JPH01157427A - Manufacture of quartz glass crucible - Google Patents

Manufacture of quartz glass crucible

Info

Publication number
JPH01157427A
JPH01157427A JP31511387A JP31511387A JPH01157427A JP H01157427 A JPH01157427 A JP H01157427A JP 31511387 A JP31511387 A JP 31511387A JP 31511387 A JP31511387 A JP 31511387A JP H01157427 A JPH01157427 A JP H01157427A
Authority
JP
Japan
Prior art keywords
quartz glass
layer
glass crucible
crucible
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31511387A
Other languages
Japanese (ja)
Other versions
JP2559604B2 (en
Inventor
Hajime Abe
一 阿部
Shinya Kusakabe
日下部 晋也
Yuji Hayashi
裕二 林
Satoru Tachibana
橘 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP31511387A priority Critical patent/JP2559604B2/en
Publication of JPH01157427A publication Critical patent/JPH01157427A/en
Application granted granted Critical
Publication of JP2559604B2 publication Critical patent/JP2559604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain the title crucible free from bubbles and having high granularity by introducing H2, He, or their gaseous mixture from at latest the start of melting of grains at the time of adding the grains into a hollow die. CONSTITUTION:The hollow die 6 is rotated around a vertical shaft in the direction as shown by arrow 3 by using a rotary driving device 1. Grains are continuously or discontinuously added to the hollow die 6 so that the grains are layered on the inner wall of the hollow die 6 and accumulated on the bottom, and a grain layer 7 in the form of a crucible is formed. The heat of a heating source 8 is applied from the inside toward the outside through the thickness of the grain layer 7. H2, He, or their gaseous mixture is introduced from an injection port 10 from at latest the start of melting of the grains. As a result, only a part of the grain layer 7 is melted, the thin layer part is sintered, and the remaining grain layer 7 is kept in a state of grains as it is. The obtained quartz glass crucible is cooled, and then taken out from the hollow die 6.

Description

【発明の詳細な説明】 産 土のI用 本発明は石英ガラスルツボの製造方法に関し、特にシリ
コン単結晶の引上げるための石英ガラスルツボの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a quartz glass crucible, and particularly to a method for manufacturing a quartz glass crucible for pulling silicon single crystals.

【Lへ1L 半導体のデバイスの基板として用いられるシリコン単結
晶は主にC7法により製造されている。この方法は原理
的にはルツボ内に多結晶シリコン原料を装填し、周囲か
ら加熱して多結晶シリコン原料を溶融した後、上方から
種結晶を吊下してシリコン融液に浸し、これを引上げる
ことによりシリコン単結晶インゴットを引上げるもので
ある。実用的には、上記ルツボとしては石英ガラス製の
ものが用いられている。
[L to 1L Silicon single crystals used as substrates for semiconductor devices are mainly manufactured by the C7 method. In principle, this method involves loading a polycrystalline silicon raw material into a crucible, heating it from the surroundings to melt the polycrystalline silicon raw material, and then suspending a seed crystal from above and immersing it in the silicon melt. This is to pull up a silicon single crystal ingot. Practically, the crucible is made of quartz glass.

この石英ガラスルツボを製造するには、粉砕して精製し
た石英粉または珪石粉を回転可能な中空型に供給して中
空型を回転させながら遠心力の作用により成形し、アー
ク等の上部の熱源により溶融することが知られている。
To manufacture this quartz glass crucible, pulverized and refined quartz powder or silica powder is fed into a rotatable hollow mold, and the hollow mold is rotated and shaped by the action of centrifugal force. It is known that it can be melted by

が ゛しようと るワ 、 しかしながら、このような製造方法では石英ガラス体内
に気泡が多く含まれる。また気泡径のバラツキも大きく
、高温での粘性も低い。
However, with this manufacturing method, many air bubbles are contained within the quartz glass body. Furthermore, the variation in bubble diameter is large and the viscosity at high temperatures is low.

このような石英ガラスルツボをシリコン単結晶の引上げ
に用いると、シリコンをチャージして繰り返し石英ガラ
スルツボを使用するような場合、ルツボの高温での粘性
が低いために石英ガラスルツボが変形し易い。石英ガラ
スルツボが変形するとシリコン融液の液面の高さが変化
したり、石英ガラスルツボを支持している分割体からな
るカーボンルツボも変形するので均熱が得られず、温度
分布が変化するのでシリコン単結晶に転位(dislo
cation )が生じ易く、歩留りが低下する。
When such a vitreous silica crucible is used to pull a silicon single crystal, the vitreous silica crucible tends to deform when it is charged with silicon and used repeatedly because the viscosity of the crucible at high temperatures is low. When the quartz glass crucible deforms, the height of the silicon melt level changes, and the carbon crucible, which is made up of divided bodies that support the quartz glass crucible, also deforms, making it impossible to achieve uniform heating and changing the temperature distribution. Therefore, dislocations occur in the silicon single crystal.
cation) is likely to occur, resulting in a decrease in yield.

また、石英ガラスルツボに気泡が存在すると、高温での
粘性の低下によりシリコン単結晶の引上げ中に気泡の体
積の膨張によってシリコン融液に接している石英ガラス
ルツボの側壁が膨張し、シリコン融液の液面の高さが変
化する。また、石英ガラスルツボ内面がシリコン融液に
浸蝕されて気泡が開部状態となり、気泡中の不純物ガス
がシリコン融液中に混入し、やはり転位等により歩留り
が低下する。このようなことから、気泡の少ない石英ガ
ラスルツボがのぞまれている。
In addition, if air bubbles exist in the quartz glass crucible, the side wall of the quartz glass crucible in contact with the silicon melt expands due to the expansion of the volume of the air bubbles during pulling of the silicon single crystal due to the decrease in viscosity at high temperatures, causing the silicon melt to expand. The height of the liquid level changes. Furthermore, the inner surface of the quartz glass crucible is eroded by the silicon melt, causing the bubbles to open, and impurity gases in the bubbles are mixed into the silicon melt, resulting in lower yields due to dislocations and the like. For this reason, a quartz glass crucible with fewer bubbles is desired.

