JPH0524871B2 - - Google Patents
Info
- Publication number
- JPH0524871B2 JPH0524871B2 JP20128785A JP20128785A JPH0524871B2 JP H0524871 B2 JPH0524871 B2 JP H0524871B2 JP 20128785 A JP20128785 A JP 20128785A JP 20128785 A JP20128785 A JP 20128785A JP H0524871 B2 JPH0524871 B2 JP H0524871B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- melt
- composition
- slag
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 72
- 239000002893 slag Substances 0.000 claims description 68
- 239000000203 mixture Substances 0.000 claims description 62
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 32
- 238000002844 melting Methods 0.000 claims description 29
- 230000008018 melting Effects 0.000 claims description 29
- 239000004575 stone Substances 0.000 claims description 29
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- 239000012768 molten material Substances 0.000 claims description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000000265 homogenisation Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- 239000010881 fly ash Substances 0.000 claims description 2
- 239000012784 inorganic fiber Substances 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 3
- 239000010936 titanium Substances 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 238000007872 degassing Methods 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 description 26
- 239000000155 melt Substances 0.000 description 17
- 239000011490 mineral wool Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- -1 various oxides Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
(産業上の利用分野)
本発明は熔融高炉スラグに成分調整材を加えて
繊維化した断熱材用補強充填材用、耐火材用及び
無機質繊維板用無機質短繊維及びその製造方法に
関する。
(従来の技術)
従来、高炉スラグを利用したロツクウール(ス
ラグウールとも言う)の製造は冷えた高炉スラグ
に珪石等の天然石を添加配合し、電気炉、または
キユポラ炉で再熔融させ、該熔融物を遠心力を利
用したマルチローター方式、及び、または圧縮空
気を利用したブローイング方式により繊維化する
方法がとられている。これに対し、近年、省エネ
ルギーの観点から高炉から得られる熔融状態のス
ラグを冷却固化させることなく直接電気炉に投入
し、該電気炉で珪石等で成分調整し、続いて、従
来法と同様の繊維化方式で繊維化、製造する方式
が開発されつつあり、注目されている。この方式
によれば、従来のスラグ・珪石系組成物を再熔融
させるのに対し、熔融スラグを直接利用するので
熔融エネルギーが少なくてすむためエネルギー節
約が大であり、結果として、安価なロツクウール
の提供を可能にしつつある。この利点のため熔融
スラグを直接利用するロツクウールの製造法が特
開昭57−51142号公報、特開昭59−131534号公報、
特開昭59−189282号公報、特開昭60−71891号公
報にそれぞれ関示されている。
(発明が解決しようとする問題点)
上記各公報に開示された方式は、製造原価は従
来法と比較し安価ではあるものの、熔融スラグを
電気炉に投入し、続いて珪石等の成分調整材を投
入、混合、熔融させ直ちに繊維化させるため、従
来のロツクウールの物理的特性値(例えば非繊維
化物(シヨツト)含有量、繊維強度、繊維径な
ど)と比較し、劣ることはないものの向上させる
までには至つていないし、また開示された方式で
は大幅な品質の改良は不可能に近い。その理由
は、通常のロツクウール、即ちスラグ・珪石系組
成物からなる熔融物を繊維化するために適当な粘
度を得るための適性繊維化温度は1400〜1450℃に
あるため成分調整材を添加し、加熱しても適性繊
維化温度域から大巾にはずれた加熱が許されない
ことから均一熔融が困難であること、熔融物中の
S.C等の酸化・ガス化した成分(これらのガス化
した成分は最終繊維の中に気泡を形成し、繊維強
度等の物性を著しく低下させるため除去されるこ
とが品質改良にとつて重要となる)が短時間熔融
であるため除去されないこと、更に、電気炉内に
添加する成分調整材を多くすると、スラグ熔融物
の温度が低下し、スラグの失透温度(スラグの失
透温度1320〜1340℃、この温度になると熔融物は
固化する)に達しやすく、その危険性を避けるた
め成分調整材の添加量に限界がある(熔融スラグ
100重量部に対し成分調整材略最高15重量部)こ
と等により各種繊維特性を改良させる大巾な組成
変更が可能でないという問題があつた。
本発明の目的は上述の問題に鑑み、前述の各公
報に開示された方式の利点、即ち低製造原価を生
かし、更に各種ロツクウールの物理的特性値の向
上及びそのばらつきを低減させた高品位ロツクウ
ールを得ようとするものである。また更に成分調
整材の配合も熔融スラグ100重量部に対し最高60
重量部まで可能にし且つ均一熔融、温度制御がで
き、従来のロツクウールあるいは前述の各公開公
報によつて開示された熔融スラグを使用して得ら
れるロツクウールと異なり、性能、特徴を有する
成分の大巾な調整によつて後述の耐熱性、耐アル
カリ性、柔軟性、白色性、高強度等の特性を有
し、且つ低シヨツト含有量、繊維強度、繊維径の
ばらつきの少ない新規ロツクウールの製造を可能
にしたロツクウールを得ようとするものである。
(問題点を解決するための手段)
本願の特許請求の範囲第1項に記載の発明(以
下第1番目の発明と略称する)の無機質短繊維の
製造方法は熔融高炉スラグに、成分調整材を加え
て熔融脱泡させた一次熔融物を、温度制御炉に導
入して二次熔融させ温度制御、均一化、再脱泡さ
せた二次熔融物を続いて前記温度制御炉より一定
量ずつ排出させて繊維化するもので、熔融スラグ
を用いてエネルギーの節約をし製造原価を低く
し、さらに成分調整材を加えて熔融、脱泡した一
次熔融物をそのまま繊維化することなく温度制御
炉に導入して二次熔融により温度制御、均一化、
再脱泡した二次熔融物を繊維化することにより、
一次熔融物においては、加えられた成分調整材を
充分に熔融し熔融物を均一化しかつ気泡の除去を
行い、二次熔融において適性繊維化粘度に温度調
整しさらに再脱泡させ成分調整材の添加にもかか
わらず均一で気泡が少なくしかも成分調整により
所望の特性を具えさせようとするものである。
次に特許請求の範囲第2項に記載の発明(以下
第2番目の発明と略称する)の無機質短繊維は、
熔融高炉スラグに、酸化チタン含有物質、珪石、
天然石よりなる成分調整材を加えて成分調整し熔
融脱泡させた一次熔融物を、温度制御炉に導入し
て二次熔融させ温度制御、均一化、再脱泡させた
下記組成(wt%)
SiO2 35〜55
TiO2 10〜25
Al2O3 5〜15
MgO 5〜15
CaO 20〜35
不可避成分 0〜10
の二次熔融物を得、この二次熔融物を引続いて前
記温度制御炉より一定量ずつ排出して繊維化した
もので、熔融高炉スラグに成分調整材を加えた二
次熔融物の特定組成から耐薬品性、高引張強度、
高弾性を附与させようとするものである。
次に特許請求の範囲第4項に記載された発明
(以下第3番目の発明と略称する)の無機質短繊
維は、熔融高炉スラグに、フエロニツケルスラ
グ、水酸化マグネシウム、珪石、天然石よりなる
成分調整材を加えて成分調整し熔融脱泡させた一
次熔融物を、温度制御炉に導入して二次熔融させ
温度制御、均一化、再脱泡させた下記組成(wt
%)
SiO2 35〜55
Al2O3 5〜15
MgO 10〜25
CaO 20〜35
不可避成分 0〜10
の二次熔融物を引続いて前記温度制御炉より一定
