JPH0115565B2 - - Google Patents

Info

Publication number
JPH0115565B2
JPH0115565B2 JP57069538A JP6953882A JPH0115565B2 JP H0115565 B2 JPH0115565 B2 JP H0115565B2 JP 57069538 A JP57069538 A JP 57069538A JP 6953882 A JP6953882 A JP 6953882A JP H0115565 B2 JPH0115565 B2 JP H0115565B2
Authority
JP
Japan
Prior art keywords
tempering
zone
temperature
low
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57069538A
Other languages
Japanese (ja)
Other versions
JPS58189325A (en
Inventor
Kimiharu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP57069538A priority Critical patent/JPS58189325A/en
Publication of JPS58189325A publication Critical patent/JPS58189325A/en
Publication of JPH0115565B2 publication Critical patent/JPH0115565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は長手方向に対して断面積を異にする部
分を有する異型材を焼入れゾーンと焼戻しゾーン
を含む搬送ライン上に連続して送り込み、上記焼
入れゾーンにおいて長手方向にそう所定面に表面
焼入れを施した異型材を焼戻しゾーンで低周波誘
導加熱して焼戻しする場合の焼戻し方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves continuously feeding a deformed material having portions with different cross-sectional areas in the longitudinal direction onto a conveying line including a quenching zone and a tempering zone. The present invention relates to a tempering method for tempering a deformed material whose predetermined surfaces have been surface hardened by low-frequency induction heating in a tempering zone.

部材の所定面に表面焼入れを施したときには、
当該表面焼入れ部に焼戻し処理を施さなければな
らないが、部材が大量生産品である場合には、部
材を焼入れゾーンと焼戻しゾーンを含む搬送ライ
ン上に連続して送り込み、上記搬送ラインにおい
て焼入れおよび焼戻しを連続的に施す方法が採ら
れている。この場合の焼戻し処理は、熱処理ライ
ンにトンネル状の電気炉を設け、通常の電気炉内
に定置して30分以上もかゝる焼戻し処理効果と同
様の効果をあげようとすれば、熱処理ラインが長
くなり、かつ長時間かゝるため、部材が極めて短
い搬送距離を搬送される間に所定焼戻し温度に昇
温加熱されて焼戻しを施すことが可能な低周波誘
導加熱を用いることが推賞されている。
When surface hardening is applied to a specified surface of a member,
Tempering must be applied to the surface-hardened part, but if the part is a mass-produced product, the part must be continuously fed onto a conveyor line that includes a hardening zone and a tempering zone, and then hardened and tempered on the conveyor line. A method of continuously applying is adopted. In this case, a tunnel-shaped electric furnace is installed in the heat treatment line, and if you want to achieve the same effect as the tempering treatment that takes more than 30 minutes by placing it in a normal electric furnace, it is necessary to install a tunnel-shaped electric furnace on the heat treatment line. Since the process becomes long and takes a long time, it is recommended to use low-frequency induction heating, which can heat and temper the part to a predetermined tempering temperature while the part is transported over an extremely short distance. ing.

この種の熱処理ラインを第1図aに従つて説明
する。
This type of heat treatment line will be explained with reference to FIG. 1a.

