JP2003147459A - Copper alloy cast member and method for producing the same - Google Patents

Copper alloy cast member and method for producing the same

Info

Publication number
JP2003147459A
JP2003147459A JP2001345147A JP2001345147A JP2003147459A JP 2003147459 A JP2003147459 A JP 2003147459A JP 2001345147 A JP2001345147 A JP 2001345147A JP 2001345147 A JP2001345147 A JP 2001345147A JP 2003147459 A JP2003147459 A JP 2003147459A
Authority
JP
Japan
Prior art keywords
copper alloy
casting
content
cast member
alloy cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001345147A
Other languages
Japanese (ja)
Inventor
Katsuaki Nakamura
克昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001345147A priority Critical patent/JP2003147459A/en
Publication of JP2003147459A publication Critical patent/JP2003147459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems in the casting of a copper alloy containing high concentration of Sn to develop a casting crack because the fluidity of this molten metal is low and the γ-phase is precipitated at the cooling time if the alloy is a brass and to add lead for improving the fluidity. SOLUTION: A brass cast member is made to contain 33.5-43 wt.% Zn and 0.5-8.0 wt.% Sn on the apparent contents and to have 0.5-4 mm thickness and <=10% residual ratio of the γ-phase after casting. When a dezincing corrosion test according with Technical Standards in Japan Brass Makers Association (JBMA) T-303 is applied, in the case of being the parallel with the working direction, to the maximum dezincing penetrating depth direction, the maximum dezincing depth is made to <=100 μm or in the case of being the right angle to the working direction, to the maximum dezincing penetrating depth direction, the maximum dezincing depth is made to <=70 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Snを含有した銅
合金鋳造部材に関する。
TECHNICAL FIELD The present invention relates to a copper alloy casting member containing Sn.

【0002】[0002]

【従来の技術とその課題】従来、Sn含有の銅合金系材
料の鋳造法においては、鉛および銅の含有量を多くする
ことにより湯流れ及び凝固割れを抑制して鋳造すること
が一般的であった。
2. Description of the Related Art Conventionally, in a casting method for a Sn-containing copper alloy-based material, it is general to increase the lead and copper contents to suppress molten metal flow and solidification cracking. there were.

【0003】一方、機械的性質および切削加工性を向上
させるためにはZnを多く含有させることが必要であ
る。しかしSnとZnを同時に含んだ銅合金、特に、S
n分を多く含んだ銅合金は、湯流れが悪く所定形状の鋳
造製品を得ることができなかった。また、SnとZnの
含有による固液共存領域の狭さ及び凝固時のγ相析出に
よる割れ発生が顕著であり、鋳造用材料として利用され
なかった。
On the other hand, in order to improve mechanical properties and machinability, it is necessary to add a large amount of Zn. However, a copper alloy containing Sn and Zn at the same time, especially S
With the copper alloy containing a large amount of n, the molten metal flow was poor and a cast product having a predetermined shape could not be obtained. Further, the narrowing of the solid-liquid coexisting region due to the inclusion of Sn and Zn and the occurrence of cracks due to γ-phase precipitation during solidification were remarkable, and they were not used as casting materials.

【0004】また、鋳造完了した製品においても粗大鋳
造組織発生および粗大γ相の析出により、構造部材とし
ては耐食性・機械的性質の劣化が大きな問題であり、鋳
造性と同様に全く実使用に全くならないとされてきた。
In addition, even in products that have been cast, the formation of a coarse casting structure and the precipitation of a coarse γ phase are major problems of corrosion resistance and mechanical property deterioration as structural members. Has been said not to.

【0005】[0005]

【課題を解決するための手段】本発明は、Sn含有量
が、0.5〜10wt%で、Pb含有量を0.01wt
%以下を含む銅合金鋳造部材を精密鋳造により形成した
ことをあることを特徴とした銅合金鋳造部材とした。
According to the present invention, the Sn content is 0.5 to 10 wt% and the Pb content is 0.01 wt%.
% Of the copper alloy cast member is formed by precision casting.

【0006】本発明によれば、Snの湯流れ悪さに加
え、湯流れ性の向上の為に、添加していたPbの添加を
ゼロにしても、ロストワックス法などの精密鋳造を利用
することで、鋳型の温度の確保、圧力条件を制御するこ
とで、溶湯の強制的な充填が容易にできる。
According to the present invention, in addition to the bad molten metal flow of Sn, in order to improve the molten metal flowability, precision casting such as the lost wax method can be used even if the addition of Pb which has been added is made zero. Thus, by ensuring the temperature of the mold and controlling the pressure conditions, forced filling of the molten metal can be facilitated.

【0007】また、見掛け上のZn含有量が33.5〜
43wt%でSn含有量が0.5〜8.0wt%であり
黄銅鋳造部材であって、その肉厚が、0.5mm〜4m
mの範囲内にあることを特徴とする黄銅鋳造部材とし
た。
Further, the apparent Zn content is 33.5 to
It is a brass casting member having a Sn content of 0.5 to 8.0 wt% at 43 wt% and a wall thickness of 0.5 mm to 4 m.
The brass cast member was characterized by being in the range of m.