量ずつ排出して繊維化したもので、熔融高炉スラ
グに成分調整材を加えた二次熔融物を特定組成か
ら、耐薬品性、柔軟性を附与しようとするもので
ある。
次に特許請求の範囲第5項に記載された発明
(以下第4番目の発明と略称する)の無機質短繊
維は、熔融高炉スラグに、シリコマンガンスラ
グ、酸化マンガン、珪石、天然石よりなる成分調
整材を加えて成分調整し熔融脱泡させた一次熔融
物を、温度制御炉に導入して二次熔融させ温度制
御、均一化、再脱泡させた下記組成(wt%)
SiO2 35〜55
Al2O3 5〜15
MgO 5〜10
MnO 2〜10
CaO 25〜35
不可避成分 0〜10
の二次熔融物を引続いて前記温度制御炉より一定
量ずつ排出して繊維化したもので、熔融高炉スラ
グに成分調整材を加えた二次熔融物の特定組成か
ら、繊維径の細い機械強度が良好な性能を附与し
ようとするものである。
次に特許請求の範囲第6項に記載された発明
(以下第5番目の発明と略称する)の無機質短繊
維は、熔融高炉スラグに、フライアツシユ、水酸
化アルミニウム、酸化鉄、珪石、天然石よりなる
成分調整材を加えて成分調整し熔融脱泡させた一
次熔融物を、温度制御炉に導入して二次熔融させ
温度制御、均一化、再脱泡させた下記組成(wt
%)
SiO2 35〜55
Al2O3 15〜30
MgO 5〜10
CaO 20〜35
FeO 3〜15
不可避成分 0〜10
の二次熔融物を引続いて前記温度制御炉より一定
量ずつ排出して繊維化したもので、熔融高炉スラ
グに成分調整材を加えた二次熔融物の特定の組成
から、耐熱性、機械的強度が良好な性能を附与し
ようとするものである。
次に特許請求の範囲第7項に記載された発明
(以下第6番目の発明と略称する)の無機質短繊
維は、熔融高炉スラグに酸化亜鉛、珪石、天然石
よりなる成分調整材を加えて成分調整し熔融脱泡
させた一次熔融物を、温度制御炉に導入して二次
熔融させ温度制御、均一化、再脱泡させた下記組
成(wt%)
SiO2 35〜55
Al2O3 5〜15
ZnO 2〜10
MgO 5〜10
CaO 25〜35
不可避成分 0〜10
の二次熔融物を引続いて前記温度制御炉より一定
量ずつ排出して繊維化したもので、熔融高炉スラ
グに成分調整材を加えた二次熔融物の特定組成か
ら、白色性、柔軟性を附与しようとするものであ
る。
(作 用)
第1番目の発明は、熔融高炉スラグに成分調整
材を加えて一次熔融により成分調整材を充分に熔
融高炉スラグに熔融させて均一化しかつ脱泡さ
せ、次に温度制御炉で二次熔融させて適性繊維化
粘度に対応する温度で再脱泡された二次熔融物を
製造するものである。
第2番目の発明は、熔融高炉スラグに成分調整
材を加えた二次熔融物の特定の組成(重量%)
SiO2 35〜55
TiO2 10〜25
Al2O3 5〜15
MgO 5〜15
CaO 20〜35
不可避成分 0〜10
によつて耐薬品性、高引張強度、高弾性が附与さ
れる。
第3番目の発明は、熔融高炉スラグに成分調整
材を加えた二次熔融物の特定の組成(重量%)
SiO2 35〜55
Al2O3 5〜15
MgO 10〜25
CaO 20〜35
不可避成分 0〜10
によつて、耐薬品性、柔軟性が附与される。
第4番目の発明は、熔融高炉スラグに成分調整
材を加えた二次熔融物の特定の組成(重量%)
SiO2 35〜55
Al2O3 5〜15
MgO 5〜10
MnO 2〜10
CaO 25〜35
不可避成分 0〜10
によつて、繊維径が細くしかも機械的強度が良好
な性能が附与される。
第5番目の発明は、熔融高炉スラグに成分調整
材を加えた二次熔融物の特定の組成(重量%)
SiO2 35〜55
Al2O3 15〜30
MgO 5〜10
CaO 20〜35
FeO 3〜15
不可避成分 0〜10
によつて、耐熱性、機械的強度の良好な性能が附
与される。
第6番目の発明は、熔融高炉スラグに成分調整
材を加えた二次熔融物の特定の組成(重量%)
SiO2 35〜55
Al2O3 5〜15
ZnO 2〜10
MgO 5〜10
CaO 25〜35
不可避成分 0〜10
によつて、白色性、柔軟性が附与される。
次に本発明を各発明毎に詳述する。
先ず本発明の概要を説明する。
本発明は、高炉から副生する高温熔融状態のス
ラグを排滓鍋または成分調整炉に分取し、該スラ
グを排滓鍋または成分調整炉でガスバーナー加熱
または電気加熱を加えつつ、非鉄スラグ、天然鉱
物石、各種酸化物、水溶液物の組み合せから成る
成分調整材を高添加し、所要の組成に成分調整
し、その際、該組成物を1時間以上略熔融させ、
同時にC(カーボン)、S(イオウ)の不可避成分
が0.5〜1.0wt%以上含有の熔融スラグの場合は、
酸素ガス吹込みによる熔融物の撹拌と発生する
C、S系酸化物ガスを略除去させるかまたはC、
Sの不可避成分が0.5〜1.0wt%以下含有の熔融ス
ラグの場合は、窒素ガスまたは空気吹込みにより
熔融物を撹拌させ一次熔融物を得るプロセスと、
該熔融物を導入するための受器またはスロートを
有する温度制御用電気炉またはガス炉に定量供給
し、再度、場合によつて窒素等の不活性ガス雰囲
気で熔融物の均一化及び融液の温度制御を行なう
二次熔融物を得るプロセスと、該均一化した熔融
物を一定量ずつ、ブローイング方式あるいはマル
チローター方式による繊維化装置に供給し繊維化
するプロセスの三つのプロセスから得られる柔軟
性、高引張強度等の機械的特性、白色性、耐熱
性、耐アルカリ性等の耐薬品性等夫々所望の特性
を具備し、且つ該特性値においてばらつきの少な
い高品位の無機質短繊維を提供するものである。
1 第1番目の発明
高炉から排出される高温熔融状態のスラグ
(1350〜1450℃)を分取した排滓鍋または成分調
整炉に成分調整材を加えて後述の組成になる様成
分調整する。
成分調整材の配合割合は熔融スラグ100重量部
に対し最高60重量部までの添加が可能であり、大
巾な特性変化、新規性を附与する場合、成分調整
材の高配合が必要である。成分調整材は熔融スラ
グの入つた排滓鍋あるいは成分調整炉に投入し、
一次熔融させるが、成分調整材の熔融性(短時間
熔融)、熔融物からの突沸防止の点から形状数mm
以下の粒子状のもので且つ水分除去(乾燥)をし
たものを使用することが好ましい。成分調整材の
添加は、少量ずつ連続的に添加量にもよるが約30
〜60分で供給完了する。その際カーボン電極ある
いはモリブデン電極等の電気あるいはガスバーナ
ー加熱装置を排滓鍋の天蓋に取付け、鍋を加熱す
るか、またはバーナー加熱あるいは電気加熱によ
る成分調整炉で加熱し、常に1400℃以上の高温状
態に維持しておく。また熔融物中の気泡の除去を
短時間に促進させるため、酸素ガス、窒素ガスま
たは空気を少量吹込むことが好ましい。この成分
調整段階での熔融時間の尺度は、高品質のばらつ
きの少ない繊維を得るためには長時間行うのが好
ましいが、エネルギー節約及びS、C等による気
泡の概略除去される条件から熔融物の粘度にも依
存して約1時間〜4時間内で行うことが必要であ
る。この理由として、熔融スラグ100重量部に成
分調整材10〜30重量部添加では繊維中の気泡含有
率0.1%(vol%)以下にするためには約60〜90分
必要で、成分調整材30〜45重量部及び45〜60重量
部添加では気泡含有率0.3vol%以下にするため約
120〜180分及び180〜240分必要であることによ
る。(註:成分調整材添加直後の略熔融させたも
のによる繊維中の気泡含有率1.7〜1.8vol%。気泡
含有率はゼロが最も好ましいが0.3vol%以下にな
ると各種特性の値の向上及びそのばらつきは大巾
に小さくなる)この様に排滓鍋あるいは成分調整
炉の段階で成分調整、脱泡、略均一熔融を行い、
こうして得られた一次熔融物を温度制御、熔融の
均一化、脱泡(更に)を目的に熔融物導入用受器
またはスロートを有する密閉式の炉(電気炉また
はガスバーナー炉)に導入し場合によつて窒素等
の不活性ガス雰囲気で二次熔融をする。電気炉ま
たはガスバーナー炉の規模は、熔融物の繊維化速
度によるが、通常、熔融物出湯量1〜2TON/
Hr程度なら5〜10TON/炉、出湯量4〜
5TON/Hrなら15〜20TON/炉が適性である。
この規模条件を満足する温度制御炉に導入された
前記成分調整ずみの熔融物は出湯されるまでに3
〜4時間炉内に滞留する結果、更に一層脱泡が進
み熔融物の均一化が完成される。この状態が達成
されているか否かは熔融物を少量取出し、固化さ
せ、この時の固化物の着色状況で容易に判断され
る。更に熔融物の温度(投入時1400℃以上)は電
気、ガスバーナーの加熱を加減し、適性繊維化粘
度(通常5〜15ポイズを示す温度)の温度に制御
され、この方式の場合、±5〜±10℃の温度制御
が可能である。この段階で気泡含有率0.1vol%、
適性繊維化温度、約±5℃の熔融物を得ることが
できる。(前掲の各公開公報に記載の方式では気
泡含有率0.5〜0.7vol%、温度±20℃と推定され
る)この様にして得られる均一な二次熔融物を電
気炉の底部、側部または上部に取付けた排出口を
経由して一定量ずつ排出させ繊維化装置に導く。
繊維化プロセスは高圧低温あるいは高圧高温空気
または水蒸気を用いたブローイング方式、あるい
は遠心力を利用したマルチローター方式による従
来の方式をそのまま利用できるが、生産性と得ら
れる繊維の品質面からローター径6インチ〜16イ
ンチ、個数2〜4のマルチローター方式による繊
維化が好ましい。
以上のプロセスを経て得られる本発明例の繊維