図において1は搬送装置であつて、例えば所定
間隔をへだてて配置され、同一方向に回動するス
プロケツト11および11と、当該両スプロケツ
ト11,11間に展張されたエンドレスなチエー
ンベルト12とからなつている。上記チエーンベ
ルト12は、すくなくともその往路が走行方向前
方で焼入れゾーンQZを、後方で焼戻しゾーンTZ
を通過する如く展張されている。例えばA′面に
表面焼入れ層を形成しようとすする被処理材
W′は上記チエーンベルト12の往路の走行開始
端側上面に上記A′面を上方として連続的に供給
載置され、前方の被処理材W′と後方の被処理材
W′とはそれぞれ後端と前端を相接しつつチエー
ンベルト12上を搬送され、搬送途上まず焼入れ
ゾーンQZにおいて、例えば高周波電源EHに接続
する端面加熱型加熱コイルC1でA′面を所定焼入
れ温度にまで誘導加熱されたのち、焼入液供給源
Pに接続する冷却装置3からの上記A′面への焼
入液の噴射を受けてA′面に焼入層を形成され、
ついで焼戻しゾーンTZに至り、低周波電源ELに
接続された多数巻回の誘導加熱コイルC2内に搬
入され、当該誘導加熱コイルC2内を通過する間
に所定焼戻し温度にまで昇温され、或いは昇温後
当該温度を短時間保持されて焼戻し処理が施さ
れ、上記チエーンベルト12の往路終端で熱処理
ラインから排出されるようになつている。尚4は
焼戻し用の誘導加熱コイルC2の外周を被覆する
コイル内保温用の断熱材製外殻である。
In the figure, reference numeral 1 denotes a conveying device, which consists of, for example, sprockets 11 and 11 that are arranged at a predetermined distance and rotate in the same direction, and an endless chain belt 12 stretched between the two sprockets 11 and 11. ing. The chain belt 12 has at least a quenching zone QZ at the front in the running direction and a tempering zone TZ at the rear.
It is extended as if passing through. For example, a material to be treated where a surface hardening layer is to be formed on the A′ side.
W' is continuously supplied and placed on the upper surface of the outbound traveling start end side of the chain belt 12 with the A' side facing upward, and the front workpiece W' and the rear workpiece
W' is transported on the chain belt 12 with its rear end and front end touching each other, and during transport, first in the quenching zone QZ, the A' side is fixed by a heating coil C 1 of the end-face heating type connected to the high frequency power source EH. After being induction heated to the quenching temperature, a quenching layer is formed on the A' side by spraying the quenching liquid onto the A' side from the cooling device 3 connected to the quenching liquid supply source P,
Next, it reaches the tempering zone TZ, is carried into a multi-turn induction heating coil C2 connected to a low frequency power source EL, and is heated to a predetermined tempering temperature while passing through the induction heating coil C2 , Alternatively, after the temperature is raised, the temperature is maintained for a short period of time to perform a tempering treatment, and the material is discharged from the heat treatment line at the end of the forward path of the chain belt 12. Reference numeral 4 denotes an outer shell made of a heat insulating material for insulating the inside of the coil and covering the outer periphery of the induction heating coil C 2 for tempering.

ところで、上記熱処理装置は、第1図bに示す
形状からなる被処理材W′のA′面を焼入れ・焼戻
しする場合、A′面には均一な被焼入れ硬化層の
形成が可能であるが、例えば第1図cに示すよう
な長手方向に対して断面積を異にする部分を有す
る異型材のA面を焼入れ・焼戻しした場合には、
当該処理済のA面においてAa面部がAb面部に比
し高硬度な焼入れ硬化層となつて、A面全面に均
一な焼入れ硬化層の形成が極めて困難であつた。
By the way, when the above-mentioned heat treatment apparatus hardens and tempers the A' side of the workpiece W' having the shape shown in FIG. 1b, it is possible to form a uniform hardened layer on the A' side. For example, when side A of a deformed material having portions with different cross-sectional areas in the longitudinal direction as shown in Fig. 1c is quenched and tempered,
In the treated A-side, the Aa side part became a quench-hardened layer that was harder than the Ab-side part, and it was extremely difficult to form a uniform quench-hardened layer over the entire A-side.

本発明者は上記熱処理ラインで異型材Wを熱処
理する場合に存する上述の欠点を解決し、被焼入
面に均質な焼入層を形成可能な異型材の連続誘導
焼戻し方法を提供するものである。
The present inventor solves the above-mentioned drawbacks that exist when heat treating a profiled material W in the heat treatment line, and provides a continuous induction tempering method for a profiled material that can form a homogeneous hardened layer on the surface to be hardened. be.

