JPH01157434A - Oxynitride glass fiber - Google Patents

Oxynitride glass fiber

Info

Publication number
JPH01157434A
JPH01157434A JP63039190A JP3919088A JPH01157434A JP H01157434 A JPH01157434 A JP H01157434A JP 63039190 A JP63039190 A JP 63039190A JP 3919088 A JP3919088 A JP 3919088A JP H01157434 A JPH01157434 A JP H01157434A
Authority
JP
Japan
Prior art keywords
glass
fiber
fibers
nitrogen
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63039190A
Other languages
Japanese (ja)
Other versions
JPH0735265B2 (en
Inventor
Katsuhiko Kada
勝彦 加田
Hiroyoshi Mizuguchi
博義 水口
Junya Kobayashi
潤也 小林
Masaaki Ota
昌昭 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3919088A priority Critical patent/JPH0735265B2/en
Publication of JPH01157434A publication Critical patent/JPH01157434A/en
Publication of JPH0735265B2 publication Critical patent/JPH0735265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the title fiber having high N content and having excellent modulus of elasticity and tensile strength, by increasing the amt. of inexpensive CaO in the method for obtaining the title fiber by mixing metal oxide and metal nitride and by melt spinning. CONSTITUTION:The metal oxide [e.g., 4.0% (hereinafter mol%) SiO2, 65.5% CaO, 6.8% MgO and 5.5% Al2O3] and metal nitride (e.g., 18.2% Si3N4) are crushed and mixed in a ball mill (e.g., to about 10mu), thereafter melted (e.g., at 1790 deg.C) in N2 and then spun after cooling (e.g., to 1490 deg.C) to obtain the title fiber contg. 15-30 atom% N (e.g., 23.1 atom%), and having >=12500kg/mm<2> modulus of elasticity (e.g., 14700kg/mm<2>) and 70-700kg/mm<2> tensile strength.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、オキシナイトライドガラス繊維に関する。さ
らに詳しくは、本発明はFRP 、繊維補強セメントな
どの複合材料用の補強繊維として用いるに適し友高弾性
のガラス繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to oxynitride glass fibers. More particularly, the present invention relates to highly elastic glass fibers suitable for use as reinforcing fibers for composite materials such as FRP and fiber-reinforced cement.

(ロ)従来の技術 近年、プラスチック、あるいはセメントなどの構造材全
強化する有力な手段として、これらの材料にガラス繊維
を混合する材料の複合化が進められている。このような
複合材料に用いらnるガラス繊維には高い強度が求めら
nているが、従来はEガラス、Sガラスを繊維化したも
のが広く用いられてきた。
(B) Conventional Technology In recent years, as an effective means of completely reinforcing structural materials such as plastics or cement, composite materials have been developed by mixing these materials with glass fibers. Glass fibers used in such composite materials are required to have high strength, and conventionally, fibers made from E glass and S glass have been widely used.

オキシナイトライドガラスは、酸化物ガラスの酸素原子
が窒素に置き換わった構造kWしてお9.窒素原子の結
合原子価が3であるところから従来のガラスに比べ、高
弾性率’に!する。
Oxynitride glass has a structure kW in which the oxygen atoms of oxide glass are replaced with nitrogen.9. Because the bond valence of the nitrogen atom is 3, it has a higher elastic modulus than conventional glass! do.

かかるオキシナイトライドガラスの製造方法には、ゾル
・ゲル法、溶融法、N2ガス吹き込み法。
Methods for producing such oxynitride glass include the sol-gel method, the melting method, and the N2 gas blowing method.

多孔質ガラスのNH3ガス処理法などがある。There is a method for treating porous glass with NH3 gas.

しかしながら、その繊維化にあたっては、前記のうちゾ
ル・ゲル法を用いたものおよび−たんバルク状のオキシ
ナイトライドガラスを作成し・それを再溶融して繊維化
したもの(U、 S。
However, in making fibers, there are two methods: one using the sol-gel method, and the other using bulk oxynitride glass and remelting it to make fibers (U, S).

patent 4.609.631 )が存在するのみ
である。
patent 4.609.631).