特性と前述の各公開公報に記載されたように熔融
スラグに成分調整材を加えて熔融した一次熔融物
をそのまま排出して繊維化した比較例の繊維特性
を比較すると下記の表1に示す通りである。組成
は何れも熔融高炉スラグ100重量部に珪石10重量
部を加えたものである。
(Field of Industrial Application) The present invention relates to inorganic short fibers for use in reinforcing fillers for heat insulation materials, fireproof materials, and inorganic fiberboards, which are made by adding a composition adjustment material to molten blast furnace slag, and to a method for producing the same. (Prior art) Conventionally, rock wool (also called slag wool) using blast furnace slag has been produced by adding natural stones such as silica stone to cooled blast furnace slag, remelting it in an electric furnace or cupola furnace, and producing the molten product. A method is used to make fibers by a multi-rotor method using centrifugal force and/or a blowing method using compressed air. On the other hand, in recent years, from the viewpoint of energy saving, molten slag obtained from a blast furnace is directly charged into an electric furnace without being cooled and solidified, and its composition is adjusted using silica stone etc. in the electric furnace. A method of producing fibers using a fiberizing method is being developed and is attracting attention. According to this method, compared to the conventional method of remelting slag and silica stone-based compositions, molten slag is used directly, so less melting energy is required, resulting in large energy savings. It is becoming possible to provide Because of this advantage, methods for producing rock wool that directly utilize molten slag are disclosed in Japanese Patent Application Laid-Open No. 57-51142, Japanese Patent Application Laid-Open No. 131534-1987,
These are disclosed in Japanese Patent Application Laid-open Nos. 59-189282 and 60-71891, respectively. (Problems to be Solved by the Invention) Although the methods disclosed in the above-mentioned publications are cheaper in manufacturing cost than conventional methods, molten slag is charged into an electric furnace, and then a composition adjustment material such as silica stone is used. The physical properties of conventional rock wool (e.g. non-fibrous shot content, fiber strength, fiber diameter, etc.) are improved but not inferior to those of conventional rock wool. This has not yet been achieved, and it is almost impossible to significantly improve quality using the disclosed method. The reason for this is that the appropriate fiberization temperature for obtaining an appropriate viscosity for fiberizing ordinary rock wool, that is, a melt made of a slag/silica stone composition, is 1400 to 1450°C, so a component adjustment agent is not added. , even if heated, it is difficult to achieve uniform melting because heating far outside the suitable fiberization temperature range is not allowed;
Oxidized and gasified components such as SC (These gasified components form bubbles in the final fiber and significantly reduce physical properties such as fiber strength, so it is important to remove them for quality improvement. ) is not removed because it melts for a short time, and furthermore, if the amount of component adjustment material added to the electric furnace is increased, the temperature of the molten slag decreases, and the devitrification temperature of the slag (slag devitrification temperature 1320 to 1340 ℃, at which temperature the molten material solidifies), and in order to avoid this risk, there is a limit to the amount of composition adjusting agent added (melted slag
There was a problem in that it was not possible to make wide-ranging changes in the composition to improve various fiber properties. In view of the above-mentioned problems, the object of the present invention is to utilize the advantages of the methods disclosed in the above-mentioned publications, that is, low manufacturing costs, and to produce high-grade rock wool that improves the physical property values of various rock wools and reduces their dispersion. It is an attempt to obtain. In addition, the composition adjustment material can be mixed at a maximum of 60 parts by weight per 100 parts by weight of molten slag.