本発明者は本発明をなすにあたり、上記熱処理
ラインの焼入れゾーンQZで焼入された焼戻し前
の異型材のA面の硬さは、高周波表面加熱と急冷
で形成されたものであり、かつ誘導加熱コイル
C1はA面を均一に加熱出来るように工夫されて
いるものであるため、全表面にわたつてほぼ均一
な硬さに仕上つていることを確性試験によつて予
め確認し、それ故上記問題点の発生原因は焼戻し
ゾーンTZにおける焼戻し処理にあるものと判断
し、以下に示す温度測定実験を行つた。
In making the present invention, the present inventor has determined that the hardness of the surface A of the deformed material before tempering, which has been quenched in the quenching zone QZ of the heat treatment line, is that formed by high-frequency surface heating and rapid cooling, and that heating coil
Since C 1 is designed to heat the A side uniformly, it was confirmed in advance that the hardness was almost uniform over the entire surface, and therefore the above problem could not be solved. It was determined that the cause of the dots was due to the tempering process in the tempering zone TZ, and the following temperature measurement experiment was conducted.

温度測定実験 イ 供試体;第2図aに示されるブルドーザの履
帯用リンク l…197mm h…75mm w1…15mm w2…30mm ロ 実験方法;第1図aに示す熱処理ライン上の
焼戻し用低周波誘導加熱コイルC2の入側直前
R点に位置する焼入れ済供試体W1と、出側直
後S点に位置する焼入れ・焼戻し済供試体W2
とをそれぞれライン上から採取し、被焼入面A
における第2図aに点線で表示する長手方向に
ほぼ沿つた線上の多数点を温度指示計を用いて
測温した。
Temperature measurement experiment (a) Specimen: Track link of bulldozer shown in Figure 2a l…197mm h…75mm w 1 …15mm w 2 …30mm (b) Experimental method: Tempering tube on the heat treatment line shown in Figure 1a Hardened specimen W 1 located at point R immediately before the entry side of frequency induction heating coil C 2 , and hardened and tempered specimen W 2 located at point S immediately before the exit side of frequency induction heating coil C 2 .
and were taken from the line respectively, and the surface to be hardened A
The temperature was measured using a temperature indicator at multiple points on a line substantially along the longitudinal direction indicated by dotted lines in FIG. 2a.

ハ 実験結果;上記測温値を、縦軸に温度をとり
横軸に長手方向測定点をとつた図表上にプロツ
トして第2図bに供試体W1の、また第2図c
に供試体W2の温度特性曲線を得た。
C. Experimental results: The above temperature measurement values are plotted on a chart with temperature on the vertical axis and longitudinal measurement points on the horizontal axis, and the results are shown in Figure 2b for specimen W1 and Figure 2c.
The temperature characteristic curve of specimen W2 was obtained.

上記温度測定実験結果について、本発明者は、
焼戻し前の供試体W1には焼入れゾーンQZにおけ
る加熱後の急冷によつて表層の焼入れは十分施さ
れているものの、熱容量が大きくかつ放冷による
自己冷却現象をも含めて冷却速度の遅い大質量部
の表面Abが、熱容量が小さくかつ放冷による自
己冷却が顕著であるとともに深部方向まで急冷効
果が及びやすい小質量部の表面Aaより焼入れ時
の残熱で大であるので、温度特性曲線が第2図b
に示す如く、Aa面とAb面とではほぼ80℃の温度
差を生じるものと考察し、この残熱が焼戻しゾー
ンTZにおける誘導加熱コイルC2の低周波による
全断面加熱に加重され、供試体W1にみられるほ
どの温度差とはならないものの、相当大きな50℃
もの温度差がある第2図cに示す供試体W2の温
度特性曲線として観察され、この結果が焼戻し済
の異型材WのAa面は高硬度・Ab面は低硬度に焼
戻され、不均一な焼入れ層となるものと判断し
た。
Regarding the above temperature measurement experiment results, the present inventors:
Although the surface layer of specimen W1 before tempering has been sufficiently hardened by rapid cooling after heating in the quenching zone QZ, it has a large heat capacity and a slow cooling rate due to the self-cooling phenomenon caused by air cooling. The temperature characteristic curve is Fig. 2b
As shown in Figure 2, it is considered that a temperature difference of approximately 80°C occurs between the Aa surface and the Ab surface, and this residual heat is added to the entire cross-sectional heating by the low frequency of the induction heating coil C2 in the tempering zone TZ, and the specimen Although the temperature difference is not as large as that seen in W 1 , it is quite large at 50℃.
This result is observed as the temperature characteristic curve of specimen W 2 shown in Figure 2 c, where there is a temperature difference between It was determined that this resulted in a uniform hardened layer.

