JPH01157040A - Microfocus x-ray device - Google Patents

Microfocus x-ray device

Info

Publication number
JPH01157040A
JPH01157040A JP22295487A JP22295487A JPH01157040A JP H01157040 A JPH01157040 A JP H01157040A JP 22295487 A JP22295487 A JP 22295487A JP 22295487 A JP22295487 A JP 22295487A JP H01157040 A JPH01157040 A JP H01157040A
Authority
JP
Japan
Prior art keywords
target
ray
microfocus
target body
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22295487A
Other languages
Japanese (ja)
Other versions
JP2747693B2 (en
Inventor
Nobuo Awamura
阿波村 宣夫
Toru Okamoto
徹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP22295487A priority Critical patent/JP2747693B2/en
Publication of JPH01157040A publication Critical patent/JPH01157040A/en
Application granted granted Critical
Publication of JP2747693B2 publication Critical patent/JP2747693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To unify density distribution and reduce the effect of a density difference even if there should occur more or less dislocation of a focal point by making a target chip of a material having an absorption coefficient equal to or less than the coefficient pertaining to copper, and forming the top of the target chip into a recess type inverted conical shape. CONSTITUTION:A target 6 comprises a target chip 1 and a target body 2 and via the combination thereof, a hollow part 3 is formed within the target body 2. This target body 2 is fitted with an air vent hole 5 for the hollow part 3. Also, the target chip 1 is inverted conical type suitable for a distance between a focal point and a film 11 and furthermore so shaped as to be capable of constituting a hollow part when combined with the target body 2. Consequently, it becomes possible to obtain an X-ray of uniform intensity at all times. Also, a material having an absorption coefficient equal to or less than the coefficient of copper is used for construction. According to the aforesaid construction, an X-ray can be generated around 360 degrees in forward and aft directions.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はX線装置特に360度Xfs放射をする微小
焦点X線装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an X-ray device, and particularly to the structure of a microfocus X-ray device that emits 360-degree Xfs radiation.

〈従来の技術〉 従来の微小焦点X線装置の前方、後方ビーム用ターゲッ
トは第11図、第12図に示されるようにアルミニウム
製フラット型ターゲットまたは鋼製コニカル型ターゲッ
トであり、第11.12図に示すような使用がされてい
る。
<Prior art> The targets for the front and rear beams of the conventional microfocus X-ray apparatus are aluminum flat targets or steel conical targets as shown in FIGS. 11 and 12. It is used as shown in the figure.

しかし前方および後方、さらには円周方向において、X
線の強度に差が生じ、撮影したフィルム上の濃度に濃淡
の差が生じると℃ζう点については特別の配慮はされて
いなかった。第4図にX線の強度と、フィルム上の濃度
についての関係を示す。
However, in the front and back, as well as in the circumferential direction,
No special consideration was given to the fact that differences in the intensity of lines and differences in density on the photographed film would cause temperature fluctuations. FIG. 4 shows the relationship between the intensity of X-rays and the density on the film.

〈発明が解決しようとする問題点さ 従来技術のアルミニウム製フラット型ターゲットにおい
ては、ターゲツト材が「ムク」(無垢:単一素材よりな
る部材)のため前方ビーム(電子ビームが上方より垂直
に下方に進行しり−ゲットに衝突する点を含む水平面よ
り下側に発生したX線を言う)(第10B図参照)のX
線が極めて弱くなり前方ビームによる撮影ができなかっ
た。また鋼製コニカル型ターゲットにおいては前・後方
ビームによる撮影はできるが、焦点−フィルム間距離が
変化するため軸方向に大きな濃度差が生じること、さら
に被検体および周囲の磁場の影響によりミ子ビームが偏
向し、焦点ずれをおこした場合に透過厚みの違いにより
周方向および軸方向の濃度差が生じるという問題があっ
た。
<Problem to be solved by the invention In the conventional aluminum flat target, the target material is solid (solid material: a member made of a single material), so the forward beam (electron beam is directed vertically downward from above) (See Figure 10B)
The line became extremely weak and it was not possible to take pictures using the forward beam. In addition, with a steel conical target, it is possible to image with the front and rear beams, but because the distance between the focal point and the film changes, a large concentration difference occurs in the axial direction.Furthermore, due to the influence of the subject and the surrounding magnetic field, the miko beam There is a problem in that when the light beam is deflected and defocused, a difference in density occurs in the circumferential direction and in the axial direction due to the difference in the transmission thickness.