気泡の少ない石英ガラスルツボの製造方法は、例えば、
特公昭59−34659号公報に開示されている。該製
造方法によれば、石英ガラスルツボの溶融時に中空型の
外側に真空装置により減圧を維持するものである。しか
しながら、このような製造方法では溶融開始時に成形体
は内面側からガラス化し、且つ中空型の内側から外側に
空気が流入するため石英ガラス肉厚近傍に多数の空気の
気泡が残存し層状になる。又、中空型の穴が目づまりを
起こし易く気泡の分布が不均一となっていた。したがっ
て、石英ガラスルツボ全体の気泡が少なくなっても、最
も重要な点については改善されていない。
For example, a method for manufacturing a quartz glass crucible with few bubbles is as follows.
It is disclosed in Japanese Patent Publication No. 59-34659. According to this manufacturing method, reduced pressure is maintained outside the hollow mold by a vacuum device during melting of the quartz glass crucible. However, in this manufacturing method, when melting starts, the molded body becomes vitrified from the inner side, and air flows from the inside to the outside of the hollow mold, so many air bubbles remain near the thickness of the quartz glass, forming a layer. . In addition, the hollow holes tended to become clogged, resulting in uneven distribution of air bubbles. Therefore, even if the number of bubbles in the silica glass crucible as a whole is reduced, the most important point is not improved.

また、気泡の少ない石英ガラスルツボを得るために透明
ガラスを加工する方法(特公昭52−26522号公報
参照)も開示されているが、このような製造方法では肉
厚のルツボを得ることがむつかしく、寸法精度が悪い。
Furthermore, a method of processing transparent glass in order to obtain a quartz glass crucible with few bubbles has been disclosed (see Japanese Patent Publication No. 52-26522), but it is difficult to obtain a thick-walled crucible with such a manufacturing method. , poor dimensional accuracy.

また、大型ルツボが得られず、コスト高となる。Furthermore, a large crucible cannot be obtained, resulting in high costs.

B」しΔ月」1 本発明はこのような問題点を解決するためになされたも
のであり、ライフが長く、引上げられるシリコン単結晶
にほとんど悪影響を与えることのない石英ガラスルツボ
を安価に製造できる石英ガラスルツボの製造方法を提供
することを目的とする。
The present invention was made to solve these problems, and it is an inexpensive way to manufacture a silica glass crucible that has a long life and has almost no adverse effect on the silicon single crystal being pulled. The purpose of the present invention is to provide a method for manufacturing a quartz glass crucible that can be manufactured using a quartz glass crucible.

11へ1E 本出願の第1発明は特許請求の範囲第1項の石英ガラス
ルツボの製造方法を要旨としている。また本出願の第2
発明は特許請求の範囲第2項の石英ガラス製造方法を要
旨としている。
Go to 11 1E The first invention of the present application is summarized as a method for manufacturing a quartz glass crucible according to claim 1. Also, the second part of this application
The gist of the invention is a quartz glass manufacturing method as set forth in claim 2.

間 1、を 決するための 第1発明を説明する。to determine the interval 1. The first invention will be explained.

結晶質石英または非晶質石英ガラスからなる微細に磨砕
された粒子を、垂直軸のまわりに回転可能なカーボン質
材料からなる中空型の中に、類型の内壁には層として、
底部にはたまるように連続的に或いは非連続的に添加す
る。前記層の層厚を通して内側から外側へ熱をかけるこ
とによってその層の一部だけを溶融し、薄い部分層半融
焼結させ、層の残部を粒子状態のままに止らせ、得られ
た石英ガラスルツボを冷却後中空型から取り出す。
Finely ground particles of crystalline quartz or amorphous quartz glass are placed in a hollow mold of carbonaceous material rotatable about a vertical axis, as a layer on the inner wall of the mold.
Add continuously or discontinuously so that it accumulates at the bottom. By applying heat from the inside to the outside through the thickness of said layer, only a part of the layer is melted, resulting in thin partial layer semi-melting sintering and leaving the rest of the layer to remain in the granular state, resulting in quartz. After cooling the glass crucible, take it out from the hollow mold.

第1発明では、このような製造方法において、中空型を
ガスの吸気口及び排気口を備えた機密性の高い囲いで覆
い、その中に前記粒子の遅くとも溶融開始より82 、
 )−1e或いはそれらの混合物のガスを流入する。
In the first invention, in such a manufacturing method, the hollow mold is covered with a highly airtight enclosure equipped with a gas inlet and an outlet, and the particles are placed in the enclosure at least 82 times from the start of melting.
)-1e or a mixture thereof.

第2発明を説明する。結晶質石英または非晶質石英ガラ
スからなる微細に磨砕された粒子を、垂直軸のまわりに
回転可能なカーボン質材料からなる中空型の中に、類型
の内壁には層として、底部にはたまるように連続的に或
いは非連続的に添加する。前記層の層厚を通して内側か
ら外側へ熱をかけることによってその層の一部だけを溶
融し、薄い部分層半融焼結させ、層の残部を粒子状態の
ままに止らせ、得られた石英ガラスルツボを冷却後中空
型から取り出す。
The second invention will be explained. Finely ground particles of crystalline quartz or amorphous quartz glass are placed in a hollow mold of carbonaceous material rotatable around a vertical axis, as a layer on the inner wall of the mold and as a layer on the bottom. Add continuously or discontinuously so as to accumulate. By applying heat from the inside to the outside through the thickness of said layer, only a part of the layer is melted, resulting in thin partial layer semi-melting sintering and leaving the rest of the layer to remain in the granular state, resulting in quartz. After cooling the glass crucible, take it out from the hollow mold.