本発明者は、上記実験結果からもたらされた考
案と判断にもとづき、以下に述べる発明を行つ
た。
The present inventor made the invention described below based on the ideas and judgments derived from the above experimental results.

本発明の要旨は、長手方向に対して断面積を異
にする部分を有する異型材を焼入れゾーンと焼戻
しゾーンを含む搬送ライン上に連続して送り込
み、上記焼入れゾーンにおいて長手方向にそう所
定面に表面焼入れを施した異型材を焼戻しゾーン
において低周波誘導加熱して焼戻しする場合にお
いて、所定の焼戻しを施すに必要な長さの加熱コ
イルを複数分割して搬送ライン上に所定間隔をへ
だてて配置し、搬送ラインの前方の低周波加熱コ
イルを通過した異型材が、当該異型材の大断面積
部分の焼入れ表面のみに噴霧またはエアあるいは
ガスによる強制冷却を所定時間施されたのち、後
方の低周波加熱コイルに搬入されるようにしたこ
とを特徴とする異型材の連続熱処理ラインでの誘
導焼戻し方法にある。
The gist of the present invention is to continuously feed a deformed material having portions with different cross-sectional areas in the longitudinal direction onto a conveying line including a hardening zone and a tempering zone, and to When surface-hardened irregular shaped materials are tempered by low-frequency induction heating in the tempering zone, heating coils of the length necessary to perform the specified tempering are divided into multiple parts and placed at specified intervals on the conveyance line. After passing through the low-frequency heating coil at the front of the conveyor line, only the hardened surface of the large cross-sectional area of the shaped material is forcedly cooled by spraying or air or gas for a predetermined period of time, and then A method for induction tempering of irregular shaped materials in a continuous heat treatment line, characterized in that the materials are introduced into a frequency heating coil.

