JPH01157488A - Superconducting ceramic article - Google Patents

Superconducting ceramic article

Info

Publication number
JPH01157488A
JPH01157488A JP62315678A JP31567887A JPH01157488A JP H01157488 A JPH01157488 A JP H01157488A JP 62315678 A JP62315678 A JP 62315678A JP 31567887 A JP31567887 A JP 31567887A JP H01157488 A JPH01157488 A JP H01157488A
Authority
JP
Japan
Prior art keywords
low melting
superconducting ceramic
ceramic article
pores
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315678A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Yuichi Masuda
裕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62315678A priority Critical patent/JPH01157488A/en
Publication of JPH01157488A publication Critical patent/JPH01157488A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting ceramic article capable of widening a range of application because of causing no change in the material against the lapse of time even if it is allowed to stand in the atmospheric air, etc., by filling pores of the superconductor consisting of oxides with a low melting metal. CONSTITUTION:The title superconducting ceramic article is one wherein pores of an oxide superconductor are filled with a low melting metal. Accordingly, invasion of water is prevented even if it is allowed to stand in the atmospheric air, and change of the material against the lapse of time is also prevented. Since the material for filling the pores is a low melting metal, there is no fear for causing deterioration of the oxide superconducting ceramic by the temp. in the course of preparation. Thus, a superconducting ceramic article stabilized by the treatment is obtd. The product is useful in a wide field of application such as in the field of energy industry, traffic industry, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超伝導体で構成される超伝導セラミック
ス物品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting ceramic article composed of an oxide superconductor.

〔従来の技術〕[Conventional technology]

1986年4月に、IBMチューリッヒ研究所でランタ
ン(La)、バリウム(Ba ) 、銅(Cu ) 、
酸素(0)系混合酸化物の高温超伝導特性が発表されて
以来、超伝導セラミックスの研究が盛んに行なわれてい
る。一般に、酸化物超伝導体は次のようにして製造され
る。まず、原料として酸化バリウム(Ba O) 、三
酸化二イツトリウム(Y2O2)、酸化銅(Cu O)
 、三酸化二ランタン(La 20s )および二酸化
ストロンチウム(SrO2)などの粉末を混合し乾燥さ
せる。
In April 1986, lanthanum (La), barium (Ba), copper (Cu),
Since the high-temperature superconducting properties of oxygen(0)-based mixed oxides were announced, research on superconducting ceramics has been actively conducted. Generally, oxide superconductors are manufactured as follows. First, the raw materials are barium oxide (BaO), diyttrium trioxide (Y2O2), and copper oxide (CuO).
, dilanthanum trioxide (La 20s ), and strontium dioxide (SrO2) are mixed and dried.

次に、この原料粉末をプレスしてから予備焼結し、さら
に粉砕した後に再びプレスして所定形状に成形する。そ
の後、最終焼結をして超伝導セラミックス物品としてい
る。
Next, this raw material powder is pressed, pre-sintered, further pulverized, and then pressed again to form a predetermined shape. Thereafter, final sintering is performed to obtain a superconducting ceramic article.

このような超伝導セラミックス物品は、固有の臨界温度
に達すると電気抵抗がゼロになり、また超伝導体特有の
現象としてマイスナー効果を呈する。このため、エネル
ギー、交通など各種の分野での活用が期待されている。
Such a superconducting ceramic article has zero electrical resistance when it reaches a specific critical temperature, and exhibits the Meissner effect as a phenomenon unique to superconductors. Therefore, it is expected to be used in various fields such as energy and transportation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一般に超伝導セラミックス物品は特性的
に不安定であり、特にこれを大気中に長時間放置すると
、材料が変質して超伝導現象を呈しなくなることがあっ
た。これは、従来の超伝導セラミックス物品ではセラミ
ックス特有の気孔が多数存在し、この気孔中に大気中の
水分が入り込んで酸化物が変質してしまうためであると
考えられる。
However, superconducting ceramic articles generally have unstable characteristics, and in particular, when left in the atmosphere for a long time, the material may change in quality and no longer exhibit superconducting phenomena. This is thought to be because conventional superconducting ceramic articles have a large number of pores, which are unique to ceramics, and moisture from the atmosphere enters into these pores, causing the oxide to change in quality.