第2発明では、このような製造方法において、中空型を
ガスの吸気口及び排気口を備えた機密性の高い囲いで覆
い、その中に前記粒子の遅くとも溶融開始より5分以上
N2.)−10或いはそれらの混合のガスを流入し、そ
の後該ガスを止めて該ガス以外の分子半径の大きい、た
とえばAr 、N2 、Neなどを溶融が終了するまで
流入し冷却するものである。
In the second invention, in such a manufacturing method, the hollow mold is covered with a highly airtight enclosure equipped with a gas inlet and an outlet, and N2. )-10 or a mixture thereof, the gas is then stopped, and other gases having a large molecular radius, such as Ar, N2, Ne, etc., are introduced until melting is completed for cooling.

JL 第1発明の石英ガラスルツボの製造方法によれば、溶融
開始時にはN2 、1−(e或いはそれらの混合のガス
を装置内に流入するので、石英粒子が溶融されて生成し
たガラス体に取り込まれた気泡は、N2 、 )le或
いはそれらの混合のガスで満たされている。N2 、 
)le或いはそれらの混合のガスは、石英ガラス中を拡
散できるが、該ガス以外のガスは分子半径が大き過ぎて
拡散できなくなる。加熱溶融中に生成した気体池内のガ
スは、石英ガラス中から外部に拡散することによって消
失する。
JL According to the method for manufacturing a silica glass crucible of the first invention, at the start of melting, gases of N2, 1-(e, or a mixture thereof) flow into the apparatus, so that quartz particles are melted and incorporated into the resulting glass body. The bubbles are filled with gases such as N2, )le, or a mixture thereof. N2,
)le or a mixture thereof can diffuse in quartz glass, but other gases cannot diffuse because their molecular radius is too large. The gas generated in the gas pond during heating and melting disappears by diffusing from the quartz glass to the outside.

第2発明の石英ガラスルツボの製造方法によれば、溶融
開始時にはN2 、1−1e或いはそれらの混合のガス
を装置内に流入するので、石英粒子が溶融されて生成し
たガラス体に取り込まれた気泡はN2 、 He或いは
それらの混合のガスで満たされている。
According to the method for manufacturing a quartz glass crucible of the second invention, since N2, 1-1e, or a mixture thereof flows into the apparatus at the start of melting, quartz particles are melted and incorporated into the resulting glass body. The bubbles are filled with gases such as N2, He, or a mixture thereof.

N2.He或いはそれらの混合のガスは石英ガラス中を
拡散できるが、該ガス以外のガスは分子半径が大き過ぎ
て拡散できなくなる。
N2. Although He or a mixture thereof can diffuse in quartz glass, gases other than He cannot diffuse because their molecular radius is too large.

その後該ガース以外の分子半径の大きいガスを流入する
ので、分圧差により気泡中のガスが石英ガラス中から外
部に拡散することによって消失する。
After that, a gas having a large molecular radius other than the girth is introduced, so that the gas in the bubbles diffuses from the quartz glass to the outside due to the partial pressure difference, and disappears.

尖Jl 第1図を参照して第1発明を説明する。Tsubasa Jl The first invention will be explained with reference to FIG.

第1図は第1発明の方法を実施するための石英ガラスル
ツボ製造装置を示している。
FIG. 1 shows a quartz glass crucible manufacturing apparatus for carrying out the method of the first invention.

まず、この製造装置について説明する。First, this manufacturing apparatus will be explained.

回転駆動装置1には回転軸2が設けられており、この回
転軸2は囲い4を支持している。
The rotary drive device 1 is provided with a rotary shaft 2, which supports an enclosure 4.

囲い4には空隙5と通気性のよい中空型6を有している
。カーボン材料からなる中、突型6の内側には粒子層7
が形成されている。カーボン電極を用いたアーク加熱形
の加熱源8と噴出口10が中空型6の上部に位置されて
いる。
The enclosure 4 has a void 5 and a hollow mold 6 with good ventilation. Made of carbon material, there is a particle layer 7 inside the protruding mold 6.
is formed. An arc heating type heat source 8 using a carbon electrode and a spout 10 are located above the hollow mold 6.

真空ポンプ11は空隙5を介して中空型6と粒子層7が
ら空気を引くようになっている。
The vacuum pump 11 is configured to draw air from the hollow mold 6 and the particle layer 7 through the gap 5.

噴出口10からは、H2、1−1eあるいはそれらの混
合のガスを流入できるようになっている。
From the ejection port 10, gas of H2, 1-1e, or a mixture thereof can be introduced.

粒子層7は、結晶質石英または非晶質石英ガラスからな
る微細に磨砕された粒子である。
The particle layer 7 is finely ground particles of crystalline quartz or amorphous quartz glass.

第1発明の製造方法では、回転駆動装置1を用いて中空
型6を垂直軸のまわりに矢印3の方向に回転し、中空型
6の内壁上には層として、底部にはたまるように粒子を
連続的あるいは非連続的に中空型6に添加する。つまリ
ルツボ型の粒子層7を形成する。そして、粒子層7の層
厚を通して内側から外側へ加熱源8の熱をかける。
In the manufacturing method of the first invention, the hollow mold 6 is rotated around a vertical axis in the direction of the arrow 3 using the rotary drive device 1, and the particles are formed as a layer on the inner wall of the hollow mold 6 and accumulated at the bottom. is added to the hollow mold 6 continuously or discontinuously. A particle layer 7 having a pot shape is formed. Then, heat from the heating source 8 is applied from the inside to the outside through the layer thickness of the particle layer 7.