【0008】ここで、見掛けの上のZn含有量とは、A
をCu含有量〔wt%〕、BをZn含有量〔wt%〕、
tを添加した第3元素(例えばSn)のZn当量、Qを
その第3元素の含有量〔wt%〕としたとき、「{(B
+t・Q)/(A+B+t・Q)}×100」の意味で
用い、Cu-Zn合金に第3元素を加えた場合、特別な相を
形成しないで、α、β中に固溶される場合が多いが、そ
の場合には、Zn量を増減したような組織が生じ、それ
に対応した性質を示すようになる。因みにSnのZn当
量は、2、Pbは、1である。本発明によれば、鋳造部
材の肉厚を0.5mm〜4mmの薄肉形状の鋳造品を形
成することで、γ相の析出による収縮による割れの発生
を抑制する事を可能とし、また、薄肉化により冷却速度
を大きくしてγ相の析出を最小限に抑える事を可能と
し、Snを多く含む黄銅鋳造部材の製造を可能とした。
Here, the apparent Zn content is A
Is the Cu content [wt%], B is the Zn content [wt%],
When the Zn equivalent of the third element (for example, Sn) to which t is added and Q is the content [wt%] of the third element, “{(B
+ T · Q) / (A + B + t · Q)} × 100 ”, and when a third element is added to the Cu-Zn alloy, it forms a solid solution in α and β without forming a special phase. However, in that case, a structure in which the amount of Zn is increased or decreased is generated, and the properties corresponding to the structure are exhibited. Incidentally, the Zn equivalent of Sn is 2 and Pb is 1. According to the present invention, it is possible to suppress the occurrence of cracks due to shrinkage due to the precipitation of the γ phase by forming a thin-walled cast product having a wall thickness of the cast member of 0.5 mm to 4 mm. This enabled the cooling rate to be increased to minimize the precipitation of the γ phase, and the brass cast member containing a large amount of Sn could be manufactured.

【0009】また、見掛け上のZn含有量が33.5〜
43wt%でSn含有量が0.5〜8.0wt%であり
黄銅鋳造部材であって、その肉厚が、0.5mm〜4m
mであり、鋳造後のγ相残留比率が10%以下であるこ
とを特徴とする黄銅鋳造部材とした。
Further, the apparent Zn content is 33.5 to
It is a brass casting member having a Sn content of 0.5 to 8.0 wt% at 43 wt% and a wall thickness of 0.5 mm to 4 m.
m, and the residual ratio of γ phase after casting was 10% or less.

【0010】鋳造部材の薄肉化により鋳造後の鋳造部材
の冷却速度を速めることで、γ相の析出を最小限に押え
ることが可能となり、γ相の析出による収縮による影響
を更に軽減できる。
By increasing the cooling rate of the cast member after casting by reducing the thickness of the cast member, it is possible to suppress the precipitation of the γ phase to a minimum and further reduce the influence of shrinkage due to the precipitation of the γ phase.

【0011】また、本発明は、鉛を含まない銅合金から
なる銅合金鋳造材料を準備する工程、前記銅合金鋳造材
料の溶湯を加熱された精密鋳造型のキャビティ径0.5
mm〜4mmに加圧下で鋳込む工程とを少なくとも有す
ることを特徴とする銅合金鋳造部材の製造方法とした。
The present invention also provides a step of preparing a copper alloy casting material made of a copper alloy containing no lead, and a cavity diameter of a precision casting die having a molten metal of the copper alloy casting material heated to 0.5.
The method for producing a copper alloy cast member is characterized by at least including a step of casting under pressure to mm to 4 mm.

【0012】本発明によれば、青銅や黄銅に良好な湯流
れ性を確保するために、鉛を添加していたが、温度の高
い状態を維持しながら、金属を流すことが出来、かつ、
加圧をすることでキャビテイ内の欠陥を防止するととも
に湯流れ性を確保できるので、鉛の添加が不要になる。
鉛は、不純物として混入する以外は、略ゼロのレベルに
持っていくことができ、環境への悪影響も低減できる。
According to the present invention, lead was added to bronze or brass in order to ensure good flowability of molten metal, but metal can be flowed while maintaining a high temperature, and
By applying pressure, defects in the cavity can be prevented and the flowability of the molten metal can be secured, so the addition of lead becomes unnecessary.
Lead can be brought to a level of almost zero except that it is mixed as an impurity, and the adverse effect on the environment can be reduced.

【0013】また、見掛け上のZn含有量が33.5〜
43wt%でSn含有量が0.5〜8.0wt%なる黄
銅鋳造材料を準備する工程、前記黄銅鋳造材料の溶湯を
加熱された精密鋳造型のキャビティ径0.5mm〜4m
mに加圧下で鋳込む工程とを少なくとも有することを特
徴とする黄銅鋳造部材の製造方法とした。
Further, the apparent Zn content is 33.5 to
A step of preparing a brass casting material having a Sn content of 43 wt% and a Sn content of 0.5 to 8.0 wt%, and a cavity diameter of a precision casting mold in which a molten metal of the brass casting material is heated 0.5 mm to 4 m
and a step of casting under pressure into m.