It is possible to uniformly melt and control the temperature up to parts by weight, and has a wide range of components that have performance and characteristics unlike conventional rock wool or rock wool obtained using molten slag disclosed in the above-mentioned publications. Through careful adjustment, it is possible to produce new rock wool that has the following properties such as heat resistance, alkali resistance, flexibility, whiteness, and high strength, as well as low shot content, fiber strength, and less variation in fiber diameter. The aim is to obtain rock wool. (Means for Solving the Problems) A method for producing inorganic short fibers according to the invention set forth in claim 1 of the present application (hereinafter referred to as the first invention) includes adding a composition adjusting agent to molten blast furnace slag. The primary melt that has been melted and defoamed by adding is introduced into a temperature-controlled furnace for secondary melting, temperature-controlled, homogenized, and re-defoamed. The molten slag is used to save energy and reduce manufacturing costs, and the primary molten material, which has been melted and defoamed by adding a component adjustment material, is directly processed into a temperature-controlled furnace without being turned into fibers. temperature control, uniformity, and secondary melting.
By fiberizing the re-defoamed secondary melt,
In the primary melt, the added component adjustment material is sufficiently melted, the melt is homogenized, and air bubbles are removed.In the secondary melt, the temperature is adjusted to the appropriate fiberizing viscosity, and the foam is defoamed again. It is intended to be uniform and have few bubbles despite the addition, and to provide desired characteristics by adjusting the ingredients. Next, the inorganic short fibers of the invention according to claim 2 (hereinafter referred to as the second invention) are:
Molten blast furnace slag contains titanium oxide-containing substances, silica stone,
The following composition (wt%) is obtained by adding a component adjustment material made of natural stone to adjust the composition, melting and defoaming, and introducing the primary melt into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming. A secondary melt of SiO 2 35-55 TiO 2 10-25 Al 2 O 3 5-15 MgO 5-15 CaO 20-35 and inevitable components 0-10 is obtained, and this secondary melt is subsequently subjected to the temperature control described above. A fixed amount of slag is discharged from the furnace and turned into fibers.The secondary molten material, which is made by adding a composition adjusting agent to molten blast furnace slag, has chemical resistance, high tensile strength,
The purpose is to impart high elasticity. Next, the inorganic short fiber of the invention described in claim 4 (hereinafter referred to as the third invention) is made of molten blast furnace slag, ferronic slag, magnesium hydroxide, silica stone, and natural stone. The primary molten material, which has been melted and defoamed by adding a component adjustment agent, is introduced into a temperature-controlled furnace for secondary melting, temperature-controlled, homogenized, and re-defoamed to obtain the following composition (wt
%) SiO 2 35-55 Al 2 O 3 5-15 MgO 10-25 CaO 20-35 Inevitable components 0-10 The secondary melt was subsequently discharged in fixed amounts from the temperature-controlled furnace and made into fibers. This is an attempt to impart chemical resistance and flexibility to a secondary melt, which is made by adding a composition adjusting agent to molten blast furnace slag, through a specific composition. Next, the inorganic short fiber of the invention described in claim 5 (hereinafter referred to as the 4th invention) consists of molten blast furnace slag, silicon manganese slag, manganese oxide, silica stone, and natural stone. The primary melt was melted and defoamed by adding materials to adjust its composition, then introduced into a temperature controlled furnace for secondary melting, temperature controlled, homogenized, and defoamed again.The following composition (wt%) SiO 2 35-55 Al 2 O 3 5 to 15 MgO 5 to 10 MnO 2 to 10 CaO 25 to 35 Inevitable components 0 to 10 The secondary melt is subsequently discharged in fixed amounts from the temperature controlled furnace and made into fibers, The purpose is to provide good performance through the mechanical strength of small fiber diameters due to the specific composition of the secondary melt, which is made by adding a composition adjusting material to molten blast furnace slag. Next, the inorganic short fiber of the invention described in claim 6 (hereinafter referred to as the fifth invention) is made of molten blast furnace slag, fly ash, aluminum hydroxide, iron oxide, silica stone, and natural stone. The primary molten material, which has been melted and defoamed by adding a component adjustment agent, is introduced into a temperature-controlled furnace for secondary melting, temperature-controlled, homogenized, and re-defoamed to obtain the following composition (wt
%) SiO 2 35-55 Al 2 O 3 15-30 MgO 5-10 CaO 20-35 FeO 3-15 Inevitable components 0-10 The secondary melt containing 0-10 is subsequently discharged in fixed amounts from the temperature-controlled furnace. It is intended to provide good performance in terms of heat resistance and mechanical strength due to the specific composition of the secondary melt, which is made by adding a composition adjusting material to molten blast furnace slag. Next, the inorganic short fiber of the invention described in claim 7 (hereinafter referred to as the 6th invention) is obtained by adding a composition adjusting agent consisting of zinc oxide, silica stone, and natural stone to molten blast furnace slag. The adjusted and melted and defoamed primary melt was introduced into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming.The following composition (wt%) SiO 2 35-55 Al 2 O 3 5 〜15 ZnO 2〜10 MgO 5〜10 CaO 25〜35 Inevitable components 0〜10 The secondary melt is successively discharged from the temperature-controlled furnace in fixed amounts and made into fibers, and the components are added to the molten blast furnace slag. The aim is to impart whiteness and flexibility to the secondary melt by adding a conditioning agent to the secondary melt. (Function) In the first invention, a composition adjusting material is added to molten blast furnace slag, and the composition adjusting material is sufficiently melted into the molten blast furnace slag by primary melting to homogenize and defoam, and then in a temperature controlled furnace. A secondary melt is produced by performing secondary melting and