この粒子の遅くとも溶融開始よりH2,Heあるいはそ
れらの混合ガスの噴出口10より流入する。
At the latest from the start of melting of these particles, H2, He, or a mixture thereof flows in through the outlet 10.

これにより粒子層7の一部だけ溶融し、薄い部分層を半
融焼結させ、粒子層7の残部を粒子状態のままに止らせ
る。
As a result, only a portion of the particle layer 7 is melted, the thin partial layer is semi-melted and sintered, and the remainder of the particle layer 7 remains in the particle state.

得られた石英ガラスルツボを冷却後中空型6からとり出
すのである。
The obtained quartz glass crucible is cooled and then taken out from the hollow mold 6.

実際にたとえば開口部径が356 mm1高さ254m
mの石英ガラスルツボを製造した。溶融に於ては、溶融
開始5分前からHeガスを流入した。ガス圧は0.5k
g/cm2 、流量25Q/minである。
Actually, for example, the opening diameter is 356 mm and the height is 254 m.
A quartz glass crucible of m was manufactured. During melting, He gas was introduced 5 minutes before the start of melting. Gas pressure is 0.5k
g/cm2, and the flow rate was 25Q/min.

できた石英ガラスルツボの見掛は気孔率は0.1%以下
であった。このルツボの減圧下でのフクレ率を測定した
。測定はルツボよりサンプリングし、圧力1 torr
、温度1600℃、保持時間3時間の熱処理を行った。
The apparent porosity of the resulting quartz glass crucible was 0.1% or less. The blistering rate of this crucible under reduced pressure was measured. Measurement was carried out by sampling from the crucible at a pressure of 1 torr.
, heat treatment was performed at a temperature of 1600° C. and a holding time of 3 hours.

熱処理前に対する熱処理後の見掛は気孔率の増加の割合
を7タレ率(%)とした。
The apparent increase in porosity after heat treatment compared to before heat treatment was defined as a sag rate (%) of 7.

ここで、このフクレ率は、水浸法により熱処理前後の見
掛は比重を測定し、その変化率を表わしており、次式で
示される。
Here, this blistering rate is determined by measuring the apparent specific gravity before and after heat treatment by a water immersion method, and represents the rate of change thereof, and is expressed by the following formula.

フクレ率(%)= 熱処理前の見掛は比重 フクレ率が低ければ、シリコン単結晶の引上げ時に気泡
がフクレることがほとんどなく、また、粘性が高いので
ルツボが変形することもない。
Blistering rate (%) = If the apparent specific gravity blistering rate before heat treatment is low, air bubbles will hardly bulge when pulling a silicon single crystal, and the crucible will not be deformed due to its high viscosity.

この結果を表−1に示す。ここで比較例1は従来のアー
クを熱源とする方法で製造したものである。比較例2は
特公昭59−34659号公報に基づいて中空型を使用
し、減圧にしてアークを熱源として製造したものである
。(各実施例と比較例1,2のサンプル数nは5である
。) 次に、この石英ガラスルツボで実際にシリコン単結晶の
引上げを行った。sbを高濃度にドーピングした35k
gの高純度シリコンを約1mm/winの条件で結晶方
位(100)の直径5インチのシリコン単結晶に引上げ
た。
The results are shown in Table-1. Here, Comparative Example 1 was manufactured by a conventional method using an arc as a heat source. Comparative Example 2 was manufactured based on Japanese Patent Publication No. 59-34659 using a hollow mold under reduced pressure and using an arc as a heat source. (The number of samples n in each Example and Comparative Examples 1 and 2 was 5.) Next, a silicon single crystal was actually pulled in this quartz glass crucible. 35k heavily doped with sb
g of high-purity silicon was pulled into a silicon single crystal with a crystal orientation (100) and a diameter of 5 inches under conditions of approximately 1 mm/win.

これらのシリコン単結晶のり、 F、  (dislO
CatiOn free)率を調べたところ、表−2に
示すような結果となった。(各サンプル数nは5である
) 表−2より明らかなように実施例のルツボを使用したシ
リコン単結晶は比較例のルツボを使用したものよりもり
、F、率が向上している。
These silicon single crystal glues, F, (dislO
When the CatiOn free) rate was investigated, the results were as shown in Table 2. (The number of samples n is 5 for each sample.) As is clear from Table 2, the silicon single crystal using the crucible of the example has a higher F rate than that using the crucible of the comparative example.

さらに、実施例と比較例のルツボを用い、約35kCI
の高純度シリコンを溶融し、約111Ill/ninの
条件で結晶方位(100)の直径5インチのシリコン単
結晶を引上げた後、引上げられた重量と同量の高純度シ
リコンを再投入(リチャージ)して引上げを続け、石英
ガラスルツボの耐久試験を行った。表−3に石英ガラス
ルツボの耐用回数、耐用時間を示す。
Furthermore, using the crucibles of Examples and Comparative Examples, approximately 35 kCI
After melting high-purity silicon and pulling a 5-inch diameter silicon single crystal with crystal orientation (100) under conditions of approximately 111 Ill/nin, re-inject high-purity silicon in the same amount as the pulled weight (recharge). Then, the quartz glass crucible was subjected to a durability test. Table 3 shows the service life and service life of the quartz glass crucible.

(各サンプル数nは5である) 表−3より明らかなように第1発明の実施例によれば、
従来に比較してリチャージ回数が大幅に延びた。
(The number of samples n is 5 for each sample.) As is clear from Table 3, according to the embodiment of the first invention,
The number of recharges has been significantly increased compared to before.