【0014】本発明によれば、ロストワックス法により
形成したセラミックシェル型のような精密鋳造型を利用
することで、表面状態及び精度のよい鋳造部材を提供で
き、また、セラミックシェル型のように型自体の肉厚が
比較的薄肉に成形できることから、鋳込み後の冷却速度
を速めることができ、凝固時の収縮を肉厚方向の収縮比
率を幅方向に比べて大きくすることにより、絶対的な変
形量を抑制し収縮割れ発生を大幅に低減する事が可能と
なる。それに加えて、キャビティ径を0.5mm〜4m
mとすることで、鋳造凝固時の冷却速度を砂型鋳造に比
較して早くすることができ、凝固時の体積変化率が大き
く脆い相であるγ相の析出を最小限にとどめることが可
能となる。このことにより割れを抑制した鋳造加工を実
現可能となる。鋳込部材の冷却もγ相の析出を極力押え
ることができるものである。
According to the present invention, a precision casting die such as a ceramic shell die formed by the lost wax method can be used to provide a casting member having a good surface condition and high precision. Since the mold itself can be molded to be relatively thin, the cooling rate after casting can be increased, and the shrinkage during solidification can be made absolute by increasing the shrinkage ratio in the thickness direction compared to the width direction. It is possible to suppress the amount of deformation and significantly reduce the occurrence of shrinkage cracks. In addition, the cavity diameter is 0.5mm-4m
By setting m, the cooling rate at the time of solidification of casting can be made faster than that of sand casting, and the precipitation of γ phase, which is a brittle phase with a large volume change rate at the time of solidification, can be minimized. Become. This makes it possible to realize a casting process in which cracking is suppressed. Cooling of the cast member can suppress precipitation of the γ phase as much as possible.

【0015】また、鋳造型は、鋳込み工程終了まで銅合
金の融点以上の維持され、鋳込み工程終了後、急冷する
ことで、鋳込み時のγ相の析出抑制による湯流れの確保
と、鋳込み後のγ相の析出を抑制し、また、凝固後の冷
却速度を早くすることで、結晶粒が微細化され、強度・
耐磨耗性などの機械的特性が大幅に向上し、同時に耐エ
ロージョン性・耐応力腐食割れ性を飛躍的に向上させる
ことが可能となる。
Further, the casting mold is maintained at a temperature equal to or higher than the melting point of the copper alloy until the end of the casting step, and is rapidly cooled after the casting step to secure a molten metal flow by suppressing the precipitation of the γ phase at the time of casting and By suppressing the precipitation of the γ phase and increasing the cooling rate after solidification, the crystal grains are made finer and the strength and
Mechanical properties such as abrasion resistance are greatly improved, and at the same time, erosion resistance and stress corrosion cracking resistance can be dramatically improved.

【0016】更に、鋳造完了した部材を熱処理すること
により、結晶粒の微細化・組織の適正化を行い、耐食性
及び機械的性質を大幅に向上させる事が可能となる。特
に、強度の向上により構造部材として薄肉化をはかるこ
とができ、また高い耐食性により腐食代を大幅に低減す
ることが可能となり薄肉化を実現できる。この薄肉化に
より軽量化及び材料使用量の低減を実現することが出き
る。
Further, by heat-treating the cast member, it becomes possible to refine the crystal grains and optimize the structure, and to greatly improve the corrosion resistance and mechanical properties. In particular, it is possible to reduce the wall thickness as a structural member by improving the strength, and it is possible to significantly reduce the corrosion allowance due to the high corrosion resistance, so that the wall thickness can be reduced. Due to this thinning, it is possible to realize weight reduction and reduction of material usage.

【0017】[0017]

