe, etc.

従って、その機械的性質は、FeAtおよびNi3At
の析出物の形状によって変化する。そのため、従来のよ
うな断熱効果をもつ鋳物砂の中に溶湯を注湯し、常温近
くまでゆっくりと冷却凝固させる鋳造法の場合、FeA
tおよびNi5Atの析出物が成長粗大化し、機械的性
質が大幅に低下する。
Therefore, its mechanical properties are similar to that of FeAt and Ni3At.
varies depending on the shape of the precipitate. Therefore, in the case of the conventional casting method in which molten metal is poured into molding sand, which has a heat insulating effect, and is slowly cooled and solidified to near room temperature, FeA
The precipitates of t and Ni5At grow and coarsen, and the mechanical properties are significantly reduced.

この機械的性質の低下により、 (1)引張強さや疲労強度(海水中で使用する場合は腐
食疲労強度)が低下するのでこれを補うために鋳物製品
の肉厚を厚くする必要があシ、必要原材料の増加、重量
の増加、加工工数の増加を招く、 (2)材料の硬さが低下することによシ、流体と一緒に
使用する製品(舶用プロペラや水車)の場合、キャビテ
ーシミン、エロージョンが発生しやすい。
Due to this decrease in mechanical properties, (1) the tensile strength and fatigue strength (corrosion fatigue strength when used in seawater) decrease, so it is necessary to increase the wall thickness of the cast product to compensate for this; (2) In the case of products used with fluids (marine propellers and water turbines), cavity shimming, Erosion is likely to occur.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はN i AAB 2鋳物を鋳造する際、FeA
tおよびNi、Atの析出物の粗大化を防止し、微細析
出物として機械的性質を増加させるには、N1AtBz
を鋳造後、即ち、溶湯を鋳型に注湯した後、急冷処理を
する必要があることの知見を得た。本発明はこの知見に
基づいて完成したものであって、ニッケルアルミニウム
青銅溶湯の鋳造後に急冷し、Ni1At、 FeAtの
介在物を微細化して金属組織内に析出させ、機械的性質
の向上と鋳造欠陥の低減を図ることを特徴とするニッケ
ルアルミニウム青銅の鋳造法である。
The present invention uses FeA when casting N i AAB 2 castings.
In order to prevent coarsening of precipitates of t, Ni, and At and to increase mechanical properties as fine precipitates, N1AtBz
It was found that after casting, that is, after pouring the molten metal into the mold, it is necessary to perform a rapid cooling process. The present invention was completed based on this knowledge, and the nickel-aluminum bronze molten metal is rapidly cooled after casting, and Ni1At and FeAt inclusions are made fine and precipitated within the metal structure, thereby improving mechanical properties and eliminating casting defects. This is a method for casting nickel-aluminum bronze, which is characterized by reducing the amount of

本発明方法において、N i ktB 2鋳物の鋳造後
、該鋳物を急冷する具体的手段としては、(1)砂型水
冷法、(2)砂型液体窒素冷却法、(3)砂型剥離空冷
法及び(4)鋼粒鋳造法があげられる。
In the method of the present invention, specific means for rapidly cooling the N i ktB 2 casting after casting include (1) sand mold water cooling method, (2) sand mold liquid nitrogen cooling method, (3) sand mold peeling air cooling method, and ( 4) Steel grain casting method is mentioned.

以下、急冷処理を備えた上記4種類の鋳造法と従来の鋳
造法について比較実験を実施した。
Hereinafter, a comparative experiment was conducted between the above four types of casting methods including quenching treatment and the conventional casting method.