一方、第1発明による石英ガラスルツボを使用した場合
、泡がほとんどないことからSiの浸蝕による開放泡の
生成がなく、また、使用時の変形が少ないので融液面の
変動がほとんどない。
On the other hand, when the quartz glass crucible according to the first invention is used, there are almost no bubbles, so no open bubbles are generated due to Si erosion, and there is little deformation during use, so there is almost no fluctuation in the melt surface.

さらに、開放泡の生成がないので石英ガラスルツボ内表
面が滑らかであり、引上げ中に内表面へ異物及び多結晶
3iが付着して成長するのを防止することができる。
Furthermore, since no open bubbles are generated, the inner surface of the silica glass crucible is smooth, and it is possible to prevent foreign matter and polycrystals 3i from adhering to and growing on the inner surface during pulling.

したがって、シリコン単結晶引上げ時に結晶欠陥の発生
を抑制でき、歩留りが大幅に向上した。
Therefore, it was possible to suppress the occurrence of crystal defects during pulling of silicon single crystals, and the yield was significantly improved.

第1図の装置例では製造装置の熱源をカーボン電極によ
るアーク加熱とした。第2図の装置例では、装置内を囲
い30で密閉して加熱源28を抵抗加熱によるヒータと
し、加圧下で溶融するとざらに気泡の少ない石英ガラス
ルツボが得られるのである。
In the example of the apparatus shown in FIG. 1, the heat source of the manufacturing apparatus was arc heating using a carbon electrode. In the example of the apparatus shown in FIG. 2, the inside of the apparatus is sealed with an enclosure 30, the heat source 28 is a resistance heating heater, and by melting under pressure, a silica glass crucible with fewer bubbles can be obtained.

また、アーク加熱に比較し、ヒータの消耗がほとんどな
いので石英ガラスルツボ内表面の不純物による汚染がな
いし、カーボン粒子の脱落により、ルツボ内表面を荒ら
すこともない。
Furthermore, compared to arc heating, there is almost no wear and tear on the heater, so there is no contamination of the inner surface of the silica glass crucible with impurities, and the inner surface of the crucible is not roughened due to shedding of carbon particles.

第2図の21は回転駆動装置、22は回転軸、23は回
転方向の矢印、24は回転可能な囲い、25は空隙、2
6は通気性のよい中空型、27′、−粒子層、29は電
極である。
In FIG. 2, 21 is a rotary drive device, 22 is a rotating shaft, 23 is an arrow indicating the direction of rotation, 24 is a rotatable enclosure, 25 is a gap, 2
6 is a hollow mold with good air permeability, 27' is a particle layer, and 29 is an electrode.

吸気口15は囲い30に接続されており、途中に吸気ポ
ンプ12がある。そして吸気ポンプ12により、吸気口
15からN2 、 Heあるいはそれらの混合物のガス
が流入されて加圧され、排気口13より排気されるので
ある。
The intake port 15 is connected to the enclosure 30, and there is an intake pump 12 in the middle. Then, gas of N2, He, or a mixture thereof is introduced from the intake port 15 by the intake pump 12, pressurized, and exhausted from the exhaust port 13.

次に、上述した第1図の装置例を用いて第2発明の製造
方法を説明する。
Next, the manufacturing method of the second invention will be explained using the example of the apparatus shown in FIG. 1 mentioned above.

第2発明の製造方法では、回転駆動装置1を用いて中空
型6を垂直軸のまわりに矢印3の方向に回転し、中空型
6の内壁上には層として、底部にはたまるように粒子を
連続的あるいは非連続的に中空型6に添加する。つまリ
ルツボ型の粒子17を形成する。そして、粒子層7の層
厚を通して内側から外側へ加熱源8の熱をかける。
In the manufacturing method of the second invention, the hollow mold 6 is rotated around a vertical axis in the direction of the arrow 3 using the rotary drive device 1, and the particles are formed as a layer on the inner wall of the hollow mold 6 and accumulated at the bottom. is added to the hollow mold 6 continuously or discontinuously. Particles 17 in the shape of a pot are formed. Then, heat from the heating source 8 is applied from the inside to the outside through the layer thickness of the particle layer 7.

この粒子の遅くとも溶融開始より82.Heあるいはそ
れらの混合ガスの噴出口10より流入する。その後、こ
のガスの流入を止めてこのガス以外の分子半径の大きい
ガス、たとえばAr 、N2 、l’Je等を溶融が終
了するまで噴出口10より流入する。
82.8 hours at the latest from the start of melting of the particles. He or a mixed gas thereof flows in from the jet port 10. Thereafter, the inflow of this gas is stopped, and a gas other than this gas having a large molecular radius, such as Ar, N2, l'Je, etc., is allowed to flow in through the jet port 10 until melting is completed.

これにより粒子層7の一部だけ溶融し、薄い部分層を半
融焼結させ、粒子層7の残部を粒子状態のままに止らせ
る。
As a result, only a portion of the particle layer 7 is melted, the thin partial layer is semi-melted and sintered, and the remainder of the particle layer 7 remains in the particle state.

得られた石英ガラスルツボを冷却後中空型6からとり出
すのである。
The obtained quartz glass crucible is cooled and then taken out from the hollow mold 6.