【発明の実施の形態】本発明を好適な実施例として、図
1に記載の水道メータの製造方法を説明する。水道メー
タ1は、水の入水口2と吐出口3の間に、図示しない流
量計を内蔵する空間4を有する構造になっている。ま
ず、図1に示す形状の模型を蝋やその他除去し得る素材
により成形する。その後、蝋型の表面に複数回にわたっ
て、セラミックをコーティングして、これを乾燥させる
工程を繰り返す。次いで、オートクレーブ等を用いて、
加熱して、蝋型を溶融除去し、いわゆるセラミックシェ
ルと呼ばれる鋳型を形成する。この鋳型を所定温度で焼
成して、素焼き状の鋳型を造る。このときのセラミック
シェルの肉厚は、溶湯を保持できる強度があれば良い。
基本的には、数mmで十分な強度が確保できる。また、
鋳込む際に、このセラミックシェルの周りに、熱伝導性
の良い粒子を充填させ、強度をバックアップするように
しても良い。この素焼き状の鋳型を所定温度、望ましく
は、利用する銅合金の融点以上に加熱した後、溶湯を注
湯し、キャビティ内に溶湯が充填した後、そのまま、除
冷したりエアーなどを吹き付けることにより強制的に冷
却しする。その後、溶湯が冷却して固化した後、例え
ば、ウオータージェット等を噴射して、鋳型を破壊し、
鋳離しを行うという工程を得て製造される。この工程で
得られた水道メータは、従来のものに比べ、薄肉で成形
でることから軽量化が可能となり、且つ、後述するγ相
の活用により強度、耐食性など各種の優れた特性を有す
ものとすることができる。更には、鉛を添加しなくて良
いので、鉛の溶出により不安も解消される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
The method for manufacturing the water meter described in 1 will be described. The water meter 1 has a structure having a space 4 containing a flow meter (not shown) between a water inlet 2 and a water outlet 3. First, a model having the shape shown in FIG. 1 is molded with wax or other removable material. Thereafter, the process of coating the surface of the wax mold with the ceramic and drying it is repeated. Then, using an autoclave,
Upon heating, the wax pattern is melted and removed to form a mold called a so-called ceramic shell. This mold is fired at a predetermined temperature to make a unglazed mold. At this time, the wall thickness of the ceramic shell should be strong enough to hold the molten metal.
Basically, a sufficient strength can be secured with a few mm. Also,
At the time of casting, particles having good thermal conductivity may be filled around the ceramic shell to back up the strength. After heating this unglazed mold to a predetermined temperature, preferably above the melting point of the copper alloy to be used, pouring the molten metal, filling the cavity with the molten metal, and then cooling it or blowing air To force cooling. Then, after the molten metal has cooled and solidified, for example, a water jet or the like is sprayed to break the mold,
It is manufactured by obtaining the step of performing casting. The water meter obtained in this process is thinner and can be made lighter than conventional ones, and has various excellent properties such as strength and corrosion resistance by utilizing the γ phase described later. Can be Furthermore, since it is not necessary to add lead, the anxiety is resolved by the elution of lead.

【0018】上記工程で、素材としては、種々のものが
利用できるが、見掛け上のZn含有量が33.5〜43
wt%でSn含有量が0.5〜8.0wt%の組成のも
のが、好適に利用できる。この際、セラミックシェル内
のキャビティ径は、0.5〜4mm程度に成形しておく
ことで、鋳込み後の冷却の際にγ相が析出してもその収
縮による影響を受けることなく成形が可能となる。ま
た、セラミックシェルの温度をヒータなどでγ相が存在
しない領域以上、例えば、550〜800℃の温度域に
保持しておき、その後、水冷等を用いてγ相が析出しな
い速度もしくはγ相比率が10%以下(0も含む)とな
る冷却速度で急冷することにより、凝固組織を大幅に改
善し耐食性・機械的性質を大幅に向上させることができ
る。凝固組織は、耐食性に劣るといわれているβ相中に
多くのSnが固溶することで、各特性が向上していると考
えられる。急冷は、セラミックシェルの肉厚の薄さとキ
ャビティ内径の小さが可能にしている。
Various materials can be used in the above process, but the apparent Zn content is 33.5 to 43.
A composition having a wt% and a Sn content of 0.5 to 8.0 wt% can be preferably used. At this time, if the cavity diameter in the ceramic shell is molded to about 0.5 to 4 mm, molding can be performed without being affected by shrinkage even if the γ phase precipitates during cooling after casting. Becomes In addition, the temperature of the ceramic shell is maintained at a temperature above the region where the γ phase does not exist by a heater, for example, at a temperature range of 550 to 800 ° C., and then water cooling or the like is used to prevent the γ phase from being precipitated or the γ phase ratio By rapidly cooling at a cooling rate of 10% or less (including 0), the solidification structure can be significantly improved, and the corrosion resistance and mechanical properties can be significantly improved. It is considered that each property of the solidified structure is improved by the solid solution of a large amount of Sn in the β phase, which is said to have poor corrosion resistance. Quenching allows for a thin ceramic shell and a small cavity inner diameter.

【0019】また、鋳造が終了した上記の鋳造部材は、
γ相の持つ耐磨耗性や切削性の向上といった特徴を活か
すために、γ相を一旦消失させる温度の520℃以上で
再加熱した後、空冷(除冷)することで、結晶組織中に
γ層が均一に分散した状態の組織を形成することができ
る。
The above-mentioned cast member after casting is
In order to make full use of the characteristics of the γ phase such as improved wear resistance and machinability, it is reheated at a temperature of 520 ° C or higher at which the γ phase once disappears, and then air-cooled (de-cooled) It is possible to form a structure in which the γ layer is uniformly dispersed.