〔実施例1〕 第1図に従って本発明の一実施例である砂型水冷法の例
を説明する。第1図の(a)はその斜視図、ら)は断面
図を示す。第1図において1は鋳型(砂型)、2はN 
i AtB 2溶湯注入口、3は鋳型材料(こ−では鋳
物砂)、4は冷却水管、5は冷却水入口、6は冷却水出
口、7はサーモカップル式温度計、AはN1AAB2鋳
物を示し、数値は鋳型1及び鋳物Aの各寸法(■)を示
す。な、 お冷却水管4の内径は30■、全長12mで
ある。
[Example 1] An example of a sand mold water cooling method, which is an embodiment of the present invention, will be described with reference to FIG. FIG. 1(a) shows a perspective view, and FIG. 1(a) shows a sectional view. In Figure 1, 1 is a mold (sand mold), 2 is N
i AtB 2 Molten metal inlet, 3 mold material (foundry sand in this case), 4 cooling water pipe, 5 cooling water inlet, 6 cooling water outlet, 7 thermocouple thermometer, A indicates N1AAB2 casting. , numerical values indicate each dimension (■) of mold 1 and casting A. The inner diameter of the cooling water pipe 4 is 30 mm and the total length is 12 m.

第1図に示すように、鋳型1の鋳物砂3の中に冷却水管
4を埋め込んだ。埋め込み位置は鋳物入側面から25W
1鋳物A下面から50−になるようにした。
As shown in FIG. 1, a cooling water pipe 4 was embedded in molding sand 3 of a mold 1. The embedding position is 25W from the casting side.
1 Casting A It was made to be 50 - from the bottom surface.

N i ALB 2溶湯を鋳込温度的1150℃で溶湯
注入口2より注湯する。温度約1000℃になるとN 
i ktB 、は凝固するが、この温度をサーモカップ
ル式温度計7で計測し、約1000℃になった時に、冷
却水管4中に冷却水口5よシ約19℃の冷却水を160
t/分の割合で流して急冷させた。冷却水出口6からの
水の温度は24℃であった。
N i ALB 2 molten metal is poured from the molten metal injection port 2 at a casting temperature of 1150°C. When the temperature reaches about 1000℃, N
i ktB solidifies, but this temperature is measured with a thermocouple thermometer 7, and when it reaches about 1000°C, cooling water of about 19°C is poured into the cooling water pipe 4 through the cooling water port 5 at 160°C.
It was rapidly cooled by flowing at a rate of t/min. The temperature of the water from the cooling water outlet 6 was 24°C.

〔実施例2〕 第2図に従って本発明の一実施例である砂型液体窒素冷
却法の例を説明する。第2図の(a)はその斜視図、伽
)は断面図を示す。第2図において、1は鋳型(砂型)
、2はN i ktB 2溶湯注入口、3は鋳型材料(
こ−では鋳物砂)、7はサーモカップル式温度計、8は
液体窒素ボンベ、9は液体窒素供給鋼管、10はストッ
プ弁、AはN1ALB2鋳物を示し、数値は鋳型1及び
鋳物人の各寸法(■)を示す。
[Example 2] An example of a sand mold liquid nitrogen cooling method, which is an embodiment of the present invention, will be described with reference to FIG. FIG. 2(a) is a perspective view, and FIG. 2(a) is a sectional view. In Figure 2, 1 is a mold (sand mold)
, 2 is Ni ktB 2 molten metal inlet, 3 is mold material (
7 is a thermocouple thermometer, 8 is a liquid nitrogen cylinder, 9 is a liquid nitrogen supply steel pipe, 10 is a stop valve, A is N1ALB2 casting, and the numbers are the dimensions of mold 1 and the caster. (■) indicates.

第2図に示すように、鋳物A側面砂原さ50雪、鋳物A
下面砂原さ100日とし、実施例1と同様にN i A
AB 2溶湯を鋳込温度的1150℃で溶湯注入口2よ
シ注暢し、溶湯温度が1000℃(凝固終了温度)にな
ったことをサーモカップル式温度計7で計測し、ストッ
プ弁10を開にして液体窒素ボンベ8より液体窒素供給
鋼管9を介して液体窒素を鋳型1に吹付けて急冷させた
As shown in Figure 2, the sandy field on the side of casting A is 50 snow,
The lower surface was exposed to sand for 100 days, and N i A was applied in the same manner as in Example 1.
AB 2 Molten metal is poured into the molten metal inlet 2 at a casting temperature of 1150°C, and the thermocouple thermometer 7 measures when the molten metal temperature reaches 1000°C (solidification completion temperature), and the stop valve 10 is turned on. The mold 1 was opened and liquid nitrogen was blown onto the mold 1 from a liquid nitrogen cylinder 8 through a liquid nitrogen supply steel pipe 9 to rapidly cool it.