re-defoaming at a temperature corresponding to an appropriate fiberizing viscosity. The second invention is a specific composition (wt%) of a secondary melt obtained by adding a composition adjusting material to molten blast furnace slag.SiO 2 35-55 TiO 2 10-25 Al 2 O 3 5-15 MgO 5-15 CaO 20-35 Inevitable components 0-10 impart chemical resistance, high tensile strength, and high elasticity. The third invention is a specific composition (wt% ) of a secondary melt obtained by adding a component adjustment material to molten blast furnace slag. Components 0 to 10 impart chemical resistance and flexibility. The fourth invention is a specific composition (wt% ) of a secondary melt obtained by adding a composition adjusting material to molten blast furnace slag. 25-35 Inevitable component 0-10 imparts performance with a small fiber diameter and good mechanical strength. The fifth invention is a specific composition (wt%) of a secondary melt obtained by adding a component adjusting material to molten blast furnace slag.SiO2 35~55 Al2O3 15~30 MgO 5~10 CaO 20~35 FeO 3-15 Inevitable components 0-10 impart good performance in heat resistance and mechanical strength. The sixth invention is a specific composition (wt% ) of a secondary melt obtained by adding a component adjustment material to molten blast furnace slag. 25-35 Inevitable components 0-10 impart whiteness and flexibility. Next, the present invention will be explained in detail for each invention. First, an overview of the present invention will be explained. The present invention collects high-temperature molten slag by-produced from a blast furnace into a slag pan or component adjustment furnace, heats the slag with a gas burner or electrically in the slag pan or component adjustment furnace, and converts it into non-ferrous slag. , adding a high amount of a component adjusting agent consisting of a combination of natural mineral stones, various oxides, and aqueous solutions to adjust the components to the required composition, and at that time, substantially melting the composition for one hour or more,
At the same time, in the case of molten slag containing 0.5 to 1.0 wt% or more of the inevitable components of C (carbon) and S (sulfur),
Stirring the melt by blowing oxygen gas and substantially removing the generated C, S-based oxide gas, or C,
In the case of molten slag containing 0.5 to 1.0 wt% or less of S as an unavoidable component, a process of stirring the molten material by blowing nitrogen gas or air to obtain a primary molten material;
The molten material is quantitatively supplied to a temperature-controlled electric furnace or gas furnace having a receiver or throat for introducing the molten material, and then the molten material is homogenized and heated again in an inert gas atmosphere such as nitrogen as the case may be. Flexibility obtained from three processes: the process of obtaining a secondary melt with temperature control, and the process of supplying a fixed amount of the homogenized melt to a fiberizing device using a blowing method or multi-rotor method and making it into fibers. , provides high-quality inorganic short fibers that have desired properties such as mechanical properties such as high tensile strength, whiteness, heat resistance, chemical resistance such as alkali resistance, etc., and with little variation in the property values. It is. 1 First Invention A component adjusting agent is added to a slag pan or a component adjusting furnace in which high-temperature molten slag (1350 to 1450° C.) discharged from a blast furnace is collected, and the components are adjusted to have the composition described below. It is possible to add up to 60 parts by weight of the composition adjusting agent to 100 parts by weight of molten slag, and if you want to make a wide change in properties or add novelty, a high proportion of the composition adjusting agent is required. . The composition adjustment material is put into a slag pot containing molten slag or a composition adjustment furnace.
Although it is primarily melted, the shape is several mm from the viewpoint of the meltability of the component adjustment material (short time melting) and prevention of bumping from the melt.
It is preferable to use the following particles in the form of particles and from which moisture has been removed (dried). The component adjustment material is added continuously in small amounts, depending on the amount, but approximately 30%
Supply completes in ~60 minutes. At that time, an electric or gas burner heating device such as a carbon electrode or a molybdenum electrode is attached to the canopy of the slag pan to heat the pan, or the pan is heated in a composition adjustment furnace using burner heating or electric heating, and the temperature is always over 1400℃. keep it in condition. Further, in order to promote the removal of air bubbles in the melt in a short time, it is preferable to blow a small amount of oxygen gas, nitrogen gas, or air into the melt. Regarding the melting time scale in this component adjustment stage, it is preferable to carry out the melting process for a long time in order to obtain fibers of high quality with little variation. Depending on the viscosity of the solution, it is necessary to carry out the reaction within about 1 to 4 hours. The reason for this is that when 10 to 30 parts by weight of the composition adjustment agent is added to 100 parts by weight of molten slag, it takes about 60 to 90 minutes to reduce the air bubble content in the fibers to 0.1% (vol%) or less, and 30 parts by weight of the composition adjustment agent When adding ~45 parts by weight and 45 to 60 parts by weight, approx.
Depending on the need for 120-180 minutes and 180-240 minutes. (Note: The air bubble content in the fiber is approximately 1.7 to 1.8 vol% when the fiber is melted immediately after adding the component adjustment material. Zero air bubble content is most preferable, but if the air bubble content is below 0.3 vol%, the values of various properties will improve and In this way, the ingredients are adjusted, defoamed, and melted almost uniformly at the stage of the slag pan or ingredient adjustment furnace.
When the primary melt thus obtained is introduced into a closed furnace (electric furnace or gas burner furnace) having a receiver or throat for introducing the melt for the purpose of temperature control, uniform melting, and defoaming (further). Secondary melting is performed in an inert gas atmosphere such as nitrogen. The scale of the electric furnace or gas burner furnace depends on the fiberization rate of the melt, but usually the melt output rate is 1 to 2 TON/
If it is about Hr, 5 to 10 TON/furnace, hot water output amount is 4 to 4.