このような欠点を除去するためには、例えば超伝導セラ
ミックス物品を乾燥した雰囲気中でのみ使用したり、あ
るいは容器等で密封して使用することが考えられる。し
かし、これでは使用上のコストが上昇するだけでなく、
使用範囲を著しく制限することになる。
In order to eliminate such drawbacks, it is conceivable to use superconducting ceramic articles only in a dry atmosphere, or to use them sealed in a container or the like. However, this not only increases the cost of use, but also
This will significantly limit the scope of use.

そこで本発明は、大気中などに放置しても材料が経時的
に変化することがなく、適用範囲を広くすることのでき
る超伝導セラミックス物品を提供することを目的とする
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting ceramic article whose material does not change over time even when left in the atmosphere, and which can be used in a wide range of applications.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る超伝導セラミックス物品は、酸化物からな
−る超伝導体の気孔部が、低融点金属で埋められている
ことを特徴とする。
The superconducting ceramic article according to the present invention is characterized in that the pores of the superconductor made of an oxide are filled with a low melting point metal.

〔作用〕[Effect]

本発明の構成によれば、超伝導セラミックス物品の気孔
部は低融点金属で埋められるので、大気中に放置された
りしても水分が入り込むことはなく、従って酸化物セラ
ミックスが経時的に変化することはなくな゛る。また、
気孔部に埋め込まれる材料は低融点金属であるため、製
造過程で温度により酸化物セラミックスが変質すること
はない。
According to the structure of the present invention, the pores of the superconducting ceramic article are filled with a low melting point metal, so even if it is left in the atmosphere, moisture will not enter, and therefore the oxide ceramic will not change over time. That will never happen. Also,
Since the material filled in the pores is a low melting point metal, the oxide ceramic is not altered by temperature during the manufacturing process.

〔実施例〕〔Example〕

以下、添付図面の第1図を参照して、本発明の詳細な説
明する。なお、図面の説明において同一要素には同一符
号を付し、重複する説明を省略する。
Hereinafter, the present invention will be described in detail with reference to FIG. 1 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

本発明の超伝導セラミックス物品は酸化物セラミックス
を主たる構成要素とし、この酸化物セラミックスは(L
 a   B a  )  Cu O4あるい1−x 
     x    2 ゛はYBa  Cu  Oなどの各種の超伝導体で39
−y ある。このような酸化物セラミックスは、それ自身でい
わゆる超伝導現象を呈するが、セラミックス特有の気孔
をも数多く有している。そこで、この気孔部には低融点
金属が埋め込まれる。低融点金属の具体例としては、ガ
リウム(Ga )などがあり、好ましくは流動化温度が
1000℃程度以下であり、酸化物セラミックスとの熱
膨張率が略等しいものが選ばれる。また、大気中で安定
であることも望まれる。
The superconducting ceramic article of the present invention has an oxide ceramic as a main component, and this oxide ceramic is (L
a B a ) Cu O4 or 1-x
x 2 ゛ is various superconductors such as YBa Cu O etc. 39
-y Yes. Such oxide ceramics exhibit a so-called superconducting phenomenon by themselves, but they also have many pores unique to ceramics. Therefore, a low melting point metal is embedded in the pores. A specific example of the low melting point metal is gallium (Ga), etc., and it is preferable to select a metal that has a fluidization temperature of about 1000° C. or less and a coefficient of thermal expansion that is approximately the same as that of the oxide ceramic. It is also desired that it be stable in the atmosphere.

次に、第1図を参照して製造工程を説明する。Next, the manufacturing process will be explained with reference to FIG.