〔実施例3〕 第3図に従って本発明の一実施例である悄粒鋳造法の例
を説明する。第3図の(a)はその斜視図、(1))は
断面図を示す。第3図にお1ハて、1は、鋳型で、鋳物
Aに最接近部3!は鋼粒1(5@而厚さ20−1下面厚
さ40鱈)、中間、13雪は鋼粒と鋳物砂の混合1(側
面厚さ20■、下面厚さ40燗)、最外、1hは鋳物砂
、1(側面厚さ10−1下面厚さ20 wm )よりな
るものである。2はIJiAtB2溶沿注入口、AはN
iAtB2鋳物を示し、数値は鋳型1の寸法、鋳型1の
材質、1厚さ及び鋳物Aの寸法(1)を夫々示す。
[Embodiment 3] An example of a thin grain casting method, which is an embodiment of the present invention, will be explained with reference to FIG. FIG. 3(a) is a perspective view thereof, and FIG. 3(1)) is a sectional view thereof. In Fig. 3, 1 is the mold, and the part 3 closest to the casting A! is steel grain 1 (5 @ thickness 20-1, bottom thickness 40mm), middle, 13 snow is a mixture of steel grains and foundry sand 1 (side thickness 20cm, bottom thickness 40mm), outermost, 1h is foundry sand made of 1 (side thickness 10-1 bottom surface thickness 20 wm). 2 is IJiAtB2 welding inlet, A is N
The iAtB2 casting is shown, and the numerical values indicate the dimensions of the mold 1, the material of the mold 1, the thickness of the mold 1, and the dimension (1) of the casting A, respectively.

鋼粒W3tの鋼粒は直径約1fiのものを使用し、その
粘結剤としてはケイ酸ソーダを使用した。
Steel grains W3t having a diameter of about 1 fi were used, and sodium silicate was used as the binder.

また鋼粒と鋳物砂の混合515.は鋼粒と鋳物砂を同容
量ずつ混合したものを使用した。
Also, a mixture of steel grains and foundry sand 515. A mixture of equal volumes of steel grains and foundry sand was used.

上記構成の鋳型1に溶湯注入口2より祷込温度約115
0℃のNiAtB2溶湯を注入すると、溶湯に接する鋼
粒層31は鋳物砂に比べてはるかに燥伝導率が高いので
溶湯と鋼粒、す3!の接触面はすぐ冷却凝固するように
なるばかシでなく、鋳物Aの内部も急冷される。また鋳
造時に発生するガスは鋼粒間を通って外部に抜けるため
ガス抜き性が良好となり、鋳造欠陥である微小鋳巣が激
減する。
The temperature of about 115
When NiAtB2 molten metal at 0°C is injected, the steel grain layer 31 in contact with the molten metal has a much higher dry conductivity than foundry sand, so the molten metal and steel grains are separated by 3! The contact surface of the casting A does not immediately cool and solidify, but the inside of the casting A is also rapidly cooled. In addition, the gas generated during casting passes through between the steel grains and escapes to the outside, which improves degassing performance and drastically reduces the number of micro-porosity, which is a casting defect.

〔実施例4〕 本発明の一突施例としては、砂型剥離空冷法があげられ
るが、この方法は従来の鋳物砂型法と同じ鋳型を用い、
N1AtBz溶湯を注湯後、それが約1000°Cの凝
固終了温度になった時、鋳型の鋳物砂を工具によって除
去し、高温の鋳物を空気に直接々触させて急冷するもの
である。
[Example 4] An example of the present invention is the sand mold separation air cooling method, which uses the same mold as the conventional foundry sand mold method,
After pouring the N1AtBz molten metal, when it reaches the final solidification temperature of approximately 1000°C, the molding sand in the mold is removed using a tool, and the hot casting is brought into direct contact with air to be rapidly cooled.

上記の急冷処理を備えた4つの実施例方法と従来の鋳造
法についての比較実験結果を表2に対比して示す。
Table 2 shows the results of a comparative experiment between the four embodiment methods provided with the above-mentioned quenching treatment and the conventional casting method.