For 5TON/Hr, 15-20TON/furnace is appropriate.
The molten material whose composition has been adjusted is introduced into a temperature-controlled furnace that satisfies this scale condition.
As a result of remaining in the furnace for ~4 hours, defoaming further progresses and uniformity of the melt is completed. Whether or not this state has been achieved can be easily determined by taking out a small amount of the melt, solidifying it, and checking the coloring of the solidified product at this time. Furthermore, the temperature of the melt (more than 1400℃ at the time of input) is controlled by adjusting the heating of electric and gas burners to a temperature that provides an appropriate fiberizing viscosity (usually a temperature of 5 to 15 poise), and in the case of this method, ±5 Temperature control of ~±10℃ is possible. At this stage, the bubble content is 0.1vol%.
A melt with a suitable fiberization temperature of approximately ±5°C can be obtained. (The method described in each of the above-mentioned publications is estimated to have a bubble content of 0.5 to 0.7 vol% and a temperature of ±20°C.) The uniform secondary melt obtained in this way is placed at the bottom, side, or A fixed amount is discharged via the discharge port attached to the top and guided to the fiberizing device.
For the fiberization process, the conventional blowing method using high-pressure low-temperature or high-pressure high-temperature air or steam, or the multi-rotor method using centrifugal force can be used as is, but from the viewpoint of productivity and quality of the fibers obtained, the rotor diameter 6 Fiberization by a multi-rotor system of 2 to 4 inches and 2 to 4 inches is preferred. The fiber properties of the present invention example obtained through the above process and the comparative example in which the primary molten product obtained by adding a component adjusting material to the molten slag and melting it as described in the above-mentioned publications was discharged as it was and made into fibers. A comparison of fiber properties is shown in Table 1 below. In each case, the composition was 100 parts by weight of molten blast furnace slag and 10 parts by weight of silica stone.
本発明によれば熔融高炉スラグに成分調整材を
加えて熔融、撹拌、脱泡した一次熔融物を温度制
御炉に導入して二次熔融させることにより組成の
異なる成分調整材を均一に熔融するとともに繊維
化適性粘度にして、一次熔融物をそのまま繊維化
したものに比べて得られた無機質短繊維の繊維径
のばらつきを少くし、繊維引張強度を大にし、外
観良好で非繊維物の含有量を少くすることができ
る。
また熔融高炉スラグに加えられる成分調整材を
変化させ繊維化される二次熔融物の組成を特定す
ることによつて所望の特性を具えた無機質短繊維
を得ることができ、これまでのロツクウール、ガ
ラスウールの主用途分野である断熱材、セメント
系耐火被覆材、鉱物質繊維板に利用できるのは当
然だが、更にセラミツクフアイバー代替、アスベ
スト代替等にまで用途拡大することができる。
(実施例)
本発明の実施例1〜5の原料配合、組成熔融物
の粘度、繊維化温度、得られる繊維特性を比較例
1とともに表2に示す。比較例1としては熔融高
炉スラグ100部、珪石10部よりなる一般標準組成
物を用いた。
原料配合は熔融状態の高炉スラグの入つた小型
の排滓鍋にカーボン電極による電気加熱を施しつ
つ表中の原料配合(成分調整材の添加)をする。
この時成分調整材の粒径は略1〜5m/m程度、
絶乾状態のものを使用。また酸素ガス吹込みをす
る。成分調整材添加中の熔融物の温度をたえず
1400℃以上に維持しておく。添加時間、約60分。
こうして得られた一次熔融物を温度コントロール
と再脱泡を目的にモリブデン電極小型電気炉に定
量供給(800〜1000Kg/Hr)し、再脱泡と繊維化
適性温度に保つために熔融物の温度を電力加減に
よりコントロールする。小型電気炉内での滞留時
間(投入から移出まで)約3時間。こうして得ら
れた二次熔融物を定量排出(800〜1000Kg/Hr)
させ、6インチ1個、8インチ2個の計3個の圧
縮空気によるブローイング併用の水冷却型ロータ
ー、回転数約4000rpmからなる繊維化装置で繊維
化する。
表2中繊維特性のうち、曲げたわみについて
は、繊維化装置で繊維化するかわりにブツシング
法により繊径80〜100μの繊維を紡糸した太い繊
維で通常の曲げ試験法と同様に行いスパン3mmに
おける繊維破断時の曲げたわみ量(mm)で表示し
た。また、耐アルカリ性については同じくブツシ
ング法で得られた繊維をINのNaOH水溶液、温
度80℃、時間24Hrs浸漬した時の重量減少で評価
した(重量減少の少ない物程、耐アルカリ性良
好)。耐熱温度については、繊維化装置で特られ
た短繊維を、荷重1gr/cm2の条件で、直径100mm、
厚み50〜100m/mの円筒筐に詰めて比重0.05の
円板状に調整し10℃/minで加熱昇温し、試料の
厚みが10%収縮する温度を以て評価した。
繊維の引張強度は通常の有機繊維、ガラス繊維
等の無機質繊維の引張試験法と同様の方法で評価
した。
繊維径の平均値は繊維の電子顕微鏡写真撮影
し、約200本の繊維径を計測し、その平均値で評
価した。実施例5の組成物は低温で安定であるた
め、実施例2〜4よりも約20℃温度を下げ繊維径
の太い長目の繊維を得ることができる。
この表2から本発明の無機質短繊維は一般市販
のロツクウールと比較し、夫々耐熱性、高強度繊
維、柔軟性、耐薬品性(耐アルカリ性)で優れた
性能を有することが判り、各種産業資材、断熱
材、アスベスト代替、セラミツクフアイバー代
替、耐火被覆材、無機質繊維板に使用することが
でき、これによる品質向上、コストダウン効果が
明らかとなつた。
According to the present invention, a primary melt obtained by adding a component adjusting material to molten blast furnace slag, melting, stirring, and defoaming is introduced into a temperature-controlled furnace and subjected to secondary melting, thereby uniformly melting the component adjusting materials having different compositions. At the same time, it has a viscosity suitable for fiberization, reduces the variation in the fiber diameter of the obtained inorganic short fibers, increases the fiber tensile strength, and has a good appearance and contains non-fibrous materials compared to those obtained by directly converting the primary melt into fibers. The amount can be reduced. In addition, by changing the composition adjusting agent added to the molten blast furnace slag and specifying the composition of the secondary melt that is turned into fibers, it is possible to obtain inorganic short fibers with desired characteristics. It goes without saying that glass wool can be used in the main fields of use, such as insulation materials, cement-based fireproof coatings, and mineral fiber boards, but its use can also be expanded to include ceramic fiber replacements, asbestos replacements, etc. (Example) The raw material formulations, compositions, viscosity of melts, fiberization temperatures, and fiber properties obtained in Examples 1 to 5 of the present invention are shown in Table 2 together with Comparative Example 1. As Comparative Example 1, a general standard composition consisting of 100 parts of molten blast furnace slag and 10 parts of silica stone was used. The raw materials are mixed in a small slag pot containing molten blast furnace slag while electrically heating with a carbon electrode (addition of component adjusting material) as shown in the table.