(ハ)発明が解決しようとする問題点 従来、用いられている強化用ガラス繊維の強度はなお充
分でなく9弾性率についてはEガラスで最大7500 
kg/−であり、もつとも高い弾性率を有するImpe
rial N −672で12110 kg/m!に過
ぎない。また高弾性?有するオキシナイトライドガラス
繊維にあっても、これまでゾμ・ゲル法により得らn几
繊維の弾性率は約8000kg膚と複合材料の強化用ガ
ラス繊維としてはなお充分とは言えない。一方バルク状
オキシナイトライドガラスの再溶融法により作製したも
のは窒素?最大15at%含み140 ヘ185 GP
aの高弾性率をM f ル(U、 S、 Patent
 4.609.631 )が高価な原料であるイツトリ
ウムvI−42,6〜45.4 Wt %含むために非
常に高価なガラス繊維である。
(c) Problems to be solved by the invention The strength of the reinforcing glass fibers used in the past is still insufficient, and the modulus of elasticity is at most 7500 for E glass.
kg/- and has an extremely high modulus of elasticity.
12110 kg/m with real N-672! It's nothing more than that. Also high elasticity? Even with the oxynitride glass fibers, the elastic modulus of the n-layer fibers obtained so far by the zomu-gel method is approximately 8000 kg, which is still not sufficient for use as glass fibers for reinforcing skin and composite materials. On the other hand, is it nitrogen produced by remelting bulk oxynitride glass? Maximum 15 at% included 140 to 185 GP
The high elastic modulus of a is M f (U, S, Patent
4.609.631) is a very expensive glass fiber because it contains yttrium vI-42.6 to 45.4 Wt%, which is an expensive raw material.

に)問題点を解決するための手段 本発明者らは1強化用繊維として優nた強度を有するガ
ラス繊維を得るべく種々検討を重ねた結果、安価なCa
di増食する事により多量の窒素をガラスに含有させる
事ができ、さらには微量のy2o31に添加する事によ
り極めて高強度高弾性のガラス長繊維が得らnるとの知
見を得本発明を完成するに至った。
2) Means for Solving the Problems The present inventors have conducted various studies in order to obtain a glass fiber with excellent strength as a reinforcing fiber.
The present invention was based on the knowledge that a large amount of nitrogen can be contained in the glass by increasing the amount of di, and that by adding a small amount of y2o31, extremely strong and highly elastic long glass fibers can be obtained. It has been completed.

すなわち9本発明は、安価な原料粉末を溶融し、直接紡
糸することにより窒素含有量15at%〜30at%を
有し1弾性率12500kg/jlj以上t−有するガ
ラス長繊維を提供するものである。
That is, the present invention provides long glass fibers having a nitrogen content of 15 at % to 30 at % and a modulus of elasticity of 12,500 kg/jlj or more by melting inexpensive raw material powder and directly spinning the fiber.

本発明のガラス繊維は、従来のガラス繊維では達成でき
なかった窒素含有量15at%〜3Qat%を得ること
が可能になった。
The glass fiber of the present invention makes it possible to obtain a nitrogen content of 15 at% to 3 Qat%, which could not be achieved with conventional glass fibers.

本発明のオキシナイトライドガラスの組成としては、 
 Ca−8i −AI −0−N、 Na −Ca −
Si −0−N、La−8i −AI −0−N、Na
−B−8i −0−N。
The composition of the oxynitride glass of the present invention is as follows:
Ca-8i-AI-0-N, Na-Ca-
Si-0-N, La-8i-AI-0-N, Na
-B-8i -0-N.

Mg−8i −AI −0−N、Si −AI −0−
N、 Y−AI −8i −0−N、Na −B−Al
−P−0−N、Ca −Mg −8i −AI −0−
N、 5r−Ca −Mg−8i −AI −0−N。
Mg-8i-AI-0-N, Si-AI-0-
N, Y-AI-8i-0-N, Na-B-Al
-P-0-N, Ca -Mg -8i -AI -0-
N, 5r-Ca-Mg-8i-AI-0-N.

Ba −Ca −Mg −Si −AI −0−N、 
Y −Ca −Mg−8i−AI −0−N、 Si 
−Ca −Mg−AI −Ce−0−N、 5i−Ca
 −Mg−AI −8b−0−Nなどが挙げられる。
Ba-Ca-Mg-Si-AI-0-N,
Y-Ca-Mg-8i-AI-0-N, Si
-Ca -Mg-AI -Ce-0-N, 5i-Ca
-Mg-AI-8b-0-N and the like.

このような組成のオキシナイトライドガラスを得るには
、金属酸化物に金属窒化物?加え、高温で溶融する。
To obtain oxynitride glass with such a composition, is it possible to combine metal oxide with metal nitride? In addition, it melts at high temperature.

金属酸化物の例としては、 Si 02. Ca O,
MgO。
Examples of metal oxides include Si02. Ca O,
MgO.