この表よシ下記のことが分る。This table reveals the following.

(1)本発明の砂型水冷法、砂型液体窒素冷却法、砂型
剥離法、鋼粒鋳型法の機械的性質(引張強さ、伸び、プ
リネル硬さ、海水中腐食疲労強度)は、従来の鋳物砂型
法(余冷法)に比べて優れていること。
(1) The mechanical properties (tensile strength, elongation, Prinell hardness, seawater corrosion fatigue strength) of the sand mold water cooling method, sand mold liquid nitrogen cooling method, sand mold peeling method, and steel grain casting method of the present invention are different from those of conventional castings. Superiority compared to the sand mold method (after-cooling method).

特に引張強さや海水中腐食疲労強度の増加は、N i 
AtB 2製品の肉厚を従来品よりも薄くでき、必要原
材料(地金)の低減、製品の軽量化、加工工数の低減が
可能となる。
In particular, the increase in tensile strength and seawater corrosion fatigue strength is
The wall thickness of AtB 2 products can be made thinner than conventional products, making it possible to reduce the amount of raw materials (base metal) required, the weight of the product, and the number of processing steps.

また、材料の硬さの増加は、流体中で使用すルN1At
B7製品の場合、キャビテーション、エロージョンの発
生を抑制する。
Also, the increase in hardness of the material is due to the increase in the hardness of the material used in fluids.
In the case of B7 products, cavitation and erosion are suppressed.

(2)鋳物の切断面を観察した結果、本発明の急冷法は
従来法に比べて微小鋳巣が大幅に減少し、鋼粒鋳型では
皆無に近かった。これは、ガス抜き性が良好であったこ
と及び鋳造時の指向性凝固がうまくなされたことを物語
っている。鋳巣の大幅減少は品質向上につながシ、製品
の損傷を少なくするのに貢献する。
(2) As a result of observing the cut surface of the casting, the rapid cooling method of the present invention significantly reduced the number of micro-porous cavities compared to the conventional method, and in the case of steel grain molds, there were almost no micro-porous cavities. This indicates that the degassing properties were good and the directional solidification during casting was successful. A significant reduction in blow holes leads to improved quality and contributes to reducing product damage.

〔発明の効果〕〔Effect of the invention〕

本発明の鋳型急冷法(砂型水冷法、砂型液体窒素冷却法
、砂型剥離空冷法、鋼粒鋳型法)は従来の鋳型徐冷法(
鋳物砂型法)K比べて、下記の効果をもつ。
The mold rapid cooling method of the present invention (sand mold water cooling method, sand mold liquid nitrogen cooling method, sand mold peeling air cooling method, steel grain molding method) is different from the conventional mold slow cooling method (
Casting sand mold method) Compared to K, it has the following effects.

(1)  機械的性質が向上するため、N i AAB
 2製品の薄肉化、小型化、軽量化、必要地金の低減、
加工工数の低減が可能となシ、耐キャビチー第1図〜第
3図は本発明の詳細な説明するための図であシ、第1図
は砂型水冷法、第2図は砂型液体窒素冷却法、第3図は
鋼粒鋳造法の鋳造例の説明図、第4図は従来の鋳物砂鋳
造法の説明図である。
(1) Because the mechanical properties are improved, N i AAB
2. Thinner products, smaller size, lighter weight, and reduced metal requirements.
Figures 1 to 3 are diagrams for explaining the details of the present invention. Figure 1 shows the sand mold water cooling method, and Figure 2 shows the sand mold liquid nitrogen cooling method. Fig. 3 is an explanatory diagram of a casting example of the steel grain casting method, and Fig. 4 is an explanatory diagram of a conventional foundry sand casting method.