本発明を第3図aに示す一実施例に従つて説明
する。第3図aは熱処理ラインにける焼戻しゾー
ンTZのみの部分正面図であつて、低周波電源EL
に接続する誘導加熱コイルはC2-aおよびC2-bに分
割され所定間隔をへだてて搬送ラインにそつて配
置される。加熱コイルC2-aおよびC2-bは両者の長
さおよび巻回数を合せて異型材Wの全断面を所定
焼戻し温度に昇温可能または昇温後所定時間保持
可能に設定される。上記加熱コイルC2-aとC2-b
が所定間隔をへだてて配置された搬送ラインの中
間には流体噴射ノズル5が、搬送ライン上を搬送
されてくる異型材Wの被焼入面Aにその孔口を対
向させて配置される。当該流体噴射ノズル5は電
磁弁V1を介して例えば冷却水供給源P1および加
圧エア供給源P2にそれぞれ接続するパイプp1とp2
とが合一したパイプp3に連通されている。パイプ
p1およびp2はともに可変絞り弁によつてその流量
調節が可能であり、またパイプp2には電磁弁V2
が介挿されている。電磁弁V1およびV2は、チエ
ーンベルト12上を連続的に搬送されている異型
材WそれぞれのAb面が上記流体噴射ノズル5の
直下に到来ごとにこれを公知検知手段により検知
し、この検知信号を受けて動作信号を出力し、か
つ搬送装置1の搬送速度に応じて定まる所定時間
(例えば1〜5sec)その出力を維持するタイマー
Tによつて開閉されるように構成されている。従
つて流体噴射ノズル5からはタイマーTの出力に
応じてそれぞれ流量が調節された冷却水とエアと
の混合体即ち霧を噴出可能である。
The present invention will be explained according to an embodiment shown in FIG. 3a. Figure 3a is a partial front view of only the tempering zone TZ in the heat treatment line, and is a partial front view of only the tempering zone TZ in the heat treatment line.
The induction heating coil connected to C 2-a and C 2-b are divided into C 2-a and C 2-b and arranged along the conveyance line with a predetermined interval apart. The heating coils C 2-a and C 2-b are set to be able to heat the entire cross section of the profiled material W to a predetermined tempering temperature or to maintain the temperature for a predetermined time after raising the temperature by matching the length and the number of windings. In the middle of the conveyance line in which the heating coils C 2-a and C 2-b are arranged at a predetermined interval, a fluid jet nozzle 5 is installed on the surface to be hardened of the irregular shaped material W being conveyed on the conveyance line. It is placed with its hole facing A. The fluid injection nozzle 5 is connected via a solenoid valve V 1 to, for example, a cooling water supply source P 1 and a pressurized air supply source P 2 , respectively, through pipes p 1 and p 2 .
and are connected to pipe p3 where they are merged. pipe
The flow rates of both p 1 and p 2 can be adjusted using variable throttle valves, and a solenoid valve V 2 is connected to pipe p 2 .
is inserted. The electromagnetic valves V 1 and V 2 use known detection means to detect each Ab surface of each irregularly shaped material W being continuously conveyed on the chain belt 12 when it arrives directly below the fluid injection nozzle 5. It is configured to be opened and closed by a timer T which outputs an operation signal in response to a detection signal and maintains the output for a predetermined period of time (for example, 1 to 5 seconds) determined according to the transport speed of the transport device 1. Therefore, the fluid injection nozzle 5 can eject a mixture of cooling water and air, that is, a mist, the flow rate of which is adjusted according to the output of the timer T.

以上の構成からなる焼戻しゾーンTZを用いて
熱処理ラインで異型体Wを熱処理する際の焼戻し
について説明する。
Tempering when heat-treating the deformed body W in the heat treatment line using the tempering zone TZ having the above configuration will be explained.