5b2C)3SrO,NazO,K2O,La2O3,
Y2O3,ZrO2゜Ti 02 、 Na2O,Ce
 02 K20. B203などが挙げられる。
5b2C)3SrO, NazO, K2O, La2O3,
Y2O3, ZrO2゜Ti 02 , Na2O, Ce
02 K20. Examples include B203.

また、金属窒化物の例としてはe S i3 N4 @
 AI N5BNなどが用いられる。
In addition, examples of metal nitrides include e Si3 N4 @
AI N5BN etc. are used.

つぎに、これらの混合物を溶融紡糸するには電気炉、イ
メージ炉などの加熱炉を用い、窒素。
Next, to melt and spin these mixtures, a heating furnace such as an electric furnace or an image furnace is used, and nitrogen is used.

アルゴン雰囲気下温度1400へ1950℃で1〜45
m1n溶融しその場で1100へ1600°Cの温度に
降下させるかまたはその温度に保持し几紡糸部へ溶融ガ
ラスを導き、紡糸速度20へ3000”/minにて紡
糸し連続繊維を得る。
1-45 at temperature 1400 to 1950℃ under argon atmosphere
The molten glass is melted and then lowered to a temperature of 1100°C to 1600°C or kept at that temperature, and the molten glass is introduced to a spinning section and spun at a spinning speed of 20 to 3000''/min to obtain continuous fibers.

得られたガラス繊維の窒素含有量は15〜30at%、
弾性率は12.500以上、引張9強度70 ヘア00
 kg/ldである。ガラス繊維の繊維径は3〜50μ
mであるのが好ましい。繊維径がこnより小さいと、紡
糸が困難であり、一方こA’に越えると強度が極端に低
下し好ましくない。
The nitrogen content of the obtained glass fiber is 15 to 30 at%,
Elastic modulus is 12.500 or more, tensile strength 9 70 Hair 00
kg/ld. The fiber diameter of glass fiber is 3~50μ
Preferably, it is m. If the fiber diameter is smaller than this value, spinning will be difficult, while if it exceeds this value, the strength will be extremely reduced, which is not preferable.

ガラス繊維の窒素含有量は15へ3Qatチであるのが
好ましい。
Preferably, the nitrogen content of the glass fibers is between 15 and 3 Qat.

窒素含有量が303t%’に越えると結晶化し好ましく
なく 、 15at%以下だと弾性率が弱い。窒素含有
量の調整は窒化物原料の添加割合により行なう。
If the nitrogen content exceeds 303 t%, it will crystallize, which is undesirable, and if it is less than 15 at%, the elastic modulus will be weak. The nitrogen content is adjusted by adjusting the addition ratio of the nitride raw material.

(ホ)作用 本発明により窒素含有量の多い、高弾性の連続ガラス繊
維が得られる。
(E) Function The present invention provides highly elastic continuous glass fibers with a high nitrogen content.

(へ)実施例 まず0本発明に係るガラス繊維を得るための紡糸炉を説
明する。
(f) Example First, a spinning furnace for obtaining glass fiber according to the present invention will be explained.

第1図は紡糸炉の断面図である。ガラス繊維紡糸炉1は
、下部に3mmφの繊維取り出し用細孔を有する窒化ホ
ウ素製ルツボ2.該ルツボ2の側面を包囲する長いグラ
ファイト製発熱体3゜前記ルツボ2および発熱体3を収
容しガラス繊維4が通過する窒素ガス室aを備えたケー
シング6を有する。
FIG. 1 is a sectional view of a spinning furnace. The glass fiber spinning furnace 1 consists of a crucible made of boron nitride, which has a pore of 3 mm in diameter at the bottom for taking out fibers. A long graphite heating element 3 which surrounds the side surface of the crucible 2 has a casing 6 which accommodates the crucible 2 and the heating element 3 and is equipped with a nitrogen gas chamber a through which the glass fibers 4 pass.

該ルツボ2は、中央にガラス繊維が通過する開口に備え
た窒化ホウ素製絶縁体7上に配置さnた円筒状のグラフ
ァイト管8に、f−/l/ツボ台9を介して載置される
The crucible 2 is placed via a crucible holder 9 on a cylindrical graphite tube 8 placed on a boron nitride insulator 7 with an opening in the center through which the glass fiber passes. Ru.

ケーシング6は、内部側面全体に断熱材10゜下面およ
び上面に冷却用ジャケット11.12’li=備え、内
部空間を形成して前記ルツボ2および発熱体3を収容す
る。下面冷却用ジャケット11は前記発熱体3下部に接
して電極をなす。一方。
The casing 6 is provided with a heat insulating material 10° on the entire internal side surface and a cooling jacket 11.12'li on the lower and upper surfaces to form an internal space in which the crucible 2 and the heating element 3 are housed. The lower cooling jacket 11 is in contact with the lower part of the heating element 3 and forms an electrode. on the other hand.