〈発明の目的〉 本発明の目的は上記問題点の濃度差をIJ’sさくして
、均一な濃度分布の得られるターゲット、および多少の
焦点ずれが起こってもこの濃度差の影響を少なくするよ
うなターゲットを開発しこれを取付けした微小焦点X線
装置を提供するにある。
<Objective of the Invention> The object of the present invention is to reduce the density difference of the above-mentioned problem, to provide a target with a uniform density distribution, and to reduce the influence of this density difference even if some defocus occurs. The purpose of this invention is to develop a target and provide a microfocus X-ray device equipped with this target.

く手段の概要〉 要するにこの発明は、電子ビームの衝突によi)X線を
発生するターゲットチップと、これを取付けるターゲッ
トボディな有する微小焦点X線装置において、ターゲッ
トチップの材料を銅以下の吸収係数をもつ材料とし、か
つターゲット頂部を凹形の逆コニカル型にし、これを対
称にコニカル型内面を有する中空部をターゲットボディ
側に設けた微小焦点X線装置であることを特徴とする。
Summary of Means for Producing the Means> In short, the present invention provides a microfocus X-ray device that has a target chip that generates X-rays by collision of electron beams, and a target body to which the target chip is attached. It is a microfocus X-ray device that is made of a material that has a coefficient, has a concave inverted conical top, and has a hollow part with a conical inner surface symmetrically provided on the target body side.

〈実施例1〉 実施例の説明に入るまえに微小焦点X線装置について説
明する。第9図は装置の概念を示す側面図で、電子銃1
03のフィラメント104より送出される電子はアノー
ド105に向けて加速される。この電子はアノードの窓
を通り偏向機構115により焦点を絞られターゲット1
06に当たる。その結果660°方向(パノラマ方向)
にX線が発生する。
<Example 1> Before entering into the description of the example, a microfocus X-ray apparatus will be described. Figure 9 is a side view showing the concept of the device.
Electrons sent out from the filament 104 of 03 are accelerated toward the anode 105. These electrons pass through the anode window and are focused by the deflection mechanism 115 to the target 1.
It corresponds to 06. As a result, 660° direction (panoramic direction)
X-rays are generated.

XaCビーム)は第10B図に示す如くビームに直交し
線源焦点111を含む面の図面上方を後方ビーム、下向
を前方ビームと称する。
As shown in FIG. 10B, the upper part of the plane perpendicular to the XaC beam and including the source focus 111 is called the rear beam, and the lower part is called the front beam.

第10A図は管と管板(例えば熱交換器の)の溶接部を
560°方向に一度で検査撮影するときの模式正面図で
ある。
FIG. 10A is a schematic front view when inspecting and photographing a welded portion between a tube and a tube plate (for example, of a heat exchanger) in a 560° direction at once.

第4図はX線の強度とフィルム濃度の関係を示す線図で
、X線の強度が大になるほどフィルム濃度も濃くなる。
FIG. 4 is a diagram showing the relationship between X-ray intensity and film density; the greater the X-ray intensity, the higher the film density.

しかしフィルム濃度が濃すぎると、写真観察ができない
という問題がある。
However, if the film density is too high, there is a problem that photographic observation cannot be performed.

第5図は被検査体イ(例えば管壁)と線源からの距離と
の関係を示すもので、管壁厚みが厚いほど、これを透過
したあとのX線の強度は弱くなることを模式に第5図に
符号Aで対比して示しである。符号Bは線源からの距離
の2乗で逆比例しXaの強度が弱くなることを示すもの
である。
Figure 5 shows the relationship between the object to be inspected (e.g. tube wall) and the distance from the radiation source, and shows schematically that the thicker the tube wall, the weaker the intensity of the X-rays after passing through it. This is shown in contrast with the reference numeral A in FIG. The symbol B indicates that the intensity of Xa decreases in inverse proportion to the square of the distance from the radiation source.

第11図は頂部平坦なターゲットチップを使用したとき
のフィルムに対するX線強度の変化を示すもので、後方
ビームの実施例を示すものである。第12図はリップス
ティック(口紅捧)状のターゲットのときのX線強度分
布を示すものである。
FIG. 11 shows the change in X-ray intensity for a film when using a flat-topped target tip, and shows an example of a rear beam. FIG. 12 shows the X-ray intensity distribution for a lipstick-shaped target.

前記のことからフィルム116に投射されるX線がほぼ
同一の強度となり検出部が濃度差をもって示される影像
フィルムが得られるようにするターゲットの使用が必要
である。
The foregoing requires the use of a target such that the X-rays projected onto the film 116 are of approximately the same intensity, resulting in an image film in which the detection areas are shown with different densities.