焼入れゾーンQZを通過してA面を均一に焼入
れされた異型材Wは焼戻しゾーンTZにおける搬
送ライン前方の低周波誘導加熱コイルC2-aに至
り、当該加熱コイルC2-aを通過する間に全断面に
わたり昇温加熱され、これがため、焼入れ時の残
熱が大きいAb面は所定の焼戻し温度近くまで昇
温する。ついで異型材Wは流体噴霧ノズル5の直
上を順次通過するが、当該流体噴霧ノズル5から
は上記Ab面が到来すると噴霧が開始され、かつ
Ab面が通過するまでこれが継続される。このた
め、所定の焼戻し温度近くまで昇温したAb面は
急激に温度が低下し、Aa面の温度以下の温度と
なる。また当該Ab面に噴射された霧は沸点以上
のAb面に触れるので直ちに蒸発してしまい、Aa
面や他の側面に水となつて流出することはない。
異型材Wはさらにチエーンベルト12の走行に従
つて搬送ライン後方の低周波誘導加熱コイルC2-b
内に送られる。当該加熱コイルC2-bを通過する間
に異型材Wは再び全断面にわわたり加熱され、焼
入れされたA面におけるAa面の昇温はほぼ所定
焼戻し温度にまで達し、また噴霧により温度低下
を来たしたAb面は熱容量の大きい深部方向から
の熱伝導と誘導発熱とによつてほぼ所定の焼戻し
温度に達する。かくして異型材Wの焼入れ面Aは
Aa面もAb面もともに所定の焼戻し温度まで昇温
し、この状態で焼戻しゾーンTZから搬出され、
チエーンベルト12の往路末端か排出される。
The irregular shaped material W, which has passed through the quenching zone QZ and whose A side has been uniformly quenched, reaches the low-frequency induction heating coil C 2-a in front of the conveyor line in the tempering zone TZ, and while passing through the heating coil C 2-a. As a result, the temperature of the Ab surface, which has a large residual heat during quenching, is raised to near the predetermined tempering temperature. Next, the irregularly shaped material W sequentially passes directly above the fluid spray nozzle 5, which starts spraying when the Ab surface arrives, and
This continues until the Ab plane passes. Therefore, the temperature of the Ab surface, which has been heated to near the predetermined tempering temperature, rapidly decreases to a temperature lower than that of the Aa surface. In addition, the mist sprayed onto the Ab surface will immediately evaporate as it comes into contact with the Ab surface, which has a temperature above the boiling point.
It will not run off as water onto surfaces or other sides.
As the chain belt 12 travels, the irregularly shaped material W is further moved to the low frequency induction heating coil C 2-b at the rear of the conveyor line.
sent within. While passing through the heating coil C 2-b , the deformed material W is heated again over its entire cross section, and the temperature of the Aa side of the quenched A side reaches almost the predetermined tempering temperature, and the temperature is lowered by spraying. The Ab surface, which has undergone this process, reaches approximately the predetermined tempering temperature by heat conduction from the deep part, which has a large heat capacity, and by induction heat generation. Thus, the hardened surface A of the irregularly shaped material W is
Both the Aa side and the Ab side are heated to the predetermined tempering temperature, and in this state are carried out from the tempering zone TZ.
The end of the chain belt 12 is discharged.

第3図bは本発明を実施した焼戻しゾーンTZ
における加熱コイルC2-b出側直後、即ち第1図a
におけるS点の異型材Wについて前記温度測定実
験と同様にして得た測定値にもとづいて作成した
温度特性曲線図である。当該温度特性曲線図から
本発明方法が均熱焼戻しの目的を十分達成してい
ることが確認された。
Figure 3b shows the tempering zone TZ where the present invention was implemented.
Immediately after the exit side of the heating coil C 2-b in Figure 1a
It is a temperature characteristic curve diagram created based on the measured values obtained in the same manner as the temperature measurement experiment described above for the irregularly shaped material W at point S in FIG. From the temperature characteristic curve diagram, it was confirmed that the method of the present invention sufficiently achieved the purpose of soaking tempering.

上記実施例では焼戻し用誘導加熱コイルを2分
割しているが、必要に応じて3分割または4分割
したうえ、それぞれ分割したコイル間に噴霧装置
を設けてもよい。また分割する加熱コイルは焼入
れ時の残熱の差、異型材の形状または焼戻し温度
での保持時間その他の条件に応じて、コイル長
さ、巻回数、巻回ピツチをそれぞれに定めればよ
い。
In the above embodiment, the induction heating coil for tempering is divided into two parts, but if necessary, it may be divided into three or four parts, and a spray device may be provided between each of the divided coils. The length, number of windings, and winding pitch of the divided heating coils may be determined depending on the difference in residual heat during quenching, the shape of the profiled material, the holding time at the tempering temperature, and other conditions.

上記実施例では流体噴射ノズル5からの噴射流
体を霧としているが、加熱温度差や異型材の形状
その他の条件に応じてエアの噴射で十分の効果を
あげることも可能であり、逆にドライアイス等か
ら気化する炭酸ガスを噴射して冷却効果を強める
ようにして均熱をはかる必要がある場合もある。
In the above embodiment, the fluid jetted from the fluid jet nozzle 5 is a mist, but depending on the heating temperature difference, the shape of the irregularly shaped material, and other conditions, it is also possible to achieve a sufficient effect by jetting air; In some cases, it may be necessary to uniformly heat the ice cream by injecting carbon dioxide gas vaporized from the ice cream or the like to intensify the cooling effect.