At this time, the particle size of the component adjustment material is approximately 1 to 5 m/m,
Use something that is completely dry. Oxygen gas will also be injected. Constantly monitor the temperature of the melt while adding the component adjustment material.
Maintain the temperature above 1400℃. Addition time: approximately 60 minutes.
The primary melt obtained in this way is supplied in a fixed amount (800 to 1000 Kg/Hr) to a small electric furnace with molybdenum electrodes for the purpose of temperature control and re-defoaming, and the temperature of the melt is maintained at an appropriate temperature for re-defoaming and fiberization. is controlled by adjusting the amount of power. Residence time in the small electric furnace (from loading to removal) is approximately 3 hours. Quantitative discharge of the secondary melt obtained in this way (800-1000Kg/Hr)
The fibers are then fiberized using a fiberizing device consisting of three water-cooled rotors, one 6-inch rotor and two 8-inch rotors, with a rotation speed of approximately 4000 rpm. Among the fiber properties in Table 2, bending deflection was measured in the same way as the normal bending test method using thick fibers spun with a diameter of 80 to 100μ by the bushing method instead of being made into fibers using a fiberizing machine. It is expressed as the amount of bending deflection (mm) at the time of fiber breakage. In addition, alkali resistance was evaluated by weight loss when fibers obtained by the bushing method were immersed in an IN NaOH aqueous solution at a temperature of 80°C for 24 hours (the smaller the weight loss, the better the alkali resistance). Regarding the heat resistance temperature, short fibers specially made in a fiberizing machine are processed under the condition of a load of 1gr/ cm2 , a diameter of 100mm,
The sample was packed in a cylindrical case with a thickness of 50 to 100 m/m, adjusted to a disk shape with a specific gravity of 0.05, heated at a rate of 10°C/min, and evaluated at the temperature at which the sample's thickness contracted by 10%. The tensile strength of the fibers was evaluated using a method similar to the tensile test method used for ordinary organic fibers and inorganic fibers such as glass fibers. The average value of the fiber diameter was evaluated by taking an electron micrograph of the fiber, measuring the diameter of about 200 fibers, and using the average value. Since the composition of Example 5 is stable at low temperatures, it is possible to lower the temperature by about 20° C. compared to Examples 2 to 4 to obtain long fibers with a thick fiber diameter. Table 2 shows that the inorganic short fibers of the present invention have superior properties in terms of heat resistance, high strength fibers, flexibility, and chemical resistance (alkali resistance) when compared to general commercially available rock wool, and can be used in various industrial materials. It can be used for insulation materials, asbestos substitutes, ceramic fiber substitutes, fireproof coatings, and inorganic fiberboards, and it has become clear that this has the effect of improving quality and reducing costs.
【表】【table】
Claims (1)
脱泡させた一次熔融物を、温度制御炉に導入して
二次熔融させ温度制御、均一化、再脱泡させた二
次熔融物を続いて前記温度制御炉より一定量ずつ
排出させて繊維化することを特徴とする無機質短
繊維の製造方法。 2 熔融高炉スラグに、酸化チタン含有物質、珪
石、天然石よりなる成分調整材を加えて成分調整
し熔融脱泡させた一次熔融物を、温度制御炉に導
入して二次熔融させ温度制御、均一化、再脱泡さ
せた下記組成(wt%) SiO2 35〜55 Ti2 10〜25 Al2O3 5〜15 MgO 5〜15 CaO 20〜35 不可避成分 0〜10 の二次熔融物を得、この二次熔融物を引続いて前
記温度制御炉より一定量ずつ排出して繊維化した
ことを特徴とする無機質短繊維。 3 酸化チタン含有物質が酸化チタン含有スラ
グ、チタン鉱石、チタン酸化物であることを特徴
とする特許請求の範囲第2項記載の無機質短繊
維。 4 熔融高炉スラグに、フエロニツケルスラグ、
水酸化マグネシウム、珪石、天然石よりなる成分
調整材を加えて成分調整し熔融脱泡させた一次熔
融物を、温度制御炉に導入して二次熔融させ温度
制御、均一化、再脱泡させた下記組成(wt%) SiO2 35〜55 Al2O3 5〜15 MgO 10〜25 CaO 20〜35 不可避成分 0〜10 の二次熔融物を得、この二次熔融物を引続いて前
記温度制御炉より一定量ずつ排出して繊維化した
ことを特徴とする無機質短繊維。 5 熔融高炉スラグに、シリコマンガンスラグ、
酸化マンガン、珪石、天然石よりなる成分調整材
を加えて成分調整し熔融脱泡させた一次熔融物
を、温度制御炉に導入して二次熔融させ温度制
御、均一化、再脱泡させた下記組成(wt%) SiO2 35〜55 Al2O3 5〜15 MgO 5〜10 MnO 2〜10 CaO 20〜35 不可避成分 0〜10 の二次熔融物を得、この二次熔融物を引続いて前
記温度制御炉より一定量ずつ排出して繊維化した
ことを特徴とする無機質短繊維。 6 熔融高炉スラグにフライアツシユ、水酸化ア
ルミニウム、酸化鉄、珪石、天然石よりなる成分
調整材を加えて成分調整し熔融脱泡させた一次熔
融物を、温度制御炉に導入して二次熔融させ温度
制御、均一化、再脱泡させた下記組成(wt%) SiO2 35〜55 Al2O3 15〜30 MgO 5〜10 CaO 20〜35 FeO 3〜15 不可避成分 0〜10 の二次熔融物を得、この二次熔融物を引続いて前
記温度制御炉より一定量ずつ排出して繊維化した
ことを特徴とする無機質短繊維。 7 熔融高炉スラグに酸化亜鉛、珪石、天然石よ
りなるを加えて成分調整し熔融脱泡さた一次熔融
物を、温度制御炉に導入して二次熔融させ温度制
御、均一化、再脱泡させた下記組成(wt%) SiO2 35〜55 Al2O3 5〜15 ZnO 2〜10 MgO 5〜10 CaO 25〜35 不可避成分 0〜10 の二次熔融物を得、この二次熔融物を引き続いて
前記温度制御炉より一定量ずつ排出して繊維化し
たことを特徴とする無機質短繊維。[Scope of Claims] 1. A primary molten product obtained by adding a component adjustment material to molten blast furnace slag and melting and defoaming is introduced into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming. 1. A method for producing inorganic short fibers, characterized in that the secondary melt is then discharged in fixed amounts from the temperature-controlled furnace to form fibers. 2. The primary molten material, which has been melted and defoamed by adding a component adjusting material made of a titanium oxide-containing substance, silica stone, and natural stone to the molten blast furnace slag, is introduced into a temperature-controlled furnace for secondary melting, temperature-controlled, and uniform. A secondary melt with the following composition (wt%) SiO 2 35-55 Ti 2 10-25 Al 2 O 3 5-15 MgO 5-15 CaO 20-35 and inevitable components 0-10 was obtained after degassing and re-defoaming. An inorganic short fiber characterized in that the secondary melt is subsequently discharged in fixed amounts from the temperature-controlled furnace to form fibers. 3. The inorganic short fiber according to claim 2, wherein the titanium oxide-containing substance is titanium oxide-containing slag, titanium ore, or titanium oxide. 4 Melted blast furnace slag, ferronic slag,