第1図、第2図は本発明の一実施例を示すもので第1図
に本発明の実施にかかる逆コニカル中空型ターゲットの
正面図、第2図に側面図を示す。
FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a front view of an inverted conical hollow target according to the present invention, and FIG. 2 is a side view thereof.

第2図に示すように本ターゲットは、電子ビームの当た
るターゲットチップと、それを微小焦点X線装置に固定
するターゲットボディから成り立っており、これらをネ
ジ込み構造にて組合わせることにより、ターゲットボデ
ィ内部に空間たる中空部3を持ったターゲットに構成で
きる。
As shown in Figure 2, this target consists of a target chip that is hit by an electron beam, and a target body that fixes it to a microfocus X-ray device.By combining these with a screw-in structure, the target body It can be configured as a target having a hollow part 3 which is a space inside.

ターゲットボディには中空部3の空気抜き孔5がもうけ
てあシまた、ターゲットチップは焦点−フィルム間の距
離に応じた逆コニカル型(先端凹型)で、さらにターゲ
ットボディと組合わせたとき中空が構成できるような扉
状となっている。材料としては銅塊下の吸収係数をもつ
材料を使用する。
The target body has an air vent hole 5 in the hollow part 3, and the target chip is an inverted conical type (concave tip) depending on the distance between the focal point and the film, and when combined with the target body, the hollow part is formed. It has a door shape that allows you to use it. A material with an absorption coefficient below that of the copper ingot is used as the material.

第3図に逆コニカル中空型ターゲットチップによる作用
につき考察してみる。
The effect of an inverted conical hollow target tip will be considered in Fig. 3.

X線の強度については下記の通りである。The intensity of X-rays is as follows.

(1)−殻内にX線の発生する割合はOBの方向が一番
強く、OA側に向うにつれ、だんだん弱くなる。
(1) - The rate of generation of X-rays inside the shell is strongest in the OB direction, and gradually becomes weaker toward the OA side.

(2)X線の強度は線源−フィルム間距離の2乗に逆比
例するためOBが一番強く、OA側に向うにつれ距離の
2乗に逆比例して弱くなる。
(2) Since the intensity of X-rays is inversely proportional to the square of the distance between the source and the film, it is strongest at the OB and becomes weaker as it moves toward the OA side in inverse proportion to the square of the distance.

(3)X線がターゲット内を通過する厚みを変えること
により(上図α、b、c)X線の強度を変え、上記(1
) 、 (2)と合わせ、バランスがとられ最終的にX
線の強度分布に大きな差がなくなる。
(3) By changing the thickness through which the X-rays pass through the target (α, b, c in the figure above), the intensity of the X-rays can be changed (1).
) and (2), the balance is achieved and finally X
There is no large difference in the intensity distribution of the lines.

(4)焦点位置が多少ずれても(上右図の1寸法)(第
15図)形状効果によりX線の強度差は少ない。
(4) Even if the focal point position is slightly shifted (one dimension in the upper right figure) (Fig. 15), the difference in X-ray intensity is small due to the shape effect.

と言った種々の利点がある。There are various advantages such as:

〈実施例2〉 て改良をはかったものである。<Example 2> This is an improvement that has been made.

〈実施例3〉 第7図はマスク型ターゲットを示しておシ第6図と同様
の効果をねらったものである。これらはいずれも焦点と
被検体までの距離に応じたX線の透過厚みを変え、さら
に電子ビームの当たる範囲を広くとることにより達成さ
れるものである。
<Embodiment 3> FIG. 7 shows a mask-type target and aims to achieve the same effect as in FIG. 6. All of these are achieved by changing the thickness of X-ray transmission depending on the distance between the focal point and the subject, and by widening the range that the electron beam hits.

〈実施例4〉 第8A図は版型ターゲットを示しており、ターゲットを
板にすることにより360°(球面状)のX線照射を可
能にしたもので、電子ビームの当たる範囲を広くとるこ
とにより、焦点ずれの影響を少なくしている。第8B、
図はその斜視図で円板9の支柱は1〜4本等複数本を使
用することができる。
〈Example 4〉 Figure 8A shows a plate-type target, which enables 360° (spherical) X-ray irradiation by making the target a plate, so that the range hit by the electron beam is wide. This reduces the effects of defocus. 8th B,
The figure is a perspective view, and a plurality of pillars, such as 1 to 4 pillars, can be used for the disc 9.