また、流体噴射ノズル5への流体供給装置は上
記実施例に拘束されるものではない。
Further, the fluid supply device to the fluid injection nozzle 5 is not limited to the above embodiment.

尚第3図aでは加熱コイルC2-a,C2-bを電源
ELに直列接続しているが、これを並列接続して
もよい。
In Fig. 3a, the heating coils C 2-a and C 2-b are connected to the power supply.
Although it is connected in series to EL, it can also be connected in parallel.

上記実施例では焼入れ面がA面の1面のみであ
るが複数面を焼入れ面とする場合にも本発明が効
果的であること勿論である。
In the above embodiment, only one hardened surface, side A, is used, but it goes without saying that the present invention is effective even when a plurality of surfaces are hardened.

本発明にかかる焼戻し方法を実施することによ
つて (1) 連続熱処理ラインで異型材の焼入れ面を所定
焼戻し温度まで均一に昇温加熱することが可能
であるので、焼戻しむらのない均一な硬さの焼
入層を有する熱処理製品を得ることができる。
By carrying out the tempering method according to the present invention, (1) it is possible to uniformly heat the hardened surface of the deformed material up to a predetermined tempering temperature in a continuous heat treatment line, resulting in uniform hardness without uneven tempering; It is possible to obtain a heat-treated product with a hardened layer.

(2) 熱処理ラインを大巾に変更することなく又特
に複数高価な装置に依存することなく容易に実
施可能で、かつ得られる効果は極めて大である
ので実用性が高い。
(2) It is highly practical because it can be easily implemented without making extensive changes to the heat treatment line or relying on multiple expensive devices, and the effects obtained are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来熱処理ラインを説明するための
一部断面正面図、第1図bおよびcは第1図aの
熱処理ラインで熱処理される部材の斜視図、第2
図aは第1図aの従来熱処理ラインで熱処理した
場合の温度測定実験に用いた供試体の平面図と正
面図、第2図bおよびcはそれぞれ従来焼戻し装
置を使つた場合の焼戻し前および焼戻し後の供試
体A面の温度特性曲線図、第3図aは本発明の焼
戻し方法の一実施例装置を示す一部断面正面図、
第3図bは第3図aに示す装置を用いて得られた
異型材の焼入れ面Aの焼戻し直後の温度特性曲線
図である。 W……異型材、A……焼入れ面、Ab……大断
面積部分の表面、QZ……焼入れゾーン、C2-a
C2-b……低周波誘導加。
FIG. 1a is a partially sectional front view for explaining a conventional heat treatment line, FIGS. 1b and c are perspective views of a member to be heat treated in the heat treatment line of FIG.
Figure a is a plan view and a front view of the specimen used in the temperature measurement experiment when heat treated on the conventional heat treatment line shown in Figure 1 a, and Figures 2 b and c are before and after tempering, respectively, when using the conventional tempering equipment. A temperature characteristic curve diagram of the surface A of the specimen after tempering, FIG.
FIG. 3b is a temperature characteristic curve diagram immediately after tempering of the hardened surface A of the profiled material obtained using the apparatus shown in FIG. 3a. W...Deformed material, A...Hardened surface, Ab...Surface of large cross-sectional area, QZ...Hardened zone, C 2-a ,
C 2-b ...Low frequency induction addition.