Claims (1)

【特許請求の範囲】[Claims] ニツケルアルミニウム青銅溶湯の鋳造後に急冷し、Ni
_3Al、FeAlの介在物を微細化して金属組織内に
析出させ、機械的性質の向上と鋳造欠陥の低減を図るこ
とを特徴とするニツケルアルミニウム青銅の鋳造法。
After casting the nickel aluminum bronze molten metal, it is rapidly cooled and Ni
_3 A method for casting nickel aluminum bronze, which is characterized in that inclusions of Al and FeAl are made fine and precipitated within the metal structure to improve mechanical properties and reduce casting defects.
JP31531487A 1987-12-15 1987-12-15 Method for casting nickel aluminum bronze Pending JPH01157758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31531487A JPH01157758A (en) 1987-12-15 1987-12-15 Method for casting nickel aluminum bronze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31531487A JPH01157758A (en) 1987-12-15 1987-12-15 Method for casting nickel aluminum bronze

Publications (1)

Publication Number Publication Date
JPH01157758A true JPH01157758A (en) 1989-06-21

Family

ID=18063908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31531487A Pending JPH01157758A (en) 1987-12-15 1987-12-15 Method for casting nickel aluminum bronze

Country Status (1)

Country Link
JP (1) JPH01157758A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679161A1 (en) * 1991-07-19 1993-01-22 Giat Ind Sa Casting method and mould for improving the fineness of grain of moulded metallic components
EP0890400A1 (en) * 1997-06-17 1999-01-13 Wärtsilä NSD Schweiz AG Casting method and mould for making metallic mouldings
CN101817073A (en) * 2010-05-14 2010-09-01 许广和 Process for manufacturing cadmium plate and cadmium alloy plate
CN104607619A (en) * 2015-02-09 2015-05-13 曾寿农 Method for improving overall metal performance
EP3539687A1 (en) * 2017-12-27 2019-09-18 Casa Maristas Azterlan Device and method for improved cooling of a metallic alloy in a sand mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679161A1 (en) * 1991-07-19 1993-01-22 Giat Ind Sa Casting method and mould for improving the fineness of grain of moulded metallic components
EP0890400A1 (en) * 1997-06-17 1999-01-13 Wärtsilä NSD Schweiz AG Casting method and mould for making metallic mouldings
KR100567360B1 (en) * 1997-06-17 2006-07-03 베르트질레 슈바이츠 악티엔게젤샤프트 Casting method and a casting mould for the manufacture of metallic cast parts
CN101817073A (en) * 2010-05-14 2010-09-01 许广和 Process for manufacturing cadmium plate and cadmium alloy plate
CN104607619A (en) * 2015-02-09 2015-05-13 曾寿农 Method for improving overall metal performance
EP3539687A1 (en) * 2017-12-27 2019-09-18 Casa Maristas Azterlan Device and method for improved cooling of a metallic alloy in a sand mold

Similar Documents

Publication Publication Date Title
EP2059359B1 (en) Solidification microstructure of aggregate molded shaped castings
CN101928872B (en) Production method of low-magnetic iron castings
JP2013136097A (en) Method for making article having fine equiaxed grain structure
JPH05505343A (en) Controlled casting of hypereutectic A1-Si alloy
JPH01157758A (en) Method for casting nickel aluminum bronze
US3126597A (en) Decarburization in casting of steel
CA2078969A1 (en) Method of casting hypereutectic aluminum-silicon alloys using a salt core
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
US5706881A (en) Heat treatment of superalloy casting with partial mold removal
Yang et al. Numerical calculation and experimental evaluation of counter-gravity investment casting of Ti-48Al-2Cr-2Nb alloy
JPS626615B2 (en)
JPS62252658A (en) Production of high density ingot having fine isometric structure
CN110202121B (en) Alloy casting method for obtaining fine secondary dendrite arm spacing by using double cooling conditions
US3157926A (en) Making fine grained castings
CN110079751A (en) A kind of preparation method of made of Al-Cu alloy supersaturated solid solution
JPS61119351A (en) Production of cast iron material having fine spheroidal graphite
JP3215769B2 (en) Forming method of aluminum alloy casting
JPH0716701A (en) Propeller for motor boat and its production
RU2661986C1 (en) Method for producing high-manganese steel castings
JP2003147459A (en) Copper alloy cast member and method for producing the same
Pisarek et al. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze
Arnold et al. Mechanical Properties/High Ductility from Aluminum Permanent Mold Castings
JPS5952019B2 (en) Small cylinder liner manufacturing method
JPH0116295B2 (en)
JPH06226427A (en) Manufacture of casting-ceramic complex member