く作  用〉 本発明のターゲットは電子ビームを衝突させ、材質に銅
塊下のX線吸収係数をもつものを用いることにより、前
方および後方に360’の方向でX線を発生させ、さら
にターゲットチップの形状を焦点−フィルム間の距離に
応じXiの透過厚みを変えた逆コニカル型(凹型)およ
び中空にすることにより、均一な強さのX線が得られる
ようにする働きを有する(第3図、第14図参照)。ま
たターゲットボディの空気抜き孔5は、X線照射による
ターゲットの加熱変形を防ぐために゛中空部3に設けた
ものである。
Effect> The target of the present invention collides with an electron beam, and by using a material with an X-ray absorption coefficient as low as that of a copper ingot, X-rays are generated in a 360' direction in front and behind the target. The shape of the chip is inverted conical (concave) in which the thickness of the Xi transmitted through the film is changed depending on the distance between the focal point and the film, and by making it hollow, it has the function of obtaining X-rays of uniform intensity. (See Figures 3 and 14). Further, the air vent hole 5 in the target body is provided in the hollow portion 3 in order to prevent the target from being heated and deformed by X-ray irradiation.

〈発明の効果〉 本発明を実施することにより焦点、フィルム間の距離に
応じたターゲットの先端形状と中空形状により1回の撮
影で前方および後方ビームによる軸方向の広範囲で、か
つ均一なフィルムの濃度分布が得られ、さらに電子ビー
ムがターゲットのセンターに当らず、焦点ずれなおこし
た場合でも(第15図参照)、周方向にあまシ濃度差の
ない写真が得られるので、X線写真の像質の向上がはか
られる。
<Effects of the Invention> By implementing the present invention, the front and rear beams can uniformly cover a wide range of film in the axial direction in one shooting by using the shape of the tip of the target and the hollow shape according to the distance between the focal point and the film. The density distribution can be obtained, and even if the electron beam does not hit the center of the target and is out of focus (see Figure 15), a photograph with no density difference in the circumferential direction can be obtained, so the image of the X-ray photograph can be Quality will be improved.

この効果をX線強度分布で表わしたものが第14図であ
り、従来型ターゲットの強度分布を示す第16図と対比
するとき、その効果あることが容易に判る。
FIG. 14 shows this effect as an X-ray intensity distribution, and when compared with FIG. 16, which shows the intensity distribution of a conventional target, it is easy to see that this effect exists.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の第1実施例にかかるターゲットの平
面図、第2図は正面図、第3図はターゲットチップ部の
逆コニカル型の効果の説明図、第4図はX線の強度とフ
ィルム濃度の関係線図、第5図は被検査体の厚みの影響
とX線源からの距離の関係によるX線強度を矢印の大き
さで示す模式の説明図、第6図は本願発明の第2実施例
のターゲットの部分断面図、第7図は第3実施例のター
ゲットの部分断面図、第8A図は第3実施例のターゲッ
トの部分断面図、第8B図は第8A図の斜視図、第′9
図は微小焦点X線装置の模式縦断面図、第10A図は管
と管板の溶接部のX線写真用に実施している状況を示す
部分断面図、第10B図は前方ビームと後方ビームの説
明図、第11図は従来の装置での後方ビームとX線強度
の説明図、第12図は従来の装置での前後ビーム実施例
を示す図面、第13図は従来型ター、ゲントとX線の強
度分布図、第14図は本願発明の第1実施例についての
X線強度分布図、第15図(A)は従来型ターゲットの
ビームずれによる影響と、第1実施例の(B)図とを対
比する図面である。 1−・・ターゲットチップ 2・・・ターゲットボディ
6・・・中空部     4・・・ねじ部5・・・空気
抜き孔 7・・・第6実施例のターゲットチップ8・・・第4実
施例のターゲットチップ9・・・円 板     10
・・・支 柱11・・・フィルム 第4図 ]↓ムI浸     0 第5図 第1図 第3図 II/4ルム入 平成 @# 1年2月6日
Fig. 1 is a plan view of a target according to the first embodiment of the present invention, Fig. 2 is a front view, Fig. 3 is an explanatory diagram of the effect of the inverted conical type of the target tip, and Fig. 4 is the intensity of X-rays. Figure 5 is a diagram showing the relationship between the thickness of the object to be inspected and the distance from the X-ray source, and the X-ray intensity is indicated by the size of the arrow. 7 is a partial sectional view of the target of the third embodiment, FIG. 8A is a partial sectional view of the target of the third embodiment, and FIG. 8B is a partial sectional view of the target of the third embodiment. Perspective view, No. 9
The figure is a schematic vertical cross-sectional view of a microfocus X-ray device, Figure 10A is a partial cross-sectional view showing the situation in which it is used to take an X-ray photograph of a weld between a tube and a tube plate, and Figure 10B is a front beam and a rear beam. Fig. 11 is an explanatory drawing of the rear beam and X-ray intensity in the conventional device, Fig. 12 is a drawing showing an example of the front and rear beams in the conventional device, and Fig. 13 is the conventional FIG. 14 is an X-ray intensity distribution diagram for the first embodiment of the present invention, and FIG. 15 (A) shows the influence of beam deviation of the conventional target and (B ) is a drawing for comparison with the figure. 1- Target chip 2 Target body 6 Hollow part 4 Threaded part 5 Air vent hole 7 Target chip 8 of the sixth embodiment... Fourth embodiment Target chip 9...Circle plate 10
・・・Support 11...Film Figure 4] ↓Mu I 0 Figure 5 Figure 1 Figure 3 II/4 Lum entry Heisei @ # 1 February 6