The primary melt was melted and degassed by adding a component adjustment material made of magnesium hydroxide, silica stone, and natural stone to adjust the composition, and then introduced into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming. A secondary melt having the following composition (wt%) SiO 2 35-55 Al 2 O 3 5-15 MgO 10-25 CaO 20-35 Inevitable components 0-10 is obtained, and this secondary melt is subsequently heated to the above temperature. Inorganic short fibers are produced by discharging a fixed amount from a controlled furnace and turning them into fibers. 5 Melted blast furnace slag, silicon manganese slag,
The primary melt was melted and degassed by adding a component adjustment material consisting of manganese oxide, silica stone, and natural stone to adjust the composition, and then introduced into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming. Composition (wt%) SiO 2 35-55 Al 2 O 3 5-15 MgO 5-10 MnO 2-10 CaO 20-35 Inevitable components 0-10 A secondary melt is obtained, and this secondary melt is subsequently An inorganic short fiber is produced by discharging a fixed amount of the fiber from the temperature-controlled furnace and turning it into fiber. 6. The primary molten material, which is obtained by adding a composition adjusting agent consisting of fly ash, aluminum hydroxide, iron oxide, silica stone, and natural stone to the molten blast furnace slag to adjust the composition and melting and defoaming, is introduced into a temperature-controlled furnace for secondary melting and temperature control. Controlled, homogenized and re-defoamed composition below (wt%) SiO 2 35-55 Al 2 O 3 15-30 MgO 5-10 CaO 20-35 FeO 3-15 Secondary melt of inevitable components 0-10 1. An inorganic short fiber obtained by discharging this secondary melt in fixed amounts from the temperature-controlled furnace to form fibers. 7. Add zinc oxide, silica stone, and natural stone to molten blast furnace slag to adjust the composition, and then introduce the primary molten product into a temperature-controlled furnace for secondary melting, temperature control, homogenization, and re-defoaming. A secondary melt with the following composition (wt%) SiO 2 35-55 Al 2 O 3 5-15 ZnO 2-10 MgO 5-10 CaO 25-35 Inevitable components 0-10 was obtained, and this secondary melt was An inorganic short fiber characterized in that the short inorganic fiber is made into fiber by being discharged in a fixed amount from the temperature-controlled furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20128785A JPS6265950A (en) | 1985-09-11 | 1985-09-11 | Inorganic short fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20128785A JPS6265950A (en) | 1985-09-11 | 1985-09-11 | Inorganic short fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6265950A JPS6265950A (en) | 1987-03-25 |
JPH0524871B2 true JPH0524871B2 (en) | 1993-04-09 |
Family
ID=16438472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20128785A Granted JPS6265950A (en) | 1985-09-11 | 1985-09-11 | Inorganic short fibers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6265950A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251443A (en) * | 1988-08-12 | 1990-02-21 | Nitto Boseki Co Ltd | Rock wool |
JPH0312342A (en) * | 1989-06-12 | 1991-01-21 | Sumitomo Metal Ind Ltd | Method of manufacturing rock wool and rock wool mat insulation materials |
CN102242231B (en) * | 2010-09-27 | 2013-04-24 | 山东焦化集团有限公司 | Method for producing flat inorganic non-metallic material by using molten slag |
-
1985
- 1985-09-11 JP JP20128785A patent/JPS6265950A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6265950A (en) | 1987-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4363878A (en) | Alkali- and heat-resistant inorganic fiber | |
US4764487A (en) | High iron glass composition | |
US5312806A (en) | Mineral fibres | |
US3892581A (en) | Glass fiber compositions | |
JP2013500939A (en) | Lithium-free glass with improved modulus | |
KR102000029B1 (en) | Manufacturing method of glass fiber using slag and glass fiber of the same | |
EA026878B1 (en) | Method of manufacture of man made vitreous fibres | |
CA1244485A (en) | Method for utilizing slag from metal production | |
JP6382837B2 (en) | Glass manufacturing method using electric melting | |
US6698245B1 (en) | Production of vitreous fibres using high halogen mineral waste as an ingredient | |
CN115536281A (en) | Preparation method of glass liquid for glass wool production | |
Wallenberger | Commercial and experimental glass fibers | |
EP4097057B1 (en) | Method for making man-made vitreous fibres | |
GB2220654A (en) | Glass composition and batch blend for its production | |
US3484259A (en) | High strength-high modulus glass fibers | |
US6265335B1 (en) | Mineral wool composition with enhanced biosolubility and thermostabilty | |
CN111433166B (en) | Glass fiber and method for producing same | |
JPH0524871B2 (en) | ||
JP3771073B2 (en) | Glass fiber | |
KR102849121B1 (en) | Glass fiber using the steelmaking slag and manufacturing method of the glass fiber | |
RU2737438C1 (en) | Method of producing high-temperature resistant silica fiber | |
JPH0665617B2 (en) | How to use slag from metal production | |
JPH02502372A (en) | How to mix ferrochrome slag to produce fire-resistant and chemical-resistant fibers | |
JPS63176340A (en) | glass fiber | |
EA045803B1 (en) | METHOD FOR MANUFACTURING ARTIFICIAL GLASSY FIBERS |