実際に、口部径が356■、高さ2541111Ilの
石英ガラスルツボを製造した。溶融においては、溶融開
始5分前からHeガスを流入し、溶融開始から10分後
日eガスを止め、ただちにArガスに切り替えて流入し
た。Arガスは溶融終了まで流入し続けた。ガス圧はH
e、Arとも0 、5 ko/c m2、流ff125
Q/minである。
Actually, a quartz glass crucible with a mouth diameter of 356 cm and a height of 2541111 Il was manufactured. During melting, He gas was introduced 5 minutes before the start of melting, e gas was stopped 10 minutes after the start of melting, and Ar gas was immediately switched to Ar gas. Ar gas continued to flow until the end of melting. Gas pressure is H
Both e and Ar are 0,5 ko/c m2, flow ff125
Q/min.

できた石英ガラスルツボの見掛は気孔率は0.1%以下
であった。このルツボの減圧下でのフクレ率を測定した
。測定はルツボよりサンプリングし、圧力1 torr
、温度1600℃、保持時間3時間の熱処理を行った。
The apparent porosity of the resulting quartz glass crucible was 0.1% or less. The blistering rate of this crucible under reduced pressure was measured. Measurement was carried out by sampling from the crucible at a pressure of 1 torr.
, heat treatment was performed at a temperature of 1600° C. and a holding time of 3 hours.

この結果を表−4に示す。(各サンプル数nは5である
。)ここで比較例1は従来のアークを熱源とする方法で
製造したものである。
The results are shown in Table 4. (The number n of each sample is 5.) Comparative Example 1 was manufactured by a conventional method using an arc as a heat source.

比較例2は特公昭59−34659号公報に基づいて中
空型を使用し、減圧にしてアークを熱源として製造した
ものである。
Comparative Example 2 was manufactured based on Japanese Patent Publication No. 59-34659 using a hollow mold under reduced pressure and using an arc as a heat source.

次に、この石英ガラスルツボで実際にシリコン単結晶の
引上げを行った。Sbを高濃度にドーピングした35k
aの高純度シリコンを約imm/minの条件で結晶方
位<100)の直径5インチのシリコン単結晶に引上げ
た。
Next, silicon single crystals were actually pulled using this quartz glass crucible. 35k heavily doped with Sb
The high-purity silicon of A was pulled into a 5-inch diameter silicon single crystal with a crystal orientation <100) at a rate of about imm/min.

これらのシリコン単結晶のり、 F、  (dislo
cation free)率を調べたところ、表−5に
示すような結果となった。(各サンプル数nは5である
。) 表−5より明らかなように実施例のルツボを使用したシ
リコン単結晶は比較例のルツボを使用したものよりもり
、F、率が向上している。
These silicon single crystal glues, F, (dislo
When the cation free rate was investigated, the results were as shown in Table 5. (The number n of each sample is 5.) As is clear from Table 5, the silicon single crystal using the crucible of the example has an improved F rate than that using the crucible of the comparative example.

さらに、実施例と比較例のルツボを用い、約35kgの
高純度シリコンを溶融し、約in+m/minの条件で
結晶方位(100)の直径5インチのシリコン単結晶を
引上げた後、引上げられた重量と同量の高純度シリコン
を再投入(リチャージ)して引上げを続け、石英ガラス
ルツボの耐久試験を行った。表−6に石英ガラスルツボ
の耐用回数、耐用時間を示す。
Furthermore, using the crucibles of Examples and Comparative Examples, approximately 35 kg of high-purity silicon was melted, and a silicon single crystal with a diameter of 5 inches with crystal orientation (100) was pulled at a rate of approximately in+m/min. The quartz glass crucible was tested for durability by recharging the same amount of high-purity silicon and continuing to pull it up. Table 6 shows the service life and service life of the quartz glass crucible.

表−6より明らかなように第2発明の実施例によれば、
従来に比較してリチャージ回数が大幅に延びた。
As is clear from Table 6, according to the embodiment of the second invention,
The number of recharges has been significantly increased compared to before.

一方、第2発明による石英ガラスルツボを使用した場合
、泡がほとんどないことからSiの浸蝕による開放泡の
生成がなく、また、使用時の変形が少ないので融液面の
変動がほとんどない。
On the other hand, when the quartz glass crucible according to the second invention is used, there are almost no bubbles, so no open bubbles are generated due to Si erosion, and there is little deformation during use, so there is almost no fluctuation in the melt surface.

さらに、開放泡の生成がないので石英ガラスルツボ内表
面が滑らかであり、引上げ中に内表面へ異物及び多結晶
S1が付着して成長するのを防止することができる。
Furthermore, since no open bubbles are generated, the inner surface of the quartz glass crucible is smooth, and it is possible to prevent foreign matter and polycrystal S1 from adhering to and growing on the inner surface during pulling.

したがって、シリコン単結晶引上げ時に結晶欠陥の発生
を抑制でき、歩留りが大幅に向上した。さらに第2発明
の製造方法を第2図の装置においても実施できる。つま
り、H2゜Heあるいはそれらの混合のガスそしてこれ
らのガス以外の分子半径の大きいガスを吸気口11より
流入できるのである。
Therefore, it was possible to suppress the occurrence of crystal defects during pulling of silicon single crystals, and the yield was significantly improved. Furthermore, the manufacturing method of the second invention can also be carried out in the apparatus shown in FIG. In other words, gases such as H2°He, a mixture thereof, and gases other than these gases having a large molecular radius can be flowed in through the intake port 11.