Claims (1)

【特許請求の範囲】 1、電子ビームの衝突によりX線を発生するターゲット
チップと、これを取付けるターゲットボディを有する微
小焦点X線装置において、ターゲットチップの材料を銅
以下の吸収係数をもつ材料とし、かつターゲット頂部を
凹形の逆コニカル型にし、これと対称にコニカル型内面
を有する中空部をターゲットボディ側に設けたことを特
徴とする微小焦点X線装置。 2、ターゲット頂部凹所を皿形に形成したことを特徴と
する特許請求の範囲第1項記載の微小焦点X線装置。 3、ターゲット円板をターゲットボディより展出する一
以上の腕で保持した構造を特徴とする特許請求の範囲第
1項記載の微小焦点X線装置
[Claims] 1. In a microfocus X-ray device having a target chip that generates X-rays by collision with an electron beam and a target body to which the target body is attached, the material of the target chip is a material having an absorption coefficient of copper or less. , and a microfocus X-ray apparatus characterized in that the top of the target is a concave inverted conical shape, and a hollow part having a conical inner surface is provided on the target body side in symmetry with this. 2. The microfocus X-ray apparatus according to claim 1, wherein the recess at the top of the target is formed into a dish shape. 3. The microfocus X-ray device according to claim 1, characterized by a structure in which the target disk is held by one or more arms extending from the target body.
JP22295487A 1987-09-08 1987-09-08 Micro focus X-ray equipment Expired - Lifetime JP2747693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22295487A JP2747693B2 (en) 1987-09-08 1987-09-08 Micro focus X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22295487A JP2747693B2 (en) 1987-09-08 1987-09-08 Micro focus X-ray equipment

Publications (2)

Publication Number Publication Date
JPH01157040A true JPH01157040A (en) 1989-06-20
JP2747693B2 JP2747693B2 (en) 1998-05-06

Family

ID=16790481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22295487A Expired - Lifetime JP2747693B2 (en) 1987-09-08 1987-09-08 Micro focus X-ray equipment

Country Status (1)

Country Link
JP (1) JP2747693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533015A (en) * 2012-09-21 2015-11-16 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Device with anode for generating X-ray radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533015A (en) * 2012-09-21 2015-11-16 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Device with anode for generating X-ray radiation

Also Published As

Publication number Publication date
JP2747693B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US5629969A (en) X-ray imaging system
US4675890A (en) X-ray tube for producing a high-efficiency beam and especially a pencil beam
US4983832A (en) Scanning electron microscope
US4827494A (en) X-ray apparatus
JPH07296751A (en) X-ray tube device
JPS60157147A (en) Optical control x-ray scanner
CN100353483C (en) X-ray tube with ring anode and its application
TW200411322A (en) A nonplanar x-ray target anode for use in a laminography imaging system
CN105807551A (en) X-ray pinhole camera for intense laser light condition and installation and adjustment method
US3439114A (en) Fluoroscopic television and cinecamera system
JPH01157040A (en) Microfocus x-ray device
US7173999B2 (en) X-ray microscope having an X-ray source for soft X-ray
US6163593A (en) Shaped target for mammography
Glendinning et al. Hohlraum symmetry measurements with surrogate solid targets
JP4091217B2 (en) X-ray tube
JPS61140042A (en) Reflecting type x-ray generating tube
US4109151A (en) Dual filament x-ray tube used in production of fluoroscopic images
GB865050A (en) Improvements in or relating to x-ray shadow microscopes with adjustable optical focussing
JPH01204649A (en) X-ray photographing device
JPH03274500A (en) X-ray source
JP4260993B2 (en) X-ray tube
JPS58658B2 (en) Ink Yokusen Kansouchi
US4266248A (en) Device having a camera tube
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPH03194834A (en) X-ray tube