【0020】なお、冷却の効率を更に、向上させるため
に、セラミックシェルに熱伝導性の優れ、溶湯の融点よ
り高い素材のW・Co・Ni及び耐熱合金のファイバー
もしくは粉末、あるいはファイバーと粉末を混在させる
ようにすることが望ましい。具体的には、蝋型に最初に
コーティングするのは、耐熱性の確保、溶湯と金属粉末
もしくはファイバーが反応して凝着することを防ぐため
にセラミック単独で行い、その後のコーティングの際
に、金属粉末を混ぜておき、スラリー状にして付着させ
ることにより熱伝導性を向上させる層を形成する。第2
回以降のコーティングの工程では、スラリーの成分とし
てSiOやCaCO、Alをスラリー化した
ものをベースとして、金属粉末もしくは金属ファイバー
を混入させる。この時比重が異なるため浸漬直前まで攪
拌する必要がある。
In order to further improve the cooling efficiency, the ceramic shell is made of W / Co / Ni and heat-resistant alloy fiber or powder, which is a material having excellent thermal conductivity and higher than the melting point of the molten metal, or fiber and powder. It is desirable to mix them. Specifically, the wax type is first coated with the ceramic alone to ensure heat resistance and to prevent the molten metal and metal powder or fiber from reacting and adhering to each other. The powder is mixed and made into a slurry to be adhered to form a layer for improving the thermal conductivity. Second
In the subsequent coating steps, metal powder or metal fibers are mixed on the basis of a slurry of SiO 2 , CaCO 3 , and Al 2 O 3 as the components of the slurry. At this time, since the specific gravity is different, it is necessary to stir until just before the immersion.

【0021】ここで、「見掛け上のZn含有量」という
用語は、AをCu含有量[wt%]、BをZn含有量
[wt%]、tを添加した第3元素(例えばSn)のZ
n当量、Qをその第3元素の含有量[wt%]としたと
き、「{(B+t・Q)/(A+B+t・Q)}×10
0」の意味で用いる。
Here, the term "apparent Zn content" means that A is a Cu content [wt%], B is a Zn content [wt%], and a third element (for example, Sn) to which t is added. Z
When n equivalent and Q are the contents [wt%] of the third element, “{(B + t · Q) / (A + B + t · Q)} × 10
It is used to mean "0".

【0022】上記鋳込みの工程において、セラミックシ
ェルのキャビティへの溶湯の注入にあたっては、湯流れ
の確保、Znの蒸発を抑えるために、遠心鋳造や加圧鋳造
を行うことが望ましい。この方法を用いると、従来、Pb
を湯流れ性確保に利用していたSn分を0.5〜10含
むような青銅鋳物や黄銅鋳物の組成からPbを除去した組
成のものも適用できることになる。
In the casting step, when pouring the molten metal into the cavity of the ceramic shell, it is desirable to perform centrifugal casting or pressure casting in order to secure the flow of molten metal and suppress evaporation of Zn. Using this method, the Pb
It is also possible to apply a composition in which Pb is removed from the composition of a bronze casting or a brass casting containing 0.5 to 10 of Sn, which was used to secure the molten metal flowability.

【0023】また、上記したγ相を有する本発明の鋳造
部材は、(1)日本工業規格JISC−3604に従う
快削黄銅棒を基準とした切削抵抗指数が50以上、好ま
しくは80以上あり、また、(2)原料組成としてSn
を含有する場合は、日本伸銅協会技術標準JBMA T
−303に従う脱亜鉛腐食試験を行なったとき、最大脱
亜鉛浸透深さ方向が加工方向と平行な場合には最大脱亜
鉛深さ100μm以下である、又は、最大脱亜鉛浸透深
さ方向が加工方向と直角な場合には最大脱亜鉛深さ70
μm以下であった。この特性は、従来黄銅の鋳造組織で
は、得ることのできなかったγ相の存在に起因してい
る。
The cast member of the present invention having the above-mentioned γ phase has (1) a cutting resistance index of 50 or more, preferably 80 or more, based on a free-cutting brass rod according to Japanese Industrial Standard JISC-3604. , (2) Sn as a raw material composition
If it contains, the Japan Copper and Brass Association technical standard JBMAT
When performing the dezincification corrosion test according to −303, the maximum dezincification penetration depth direction is 100 μm or less when the maximum dezincification penetration depth direction is parallel to the processing direction, or the maximum dezincification penetration depth direction is the processing direction. Maximum dezincing depth is 70 when perpendicular to
It was less than μm. This characteristic is due to the existence of the γ phase, which has not been obtained in the conventional cast structure of brass.

【0024】尚、ここで挙げた特性以外にも、研摩性に
ついても優れた特性を示すことができる。すなわち、研
摩性については、1.同じ条件で研磨を行った場合、従
来材に比べて研磨後の表面粗さが小さいこと、2.同じ
条件で研磨を行った場合、従来材に比べて研磨量が多い
こと、3.同じ条件で研磨を行った場合、従来材に比べ
て外観に不備が無く、メッキののりが良いこと、の観点
から評価されるのであるが、これらの観点から評価した
結果、上記したSn含有黄銅鋳造部材は、従来の黄銅及
び青銅鋳造部材に比較して優れることが示されるからで
ある。
It should be noted that, in addition to the characteristics listed here, excellent polishing characteristics can be exhibited. That is, regarding the abrasiveness, 1. When the polishing is performed under the same conditions, the surface roughness after polishing is smaller than that of the conventional material. 2. When polishing is performed under the same conditions, the polishing amount is larger than that of conventional materials. When polished under the same conditions, it is evaluated from the viewpoint that the appearance is not defective and the plating paste is good compared to the conventional material. As a result of evaluation from these viewpoints, the Sn-containing brass described above is evaluated. This is because the cast member is shown to be superior to the conventional brass and bronze cast members.