Claims (1)

【特許請求の範囲】[Claims] 1 長手方向に対して断面積を異にする部分を有
する異型材を焼入れゾーンと焼戻しゾーンを含む
搬送ライン上に連続して送り込み、上記焼入れゾ
ーンにおいて長手方向にそう所定面に表面焼入れ
を施した異型材を焼戻しゾーンにおいて、低周波
誘導加熱して焼戻しする場合において、所定の焼
戻しを施すに必要な長さの低周波加熱コイルを複
数分割して搬送ライン上に所定間隔をへだてて配
置し、搬送ラインの前方の低周波加熱コイルを通
過した異型材が、当該異型材の大断面積部分の焼
入れ表面のみに噴霧またはエアあるいはガスによ
る強制冷却を所定時間施されたのち、後方の低周
波加熱コイルに搬入されるようにしたことを特徴
とする異型材の連続熱処理ラインでの誘導焼戻し
方法。
1 A deformed material having portions with different cross-sectional areas in the longitudinal direction was continuously fed onto a conveying line including a quenching zone and a tempering zone, and surface hardening was performed on a predetermined surface in the longitudinal direction in the quenching zone. In the case of tempering a deformed material by low-frequency induction heating in a tempering zone, a plurality of low-frequency heating coils each having a length necessary to perform a prescribed tempering are divided into multiple parts and arranged at prescribed intervals on a conveyance line, The shaped material that has passed through the low-frequency heating coil at the front of the conveyor line is forcedly cooled by spraying, air, or gas for a predetermined period of time only on the hardened surface of the large cross-sectional area of the shaped material, and then the low-frequency heating coil at the rear is applied. A method for induction tempering of deformed materials in a continuous heat treatment line, characterized in that the materials are fed into coils.
JP57069538A 1982-04-27 1982-04-27 Induction tempering method of irregularly shaped material in continuous heat treatment line Granted JPS58189325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069538A JPS58189325A (en) 1982-04-27 1982-04-27 Induction tempering method of irregularly shaped material in continuous heat treatment line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069538A JPS58189325A (en) 1982-04-27 1982-04-27 Induction tempering method of irregularly shaped material in continuous heat treatment line

Publications (2)

Publication Number Publication Date
JPS58189325A JPS58189325A (en) 1983-11-05
JPH0115565B2 true JPH0115565B2 (en) 1989-03-17

Family

ID=13405589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069538A Granted JPS58189325A (en) 1982-04-27 1982-04-27 Induction tempering method of irregularly shaped material in continuous heat treatment line

Country Status (1)

Country Link
JP (1) JPS58189325A (en)

Also Published As

Publication number Publication date
JPS58189325A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
EP2700724B1 (en) Method and apparatus for heat treating rails
US3790413A (en) Process for a continuous heat treatment and apparatus therefor
US2882191A (en) Method and apparatus for flame hardening of rails and the like
JP2004218064A (en) Partial heat treatment method for member to be heat-treated and apparatus therefor
JPH0115565B2 (en)
JPH0618177A (en) Method of heat treatment
EP0181101B1 (en) Apparatus and method for air cooling hot rolled steel rod
JPH0366371B2 (en)
JPH0331415A (en) High-frequency hardening device
US3989231A (en) Heat treatment of steel
CA1078710A (en) Method and apparatus for cooling hot rolled rod
KR101754805B1 (en) Heat treatment of pliable tube
JPS6036592Y2 (en) Steam extraction device for continuous heat treatment equipment
JPS56150127A (en) Direct normalizing method
GB933860A (en) Heat hardened rail and heat treating apparatus therefor
US3445100A (en) Fluidized bed apparatus for quenching hot rod
JPS6229492B2 (en)
JPS6214611B2 (en)
JPH1096010A (en) Heat treatment member, heat treatment method, and heat treatment apparatus
US4161800A (en) Apparatus for improving the quality of steel sections
KR101093232B1 (en) Heat treating method of materials to reduce brittleness
JPS55148728A (en) Continuous heat treating apparatus for belt-shaped metallic material
KR970001320B1 (en) Method and apparatus for wheel hardening
JPH03166318A (en) Method for heat-treating rail
JPS63169322A (en) Continuous heat-treating furnace