11立i! 以上詳述したように本発明の製造方法によれば、はとん
ど気泡のないルツボが得られ、且つ粘性も高いので、シ
リコン単結晶の引上げに際し大幅に歩留りが向上する等
、顕著な効果を奏するものである。
11 standing i! As detailed above, according to the manufacturing method of the present invention, a crucible with almost no bubbles can be obtained, and the viscosity is also high, so it has remarkable effects such as greatly improving the yield when pulling silicon single crystals. It is something that plays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施するための製造装置
を示す図、第2図は別の製造装置を示す図である。 1・・・・・・回転駆動装置 2・・・・・・回転軸 4・・・・・・回転可能な囲い 5・・・・・・空隙 6・・・・・・通気性のよい中空型 7・・・・・・粒子層 8・・・・・・加熱源 9・・・・・・囲 い 10・・・噴出口 11・・・真空ポンプ 表−1 フクレ率 (%) 実施例       4.3 比較例1     21.9 比較例2     7.0 表−2 D、 F、率 (%) 実施例       79 比較例1     69 比較例2     73 表−3 耐用回数   耐用時間[h] 実施例    2,6    72.6比較例1   
1.0    30.4比較例2   2.0    
61.4表−4 フクレ率 (%) 実施例       3.6 比較例1     21.9 比較例2     7.0 表−5 D、 F、率 (%) 実施例       81 比較例1     69 比較例2     73 表−6 耐用回数 耐用時間[h] 実施例   2.8  85.2 比較例1   N、0  30.4 比較例2  2,0  61.4 第1図 第2図
FIG. 1 is a diagram showing a manufacturing apparatus for carrying out the manufacturing method of the present invention, and FIG. 2 is a diagram showing another manufacturing apparatus. 1... Rotation drive device 2... Rotating shaft 4... Rotatable enclosure 5... Gap 6... Hollow with good ventilation Mold 7...Particle layer 8...Heating source 9...Enclosure 10...Spout port 11...Vacuum pump Table-1 Blistering rate (%) Example 4.3 Comparative example 1 21.9 Comparative example 2 7.0 Table-2 D, F, rate (%) Example 79 Comparative example 1 69 Comparative example 2 73 Table-3 Number of service life Service time [h] Example 2 ,6 72.6 Comparative Example 1
1.0 30.4 Comparative Example 2 2.0
61.4 Table-4 Blistering rate (%) Example 3.6 Comparative example 1 21.9 Comparative example 2 7.0 Table-5 D, F, rate (%) Example 81 Comparative example 1 69 Comparative example 2 73 Table-6 Number of service life Service time [h] Example 2.8 85.2 Comparative example 1 N,0 30.4 Comparative example 2 2,0 61.4 Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)結晶質石英または非晶質石英ガラ スからなる微細に磨砕された粒子を、垂直軸のまわりに
回転可能なカーボン質材料からなる中空型の中に、該型
の内壁には層として、底部にはたまるように連続的に或
いは非連続的に添加し、前記層の層厚を通して内側から
外側へ熱をかけることによつてその層の一部だけを溶融
し、薄い部分層を半融焼結させ、層の残部を粒子状態の
ままに止らせ、得られた石英ガラスルツボを冷却後中空
型から取出すことからなる石英ガラスルツボの製造方法
に於いて、前記粒子の遅くとも溶融開始よりH_2、H
e或いはそれらの混合のガスを流入することを特徴とす
る石英ガラスルツボの製造方法。
(1) Finely ground particles made of crystalline quartz or amorphous quartz glass are placed in a hollow mold made of a carbonaceous material that is rotatable about a vertical axis, and are placed as a layer on the inner wall of the mold. , continuously or discontinuously so as to accumulate at the bottom, and by applying heat from the inside to the outside through the thickness of said layer, only a part of the layer is melted, and the thin partial layer is partially melted. In a method for producing a quartz glass crucible, which comprises sintering, allowing the remainder of the layer to remain in a particle state, and removing the obtained quartz glass crucible from the hollow mold after cooling, the process is performed at the latest from the start of melting of the particles. H_2, H
1. A method for producing a quartz glass crucible, which comprises introducing gases such as e.e. or a mixture thereof.
(2)結晶質石英または非晶質石英ガラ スからなる微細に磨砕された粒子を、垂直軸のまわりに
回転可能なカーボン質材料からなる中空型の中に、該型
の内壁上には層として、底部にはたまるように連続的に
或いは非連続的に添加し、前記層の層厚を通して内側か
ら外側へ熱をかけることによってその層の一部だけを溶
融し、薄い部分層を半融焼結させ、層の残部を粒子状態
のままに止らせ、得られた石英ガラスルツボを冷却後中
空型から取り出すことからなる石英ガラスルツボの製造
方法に於いて、前記粒子の遅くとも溶融開始より5分以
上H_2、Heの或いはそれらの混合のガスを流入し、
その後該ガスを止めて、該ガス以外の分子半径の大きい
ガスを溶融が終了するまで流入することを特徴とする石
英ガラスルツボの製造方法。
(2) Finely ground particles made of crystalline quartz or amorphous quartz glass are placed in a hollow mold made of a carbonaceous material that can be rotated about a vertical axis, and a layer is formed on the inner wall of the mold. It is added continuously or discontinuously so that it accumulates at the bottom, and by applying heat from the inside to the outside through the thickness of the layer, only a part of the layer is melted, and the thin partial layer is half-melted. In a method for producing a quartz glass crucible, which comprises sintering, allowing the remainder of the layer to remain in a particle state, and removing the obtained quartz glass crucible from the hollow mold after cooling, the process is performed at least 5 days after the start of melting of the particles. Injecting H_2, He, or a mixture thereof for more than a minute,
A method for manufacturing a quartz glass crucible, which comprises: thereafter stopping the gas, and flowing a gas other than the gas having a large molecular radius until melting is completed.
JP31511387A 1987-12-15 1987-12-15 Quartz glass crucible manufacturing method Expired - Fee Related JP2559604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31511387A JP2559604B2 (en) 1987-12-15 1987-12-15 Quartz glass crucible manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31511387A JP2559604B2 (en) 1987-12-15 1987-12-15 Quartz glass crucible manufacturing method

Publications (2)