まず、従来技術と同様にして、例えば BaY2Cu307からなる酸化物セラミックス微粉末
を用意し、プレスによって円柱形状に成形して焼結し、
円柱状の酸化物セラミックスロッド1を作成する。次に
、これを第1図に示す石英マツフル2に入れ、同時にG
aからなる低融点金属粉末3を入れてヒータ4で加熱す
る。このときには、バルブ5a、5bを開いておき、石
英マツフル2中で窒素(N2)などの不活性ガスを循環
させる。このようにすると、低融点金属融液30は酸化
物セラミックスロッド1中の気孔に入り込み、いわば酸
化物セラミックスに低融点金属が含浸させられた状態と
なる。しかる後、酸化物セラミックスロッド1を石英マ
ツフル2から取り出し、所定の焼成すれば、目的とする
超伝導セラミックス物品が得られる。
First, in the same manner as in the prior art, fine oxide ceramic powder made of, for example, BaY2Cu307 is prepared, pressed into a cylindrical shape, and sintered.
A cylindrical oxide ceramic rod 1 is created. Next, put this into the quartz matsufuru 2 shown in Fig. 1, and at the same time
A low melting point metal powder 3 consisting of a is put in and heated with a heater 4. At this time, the valves 5a and 5b are kept open, and an inert gas such as nitrogen (N2) is circulated in the quartz pine tree 2. In this way, the low melting point metal melt 30 enters the pores in the oxide ceramic rod 1, so that the oxide ceramic is impregnated with the low melting point metal. Thereafter, the oxide ceramic rod 1 is taken out from the quartz mold 2 and fired to a predetermined degree to obtain the desired superconducting ceramic article.

具体的な実施例として、上記の酸化物セラミックスロッ
ド1に600℃の温度で低融点金属融液30としてGa
を含浸させ、その後に焼成したところ、粉末X線回折法
でに2NIF4構造が確認できた。このKNiF4構造
は高温超伝導セラミックスの代表的結晶構造として知ら
れており、また液体窒素温度(77°K)で超伝導現象
を呈していた。
As a specific example, Ga is added to the oxide ceramic rod 1 as a low melting point metal melt 30 at a temperature of 600°C.
When it was impregnated with and then fired, a 2NIF4 structure was confirmed by powder X-ray diffraction. This KNiF4 structure is known as a typical crystal structure of high-temperature superconducting ceramics, and exhibits a superconducting phenomenon at liquid nitrogen temperature (77°K).

本発明は上記実施例に限定されることなく、種々の変形
が可能である。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、超伝導セラミックス物品の外形形状は円柱のも
のに限らず、パイプ状、線状、板状などの各種のものが
ある。言い換えれば、酸化物セラミックスの気孔に低融
点金属が埋め込まれているものは全て含み、その用途、
形状等は問題にならない。
For example, the external shape of a superconducting ceramic article is not limited to a cylindrical shape, but includes various shapes such as a pipe shape, a wire shape, and a plate shape. In other words, it includes all oxide ceramics in which low melting point metals are embedded in the pores, and their uses,
The shape etc. does not matter.

また、酸化物セラミックスや低融点金属の構成元素も実
施例のものに限らず、例えば酸化物セラミックスとして
はスカンジウム(Sc ) 、La sベリリウム(B
e)、マグネシウム(Mg )、Srなどを添加したも
のでもよい。結晶構造についても、KNIF4構造のほ
か、酸素欠損三重ペロブスカイト構造でも適用できる。
In addition, the constituent elements of the oxide ceramics and low melting point metals are not limited to those in the examples. For example, the oxide ceramics include scandium (Sc), Las beryllium (B
e), magnesium (Mg), Sr, etc. may be added. Regarding the crystal structure, in addition to the KNIF4 structure, an oxygen-deficient triple perovskite structure can also be applied.