【0025】この研磨性について定量化するならば、本
発明に従う板材は、熱処理工程後に、研磨装置がビュー
ラーECOMET IV、研磨盤回転数が200rp
m、試料押付け圧力が6.9KPa、研磨紙がSiC#
600の条件で#80のキズを表面研磨した場合、日本
工業規格JIS C−2700に従う黄銅鋳造材に比較
して、1/2の時間で研磨が仕上がる特性を有する。
To quantify this polishing property, the plate material according to the present invention, after the heat treatment step, has a polishing apparatus of a Buehler ECOMET IV and a polishing plate rotation speed of 200 rp.
m, sample pressing pressure is 6.9 KPa, abrasive paper is SiC #
When the # 80 scratch is surface-polished under the condition of 600, polishing is completed in 1/2 time as compared with the brass cast material according to Japanese Industrial Standard JIS C-2700.

【0026】また、管材を鋳造した場合は、熱処理工程
後に、研磨装置がビューラーECOMET IV、研磨
盤回転数が150rpm、試料押付け圧力が6.9KP
a、研磨粉がAl2O3の条件で#600のキズを表面
研磨した場合、日本工業規格JIS C−2700に従
う黄銅板材に比較して、1/2の時間で研磨が仕上がる
特性を有する。
When the pipe material is cast, after the heat treatment step, the polishing apparatus is a Buehler ECOMET IV, the polishing plate rotational speed is 150 rpm, and the sample pressing pressure is 6.9 KP.
a, when the # 600 scratch is surface-polished under the condition that the polishing powder is Al2O3, it has the characteristic that the polishing is completed in 1/2 time compared with the brass plate material according to Japanese Industrial Standard JIS C-2700.

【0027】更に、β相の面積比率を5%以上にするこ
とにより、元々切削性、研摩性に優れたβ相を有効利用
して、切削性等を確保せんとするものであり、さらに
は、β相の面積比率を40%以下、好ましくは20%以
下にすることによって、耐食性も確保できるのである。
この面積比率の調整は、見掛け上のZn含有量によって適
宜調整できる。
Further, by making the area ratio of the β phase 5% or more, the β phase, which is originally excellent in machinability and abrasivity, is effectively utilized to secure the machinability and the like. By setting the area ratio of the β phase to 40% or less, preferably 20% or less, corrosion resistance can be ensured.
The adjustment of the area ratio can be appropriately adjusted depending on the apparent Zn content.

【0028】さらには、β相中のSn濃度を1.5wt
%以上にすれば、元々耐食性に劣るβ相を強化して、全
体として耐食性向上を図ることができる。
Furthermore, the Sn concentration in the β phase is 1.5 wt.
If it is at least%, the β phase, which is originally inferior in corrosion resistance, can be strengthened to improve the corrosion resistance as a whole.

【0029】また、γ相の面積比率を1%以上にするこ
とにより、硬質なγ相と他の相との界面での切削性、研
摩性を有効利用して切削性等を確保しつつ、γ相の有す
る強度を利用して強度を向上せんとするものであり、好
適には、γ相の面積比率を30%以下にすることによっ
て、γ相のもつ脆性を低減するものである。
Further, by setting the area ratio of the γ phase to 1% or more, the machinability and the abradability at the interface between the hard γ phase and other phases are effectively utilized while securing the machinability and the like. The strength of the γ phase is utilized to improve the strength, and it is preferable to reduce the brittleness of the γ phase by setting the area ratio of the γ phase to 30% or less.

【0030】更に、γ相の平均結晶粒径(短径)を8μ
m以下、好ましくは5μm以下にすれば、γ相のもつ脆
性をより低減できるのであるが、γ相のSn濃度が8w
t%以上であれば耐食性も向上する。特に、β相を含有
する場合には、Sn濃度が8wt%以上のγ相でβ相を
取り囲むことにより、元々耐食性に劣るβ相を保護し
て、全体として耐食性向上を図ることができる。また、
熱処理によりγ相形状の適正化を含めた結晶制御を行う
ことにより、切削性を大幅に改善することが可能であ
り、相乗効果でPbを含まないSn含有黄銅でありなが
ら従来より短い切削加工時間にすることが可能となる。
Further, the average crystal grain size (minor axis) of the γ phase is set to 8 μm.
When it is m or less, preferably 5 μm or less, the brittleness of the γ phase can be further reduced, but the Sn concentration of the γ phase is 8 w.
If it is t% or more, the corrosion resistance is also improved. In particular, when the β phase is contained, by surrounding the β phase with the γ phase having a Sn concentration of 8 wt% or more, the β phase which is originally inferior in corrosion resistance can be protected and the corrosion resistance can be improved as a whole. Also,
Machinability can be significantly improved by performing crystal control including optimization of the γ phase shape by heat treatment, and the synergistic effect of Sn-containing brass that does not contain Pb has a shorter cutting time than before. It becomes possible to