上面冷却用ジャケット12は中央に開口’kWし該開口
には下面に保護用石英ガラス板13を設けた放射温度計
14が配置される。さらに、ケーシング6の側面にはル
ツボが収容された内部空間である窒素ガス室5に窒素を
供給する窒素ガス流入口15が設けられるとともに、前
記下面冷却用ジャケット11のさらに下方には開閉自在
の繊維引き出し口16が設けられ、ガラスが接触する雰
囲気を窒素ガス雰囲気に保持する。
The upper surface cooling jacket 12 has an opening in the center, and a radiation thermometer 14 having a protective quartz glass plate 13 provided on the lower surface is disposed in the opening. Furthermore, a nitrogen gas inlet 15 is provided on the side surface of the casing 6 to supply nitrogen to the nitrogen gas chamber 5, which is an internal space in which the crucible is housed, and a nitrogen gas inlet 15 that can be opened and closed further below the lower surface cooling jacket 11 is provided. A fiber outlet 16 is provided to maintain the atmosphere with which the glass comes in contact with a nitrogen gas atmosphere.

本実施例では、前記繊維引き出しロ16下部にこ几に隣
接して、脱着可能な補助雰囲気室17を取り付け、より
完全な不活性ガヌ雰囲気下に紡糸を行なう。18がワイ
ンダーである。
In this embodiment, a removable auxiliary atmosphere chamber 17 is installed adjacent to the lower part of the fiber drawer 16 to perform spinning under a more complete inert atmosphere. 18 is a winder.

つぎに実施例によυ本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例L Si 0217.3mo1%、 オよびCa056.1
mo1%MgQ5,5mo1%A12035.Qmol
 % f混合し、空気中1500℃で4Qmin熱処理
した。
Example L Si0217.3mol1%, O and Ca056.1
mo1%MgQ5,5mo1%A12035. Qmol
%f mixed and heat treated in air at 1500°C for 4Qmin.

混合物を冷却後ボーμミ/I/ヲ用いて約10μmに粉
砕し、 Si3 N415.1 mo1チを加え・窒化
ホウ素ルツボを用い窒素中1790℃2Qmin溶融し
After cooling the mixture, it was ground to about 10 μm using a Baumi/I/Wo, 15.1 mol of Si3N4 was added, and the mixture was melted at 1790°C for 2Q min in nitrogen using a boron nitride crucible.

つぎに1500°Cまで降温紡糸しワインダーに巻き取
った。紡糸速度1200m/minにて直径18μmの
連続繊維ケ得た。得らf′L几ガラス繊維の引張り弾性
率は13500 kgA−であった。また窒素含有量は
18.98t%で、鷹維長は3kmであった。
Next, the temperature was lowered to 1500°C for spinning and the material was wound up in a winder. Continuous fibers with a diameter of 18 μm were obtained at a spinning speed of 1200 m/min. The tensile modulus of the obtained f'L glass fiber was 13,500 kgA-. The nitrogen content was 18.98 t%, and the length of the taka fiber was 3 km.

実施例λ オキシナイトライドガラスの原料としてS iO24、
Om ol % Ca065.5mo1%Mg06.8
mo1%、Al2035.5mo1 %、 si3 N
418.2mo1%をボールミルを用いて約10μmに
粉砕および混合し、これを窒化ホウ素μツボ中に入れ窒
素中1790℃で30m1n溶融し、つぎに1490℃
まで降温し紡糸した。
Example λ SiO24 as a raw material for oxynitride glass,
Omol%Ca065.5mol1%Mg06.8
mo1%, Al2035.5mo1%, si3N
418.2 mo1% was ground and mixed to about 10 μm using a ball mill, placed in a boron nitride μ crucible, melted for 30 m1n at 1790°C in nitrogen, and then 1490°C.
The temperature was lowered to

紡糸速度1350m/minにて直径15μmの連続繊
維を得た。得らnたガラス繊維の引張り弾性率は147
00 kg/−であった。また窒素含有量は23.1a
t%で、繊維長は4.5 kmであった。
Continuous fibers with a diameter of 15 μm were obtained at a spinning speed of 1350 m/min. The tensile modulus of the obtained glass fiber is 147
00 kg/-. Also, the nitrogen content is 23.1a
t% and the fiber length was 4.5 km.