Publication Number Publication Date
JPH01157427A true JPH01157427A (en) 1989-06-20
JP2559604B2 JP2559604B2 (en) 1996-12-04

Family

ID=18061574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31511387A Expired - Fee Related JP2559604B2 (en) 1987-12-15 1987-12-15 Quartz glass crucible manufacturing method

Country Status (1)

Country Link
JP (1) JP2559604B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762672A (en) * 1994-07-19 1998-06-09 Shin-Etsu Quartz Products, Ltd. Method for producing a quartz glass crucible
WO2000059837A1 (en) 1999-04-06 2000-10-12 Nanwa Quartz, Inc. Method for manufacturing quartz glass crucible
JP2001233629A (en) * 1999-04-06 2001-08-28 Nanwa Kuorutsu:Kk Method of producing quartz glass crucible
WO2001092170A1 (en) * 2000-05-31 2001-12-06 Shin-Etsu Quartz Products Co., Ltd. Method for preparing quartz glass crucible
JP2002539068A (en) * 1999-03-15 2002-11-19 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Barium doping of molten silicon used in crystal growth process
US6652934B1 (en) 1999-06-01 2003-11-25 Toshiba Ceramics Co., Ltd. Silica glass crucible and method of fabricating thereof
WO2009017068A1 (en) * 2007-07-28 2009-02-05 Japan Super Quartz Corporation Process for producing quartz glass crucible and apparatus for producing the quartz glass crucible
EP2181969A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Method of manufacturing silica glass crucible for pulling silicon single crystals
JP2012116708A (en) * 2010-12-01 2012-06-21 Japan Siper Quarts Corp Method for manufacturing granulated silica, and method for manufacturing silica glass crucible
US8272234B2 (en) 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
US9003832B2 (en) 2009-11-20 2015-04-14 Heraeus Shin-Etsu America, Inc. Method of making a silica crucible in a controlled atmosphere

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922355B2 (en) 2009-07-15 2012-04-25 信越石英株式会社 Silica container and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762672A (en) * 1994-07-19 1998-06-09 Shin-Etsu Quartz Products, Ltd. Method for producing a quartz glass crucible
JP2002539068A (en) * 1999-03-15 2002-11-19 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Barium doping of molten silicon used in crystal growth process
EP1094039A4 (en) * 1999-04-06 2009-01-28 Nanwa Quartz Inc Method for manufacturing quartz glass crucible
WO2000059837A1 (en) 1999-04-06 2000-10-12 Nanwa Quartz, Inc. Method for manufacturing quartz glass crucible
EP1094039A1 (en) * 1999-04-06 2001-04-25 Nanwa Quartz, Inc. Method for manufacturing quartz glass crucible
JP2001233629A (en) * 1999-04-06 2001-08-28 Nanwa Kuorutsu:Kk Method of producing quartz glass crucible
JP4548682B2 (en) * 1999-04-06 2010-09-22 株式会社ワコム製作所 Manufacturing method of quartz glass crucible
US6652934B1 (en) 1999-06-01 2003-11-25 Toshiba Ceramics Co., Ltd. Silica glass crucible and method of fabricating thereof
WO2001092170A1 (en) * 2000-05-31 2001-12-06 Shin-Etsu Quartz Products Co., Ltd. Method for preparing quartz glass crucible
KR100711443B1 (en) * 2000-05-31 2007-04-24 신에쯔 세끼에이 가부시키가이샤 Method for preparing quartz glass crucible
WO2009017068A1 (en) * 2007-07-28 2009-02-05 Japan Super Quartz Corporation Process for producing quartz glass crucible and apparatus for producing the quartz glass crucible
US8196429B2 (en) 2007-07-28 2012-06-12 Japan Super Quartz Corporation Method and apparatus for manufacturing vitreous silica crucible
JP5398074B2 (en) * 2007-07-28 2014-01-29 株式会社Sumco Method and apparatus for producing quartz glass crucible
EP2181969A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Method of manufacturing silica glass crucible for pulling silicon single crystals
US8272234B2 (en) 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
US9003832B2 (en) 2009-11-20 2015-04-14 Heraeus Shin-Etsu America, Inc. Method of making a silica crucible in a controlled atmosphere
JP2012116708A (en) * 2010-12-01 2012-06-21 Japan Siper Quarts Corp Method for manufacturing granulated silica, and method for manufacturing silica glass crucible

Also Published As

Publication number Publication date
JP2559604B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
JP4948504B2 (en) Silicon single crystal pulling method
US4956208A (en) Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
US5989021A (en) Quartz crucible with large diameter for pulling single crystal and method of producing the same
KR101104674B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
JPH01157427A (en) Manufacture of quartz glass crucible
KR20060115891A (en) Quartz crucibles having reduced bubble content and method of making thereof
JPH01148718A (en) Quartz crucible and its formation
US8721787B2 (en) Method for manufacturing silicon single crystal
JPH01148782A (en) Quartz crucible for pulling up single crystal
CN101133194B (en) Production technique and device for float silicon wafer
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
JP2000044386A (en) Silica glass crucible for pulling up silicon single crystal and production of the crucible
JP2005320241A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4453954B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal and quartz glass crucible produced by the production method
JP5121923B2 (en) Quartz glass crucible and manufacturing method thereof
JP2561105B2 (en) Quartz glass crucible manufacturing method
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
CN108977879A (en) A kind of monocrystalline high-purity silica pot and preparation method thereof
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
CN115821383A (en) Single crystal furnace device
JP2615292B2 (en) Method for manufacturing quartz glass crucible
JP7280160B2 (en) Silica glass crucible
CN111320393B (en) Quartz glass crucible and method for producing same
JP2631591B2 (en) Semiconductor single crystal manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371