【0031】[0031]

【発明の効果】以上、本発明によれば、Sn分が多く、
Pbを含まないという銅合金であっても、品質の良い鋳
造部材を提供できる。
As described above, according to the present invention, the Sn content is large,
Even with a copper alloy that does not contain Pb, a good quality cast member can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 水道メーター本体 2 入水口 3 吐出口 1 Water meter body 2 water inlet 3 outlets

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 27/09 B22D 27/09 A 29/00 29/00 G C22C 9/04 C22C 9/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22D 27/09 B22D 27/09 A 29/00 29/00 G C22C 9/04 C22C 9/04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】Sn含有量が、0.5〜10wt%で、P
b含有量を0.01wt%以下である銅合金鋳造部材を
精密鋳造により形成したことを特徴とした銅合金鋳造部
材。
1. A Sn content of 0.5 to 10 wt.
A copper alloy cast member, characterized in that a copper alloy cast member having a b content of 0.01 wt% or less is formed by precision casting.
【請求項2】見掛け上のZn含有量が33.5〜43w
t%でSn含有量が0.5〜8.0wt%であり銅合金
鋳造部材であって、その肉厚が、0.5mm〜4mmで
あることを特徴とする銅合金鋳造部材。
2. The apparent Zn content is 33.5 to 43w.
A copper alloy cast member having a Sn content of 0.5 to 8.0 wt% at t% and a wall thickness of 0.5 mm to 4 mm.
【請求項3】見掛け上のZn含有量が33.5〜43w
t%でSn含有量が0.5〜8.0wt%であり銅合金
鋳造部材であって、その肉厚が、0.5mm〜4mmで
あり、鋳造後のγ相残留比率が10%以下であることを
特徴とする銅合金鋳造部材。
3. Apparent Zn content is 33.5 to 43w.
It is a copper alloy cast member having a Sn content of 0.5 to 8.0 wt% at t%, a thickness of 0.5 mm to 4 mm, and a γ phase residual ratio after casting of 10% or less. A copper alloy cast member characterized by being present.
【請求項4】原料組成として、見掛け上のZn含有量が
33.5〜43wt%でSn含有量が0.5〜8.0w
t%である銅合金鋳造部材であって、その肉厚が、0.
5mm〜4mmのであり以下の特性を具備していること
を特徴とする銅合金鋳造部材。日本伸銅協会技術標準J
BMA T−303に従う脱亜鉛腐食試験を行なったと
き、最大脱亜鉛浸透深さ方向が加工方向と平行な場合に
は最大脱亜鉛深さ100μm以下であること、又は、最
大脱亜鉛浸透深さ方向が加工方向と直角な場合には最大
脱亜鉛深さ70μm以下であること。
4. As a raw material composition, apparent Zn content is 33.5 to 43 wt% and Sn content is 0.5 to 8.0 w.
It is a copper alloy cast member having a thickness of 0.
A copper alloy cast member having a size of 5 mm to 4 mm and having the following characteristics. Japan Copper and Brass Association Technical Standard J
When performing the dezincification corrosion test according to BMA T-303, when the maximum dezincification penetration depth direction is parallel to the processing direction, the maximum dezincification penetration depth is 100 μm or less, or the maximum dezincification penetration depth direction If is perpendicular to the processing direction, the maximum dezincing depth should be 70 μm or less.
【請求項5】鉛を含まない銅合金からなる銅合金鋳造材
料を準備する工程、前記銅合金鋳造材料の溶湯を加熱さ
れた精密鋳造型のキャビティ径0.5mm〜4mmに加
圧下で鋳込む工程とを少なくとも有することを特徴とす
る銅合金鋳造部材の製造方法。
5. A step of preparing a copper alloy casting material made of a copper alloy containing no lead, the molten metal of the copper alloy casting material being cast under pressure into a cavity diameter of a precision casting mold of 0.5 mm to 4 mm. A method for manufacturing a copper alloy cast member, which comprises at least a step.
【請求項6】見掛け上のZn含有量が33.5〜43w
t%でSn含有量が0.5〜8.0wt%なる銅合金鋳
造材料を準備する工程、前記銅合金鋳造材料の溶湯を加
熱された精密鋳造型のキャビティ径0.5mm〜4mm
に加圧下で鋳込む工程とを少なくとも有することを特徴
とする銅合金鋳造部材の製造方法。
6. The apparent Zn content is 33.5 to 43w.
a step of preparing a copper alloy casting material having a Sn content of 0.5 to 8.0 wt% at t%, a cavity diameter of a precision casting die heated to a molten metal of the copper alloy casting material 0.5 mm to 4 mm
And at least a step of casting under pressure, the method for producing a copper alloy cast member.
【請求項7】前記精密鋳造型が、ロストワックス法を利
用した型であることを特徴とする請求項5又は6の何れ
かに記載の銅合金鋳造部材の製造方法。
7. The method for producing a copper alloy cast member according to claim 5, wherein the precision casting mold is a mold utilizing a lost wax method.
【請求項8】前記前記鋳造型は、鋳込み工程終了まで銅
合金の融点以上に維持され、鋳込み工程終了後、急冷す
ることを特徴とする請求項6又は7の何れかに記載の銅
合金鋳造部材の製造方法。
8. The copper alloy casting according to claim 6, wherein the casting mold is maintained at a temperature equal to or higher than the melting point of the copper alloy until the casting step is completed, and is rapidly cooled after the casting step is completed. A method of manufacturing a member.
【請求項9】前記急冷処理後、鋳造型から銅合金鋳造部
材を脱型後、この銅合金鋳造部材を520℃以上まで加
熱し徐冷すること特徴とする請求項6又は8の何れかに
記載の銅合金鋳造部材の製造方法。
9. The copper alloy casting member is demolded from the casting die after the quenching treatment, and then the copper alloy casting member is heated to 520 ° C. or higher and gradually cooled. A method for producing the copper alloy cast member described.
JP2001345147A 2001-11-09 2001-11-09 Copper alloy cast member and method for producing the same Pending JP2003147459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345147A JP2003147459A (en) 2001-11-09 2001-11-09 Copper alloy cast member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345147A JP2003147459A (en) 2001-11-09 2001-11-09 Copper alloy cast member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003147459A true JP2003147459A (en) 2003-05-21