以下実施例1と同様の方法にてガラス繊維を得たので、
その組成、製造条件および窒素含有率7表1に示し友。
Since glass fibers were obtained in the same manner as in Example 1,
Its composition, manufacturing conditions and nitrogen content are shown in Table 1.

また図2には得たガラス繊維の引張り弾性率を測定した
結果で、横軸には繊維のN含有量(at%)縦軸には弾
性率の測定結果を示した。
Further, FIG. 2 shows the results of measuring the tensile modulus of the obtained glass fibers, with the horizontal axis showing the N content (at%) of the fibers and the vertical axis showing the measuring results of the elastic modulus.

(ト)効果 本発明によ九ば、安価な原料粉末により弾性率1250
0 kg/−以上を達成できると共に、従来のガラス繊
維では成し得なかった窒素含有量15at%〜3Qat
チケ得ることができる。
(G) Effect According to the present invention, the elastic modulus is 1250 due to the inexpensive raw material powder.
0 kg/- or more, and nitrogen content of 15 at% to 3 Qat, which could not be achieved with conventional glass fibers.
You can get a ticket.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に係るガラス繊維全製造するための紡
糸炉を示す図、第2図は窒素含有量と弾性率の関係を示
す図である。
FIG. 1 is a diagram showing a spinning furnace for producing the entire glass fiber according to the present invention, and FIG. 2 is a diagram showing the relationship between nitrogen content and elastic modulus.

Claims (1)

【特許請求の範囲】[Claims] 1、弾性率が12500Kg/mm^2以上で、かつ窒
素を15〜30原子%含むことを特徴とするオキシナイ
トライドガラス繊維。
1. Oxynitride glass fiber having an elastic modulus of 12,500 Kg/mm^2 or more and containing 15 to 30 atom % of nitrogen.
JP3919088A 1987-09-07 1988-02-22 Oxynitride glass fiber Expired - Lifetime JPH0735265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3919088A JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-223391 1987-09-07
JP22339187 1987-09-07
JP3919088A JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Publications (2)

Publication Number Publication Date
JPH01157434A true JPH01157434A (en) 1989-06-20
JPH0735265B2 JPH0735265B2 (en) 1995-04-19

Family

ID=26378516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3919088A Expired - Lifetime JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Country Status (1)

Country Link
JP (1) JPH0735265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650937A1 (en) * 1993-10-14 1995-05-03 Shimadzu Corporation Oxynitride glass, method of preparing the same and glass fiber
JP2011006277A (en) * 2009-06-25 2011-01-13 Nitto Boseki Co Ltd Oxynitride glass fiber and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650937A1 (en) * 1993-10-14 1995-05-03 Shimadzu Corporation Oxynitride glass, method of preparing the same and glass fiber
JP2011006277A (en) * 2009-06-25 2011-01-13 Nitto Boseki Co Ltd Oxynitride glass fiber and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0735265B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0068580B1 (en) Optical fibre of the graded index type and method of producing same
US3008841A (en) Glass composition
JP2008524113A (en) Alkali metal silicate glass, raw material and method for producing glass article formed therefrom
US4818290A (en) Method for utilizing slag from ferroalloy production
Lezal et al. GeO2-PbO glassy system for infrared fibers for delivery of Er: YAG laser energy
US4011006A (en) GeO2 -B2 O3 -SiO2 Optical glass and lightguides
JPH035343A (en) Fiberglass composition
JP3425701B2 (en) Nitrogen-containing glass, its production method and glass fiber
JPH01157434A (en) Oxynitride glass fiber
JP2595669B2 (en) Oxynitride glass short fiber
Higby et al. Gallogermanate glasses as near IR optical waveguides
Ohishi et al. Influence of humidity during the fibre preparation process on transmission loss for ZrF4-based optical fibres
RU2169712C1 (en) High-strength polycrystalline glass and method of its producing
JPS63176340A (en) Glass fiber and production thereof
Lin et al. IR transmission and corrosion of lead-bismuth gallate glasses
Shahriari et al. Synthesis and characterization of aluminum fluoride-based glasses and optical fibers
JP3707937B2 (en) Glass and optical fiber manufacturing method
JPS60195032A (en) Infrared transmission glass
JPS60226427A (en) Optical fiber for infrared rays
Iqbal et al. New highly stabilized AlF3-based glasses
US4038089A (en) Process for producing vitreous fibers containing cement as major constituent
JPS60195029A (en) Preparation of optical fiber for transmitting infrared ray
JPH0665617B2 (en) How to use slag from metal production
JPS6351978B2 (en)
JPH0524871B2 (en)