低融点金属については、いわゆる合金であってもよい。The low melting point metal may be a so-called alloy.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り、本発明によれば、超伝導セ
ラミックス物品の気孔部は低融点金属で埋められるので
、大気中に放置されたりしても水分が入り込むことはな
く、従って酸化物セラミックスが経時的に変化すること
はなくなる。また、気孔部に埋め込まれる材料は低融点
金属であるため、製造過程で温度により酸化物セラミッ
クスが変質することはない。従って、超伝導セラミック
ス物品は安定加工品となり、エネルギー、交通など広い
分野に適用できる効果がある。
As explained above in detail, according to the present invention, the pores of the superconducting ceramic article are filled with a low melting point metal, so even if it is left in the atmosphere, moisture will not enter, and therefore the oxide ceramic article will no longer change over time. Furthermore, since the material filled in the pores is a low melting point metal, the oxide ceramic will not be altered by temperature during the manufacturing process. Therefore, superconducting ceramic articles are stable processed products and have the effect of being applicable to a wide range of fields such as energy and transportation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超伝導セラミックス物品を製造す
る装置の構成図である。 1・・・酸化物セラミックスロッド、2・・・石英マツ
フル、3・・・低融点金属粉末、4・・・ヒータ、5a
。 5b・・・バルブ、30・・・低融点金属融液。 特許出願人  住友電気工業株式会社
FIG. 1 is a block diagram of an apparatus for manufacturing a superconducting ceramic article according to the present invention. DESCRIPTION OF SYMBOLS 1... Oxide ceramic rod, 2... Quartz matzuru, 3... Low melting point metal powder, 4... Heater, 5a
. 5b... Bulb, 30... Low melting point metal melt. Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 酸化物からなる超伝導体の気孔部が、低融点金属で埋め
られていることを特徴とする超伝導セラミックス物品。
A superconducting ceramic article characterized in that the pores of a superconductor made of an oxide are filled with a low melting point metal.
JP62315678A 1987-12-14 1987-12-14 Superconducting ceramic article Pending JPH01157488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315678A JPH01157488A (en) 1987-12-14 1987-12-14 Superconducting ceramic article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315678A JPH01157488A (en) 1987-12-14 1987-12-14 Superconducting ceramic article

Publications (1)

Publication Number Publication Date
JPH01157488A true JPH01157488A (en) 1989-06-20

Family

ID=18068246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315678A Pending JPH01157488A (en) 1987-12-14 1987-12-14 Superconducting ceramic article

Country Status (1)

Country Link
JP (1) JPH01157488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159368A (en) * 2010-12-20 2014-09-04 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159368A (en) * 2010-12-20 2014-09-04 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing the same

Similar Documents

Publication Publication Date Title
US5106824A (en) Method of manufacturing oxide superconductor and the precursor of the oxide superconductor comprising heat treating in a reducing atmosphere of either hydrogen or carbon monoxide under reduced pressure
EP0285169B1 (en) Superconductor and method of manufacturing the same
JPH01157488A (en) Superconducting ceramic article
CA2015168A1 (en) Process for producing a high-temperature superconductor
JPH01157483A (en) Superconducting ceramic article
JPH01157484A (en) Superconducting ceramic article
JPH03156811A (en) Manufacture of ceramic superconductive conductor
JPH01308602A (en) Manufacture of oxide super conductor
JPH01183450A (en) Production of formed oxide superconductor
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH0465319A (en) Production of oxide superconducting material
JPH01176268A (en) Production of high-temperature superconductor
JPH02153823A (en) Production of oxide superconductor
JPS63239147A (en) Production of superconductive material
JPH01141869A (en) Production of superconductor
JPH04108604A (en) Production of oxide superconductor
JPH01141870A (en) Superconductor
JPH01188640A (en) Production of superconducting wire
JPH02120234A (en) Production of oxide superconductor
JPH02221149A (en) Production of oxide superconductor
JPS63291815A (en) Production of superconductor
JPH01172288A (en) Superconducting ceramic article
JPH0574546B2 (en)
EP0397151A2 (en) Oxide superconductor and process for preparing thereof
JPH03131521A (en) Oxide superconductor and production thereof