Family

ID=19158542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345147A Pending JP2003147459A (en) 2001-11-09 2001-11-09 Copper alloy cast member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003147459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834845A (en) * 2014-03-10 2014-06-04 安徽厚林神雕金属艺术品有限公司 Copper alloy for precision casting of artwork, and preparation method and method for precision casting
CN111101017A (en) * 2019-12-31 2020-05-05 黑龙江北鸥卫浴用品有限公司 Corrosion-resistant low-lead brass alloy, brass casting and preparation method thereof
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same
CN115464342A (en) * 2022-09-26 2022-12-13 华能(浙江)能源开发有限公司玉环分公司 Manufacturing method of long-service-life grinding disc center cover for coal mill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834845A (en) * 2014-03-10 2014-06-04 安徽厚林神雕金属艺术品有限公司 Copper alloy for precision casting of artwork, and preparation method and method for precision casting
CN103834845B (en) * 2014-03-10 2015-11-11 安徽厚林神雕金属艺术品有限公司 A kind of preparation method of precision casting copper alloy of artwork and the method for precision casting
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same
CN111101017A (en) * 2019-12-31 2020-05-05 黑龙江北鸥卫浴用品有限公司 Corrosion-resistant low-lead brass alloy, brass casting and preparation method thereof
CN115464342A (en) * 2022-09-26 2022-12-13 华能(浙江)能源开发有限公司玉环分公司 Manufacturing method of long-service-life grinding disc center cover for coal mill
CN115464342B (en) * 2022-09-26 2024-03-26 华能(浙江)能源开发有限公司玉环分公司 Manufacturing method of long-service-life millstone center cover for coal mill

Similar Documents

Publication Publication Date Title
JP6359778B2 (en) Manufacturing method of complex shape casting and casting made of AlCu alloy
CN105057593B (en) A kind of copper-alloy casting full form casting process
JP2016532566A (en) Ceramic core composition, method for making a core, method for casting a hollow titanium-containing article, and hollow titanium-containing article
CN102861873A (en) Casting method of gear
KR20060100375A (en) Tool for producing cast components, method for producing said tool, and method for producing cast components
JP2005349472A (en) Lost wax casting method using contact layer
JP2013071169A (en) Ceramic core for precision casting, and method for manufacturing the same
CN110396625A (en) A kind of preparation method of antiwear heat resisting aluminium alloy
CN102560204B (en) Silicon-aluminum bicontinuous composite material and preparation method thereof
JP2003147459A (en) Copper alloy cast member and method for producing the same
CN109014090B (en) Hot-top casting process of 7-series aluminum alloy round bar
KR20040097396A (en) Inoculation alloy against micro-shrinkage cracking for treating cast iron castings
Szkliniarz et al. Fundamentals of manufacturing technologies for aircraft engine parts made of TiAl based alloys
JP7504100B2 (en) Improved foundry slurry for shell mold manufacturing
CN115921767A (en) Investment casting shell surface layer refractory material and preparation method thereof
CN114561195A (en) Cooling element material for magnesium alloy investment casting and preparation method and application thereof
CN114535506B (en) Method for controlling solidification of investment casting magnesium alloy casting and investment casting method
RU2367538C1 (en) Coating for casting moulds at centrifugal casting of copper alloys
Soundararajan et al. Effect of squeeze casting process parameters on surface roughness of A413 alloy and A413-B4C composites
CN109475928B (en) Method for producing a shell mould
JPH09155503A (en) Mold for precision casting and method thereof
KR20240104563A (en) Ingot for alloy power having improved high temperature oxidation resistance and manutacturing the same
JP4689342B2 (en) Precision casting and precision casting
Harshith et al. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills
JPH08309478A (en) Die for precision casting gas turbine blade, and manufacture of gas turbine blade