JPH01155607A - Reactor - Google Patents

Reactor

Info

Publication number
JPH01155607A
JPH01155607A JP31379087A JP31379087A JPH01155607A JP H01155607 A JPH01155607 A JP H01155607A JP 31379087 A JP31379087 A JP 31379087A JP 31379087 A JP31379087 A JP 31379087A JP H01155607 A JPH01155607 A JP H01155607A
Authority
JP
Japan
Prior art keywords
reactor
coils
magnetic flux
container
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31379087A
Other languages
Japanese (ja)
Other versions
JP2737876B2 (en
Inventor
Toshihiro Nomura
野村 年弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62313790A priority Critical patent/JP2737876B2/en
Publication of JPH01155607A publication Critical patent/JPH01155607A/en
Application granted granted Critical
Publication of JP2737876B2 publication Critical patent/JP2737876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To reduce the leakage of magnetic flux, to prevent the heating of wall and to contrive miniaturization of a reactor device by a method wherein a pair of two coils are formed in such a manner that the magnetomotive force generating on each coil will be cancelled with each other. CONSTITUTION:A hollow core type reactor 13 is formed with series-connected air-core coils 14 and 15. The coils 14 and 15 are separately arranged so that the magnetomotive forces F11 and F12 generated by a passing current 'I' are cancelled with each other. In the reactor 13, magnetic flux PHI is present only in the vicinity of the coils 14 and 15, and no leakage magnetic flux is present around the reactor 13. Even when a container 3a is brought close to the reactor 13, the wall of the container is not heated up. As a result, the reactor device 16 can be made small in size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気回路におけるインダクタンスを形成する
ためのりアクドル、特にリアクトル装置の製造が容易で
かつ該リアクトルを収容する容器等を小形にすることが
できるリアクトルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a glue reactor for forming inductance in an electric circuit, particularly a reactor device that can be easily manufactured and a container or the like that accommodates the reactor that can be made smaller. Regarding reactors that can.

〔従来の技術〕[Conventional technology]

第7図〜は同図0に示した電気回路構成を有するように
t線1を複数回巻回して四角筒状に形成した従来の空心
リアクトル2の平面図、第7図B)は同図内におけるX
−X断面図で、第7図における3aはりアクドル2を収
容する容器3の壁体、4はリアクトル2と容器3とから
なるリアクトル装置である。U、Vはリアクトル2の端
子、リアクトル2における・、Xの記号は、端子ty、
vzVc流れる電流Iのリアクトル2におけるある瞬間
の通流方向を表していて、Flはこのような電流状aに
よってリアクトル2に生じた起磁力を示し℃いる。
7 to 7 are plan views of a conventional air-core reactor 2 formed into a rectangular tube shape by winding the T-wire 1 multiple times so as to have the electric circuit configuration shown in FIG. 0, and FIG. 7B) is the same figure. X within
In the -X sectional view, 3a in FIG. 7 is a wall of a container 3 that accommodates the accelerator 2, and 4 is a reactor device consisting of a reactor 2 and a container 3. U and V are terminals of reactor 2, and symbols of ・ and X in reactor 2 are terminals ty,
vzVc represents the flow direction of the flowing current I in the reactor 2 at a certain moment, and Fl represents the magnetomotive force generated in the reactor 2 by such current state a.

第8図は従来の鉄心付きりアクドルの構成説明図で、同
図内は平面図、同図(ハ)は同図内におけるY−X断面
図、同図0は電気的等価回路図である。
Figure 8 is an explanatory diagram of the configuration of a conventional axle with iron core, in which the figure is a plan view, figure (c) is a Y-X sectional view in the figure, and figure 0 is an electrical equivalent circuit diagram. .

第8図においC,5,6は距離りをおい℃対向するよう
に配置したいずれもE字状の鉄心、7.8は鉄心5.6
のそれぞれにおける中央脚5a、6aの各々に巻いたい
ずれもコイルで、これらのコイル7.8は図示したよう
に端子U、V間に直列に接続され℃いる。9は鉄心5.
6とコイル7゜8と端子U、Vとからなる鉄心付きりア
クドル。
In Fig. 8, C, 5, and 6 are all E-shaped cores placed opposite each other with a distance between them, and 7.8 is the core 5.6.
Both coils are wound around each of the central legs 5a, 6a of each of the coils 7.8, and these coils 7.8 are connected in series between terminals U and V as shown. 9 is the iron core 5.
Adle with iron core consisting of 6, coil 7゜8, and terminals U and V.

tOaはりアクドル9を収容する容器10の壁体で% 
11はリアクトル9と容器10とからなるすアクドル装
置である* F 雰* F Bは電流工がコイル7.8
を図示したように流れ℃いる時にこれらのコイルによつ
℃生成される起磁力を示し工いる。
tOa beam % at the wall of the container 10 containing the accelerator 9
11 is an accelerator device consisting of a reactor 9 and a container 10.
Let us show the magnetomotive force generated by these coils when the flow is as shown in the diagram.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図におい’IX、I+アクドル装置4が上記のよう
に構成され℃いるので、電流工が高周波電流であつ℃か
つ容器壁3aがリアクトル2の近傍にあると、該容器壁
が透a率の小さくない等電材料製である場合、リアクト
ル2の起磁力F1による磁束Φが容器壁3scK:鎖交
して、この結果生じる渦電流によって容器壁31が加熱
される。また。
In FIG. 7, the 'IX, I + accelerator device 4 is configured as described above and the temperature is ℃, so if the electric current is a high frequency current and the container wall 3a is near the reactor 2, the container wall has a permeability of If the reactor 2 is made of isoelectric material with a small magnitude, the magnetic flux Φ due to the magnetomotive force F1 of the reactor 2 interlinks with the container wall 3scK, and the resulting eddy current heats the container wall 31. Also.

第8図においCは、起磁力F、とF、とが相加わるよう
になつ℃いるので、これらの起磁力による出来密度は、
中央脚5aと6aとの間の間隙12aで太き(なつ℃お
り、また鉄心5.6の各外側脚5b、6b間の間隙12
bと鉄心5.6の他の外側脚5c、6a間の間隙12c
とでも太き(なつ℃いる。ところが、第8図の場合+i
 FtとF。
In Figure 8, C is the temperature at which the magnetomotive forces F and F are added together, so the density due to these magnetomotive forces is
The gap 12a between the central legs 5a and 6a is wide (Natsu ℃), and the gap 12a between each outer leg 5b, 6b of the iron core 5.6 is wide.
gap 12c between the other outer legs 5c and 6a of the iron core 5.6
However, in the case of Figure 8, +i
Ft and F.

とが加わるようになり℃いるので、リアクトル9+ は(Ft→Fs)の起磁力を有する一本の棒磁石な形成
し℃いるわけで、この結果りアクドル9の外周にはΦt
で示した漏れ磁束が発生する。したかつ”C,ff1束
Φtが存在する所に透出率の小さくない尋電材料裂の容
器壁10aが設けられ℃いると。
Since the reactor 9+ is formed as a single bar magnet with a magnetomotive force of (Ft→Fs), as a result, the outer periphery of the reactor 9 has Φt.
The leakage magnetic flux shown in is generated. However, a container wall 10a made of a dielectric material with a not small transmittance is provided where the bundle Φt of ``C, ff1'' is present.

磁束Φtが高周波の電流工にもとづくものである場合、
リアクトル装置4の場合と同様にして容器壁tOaが加
熱される。
If the magnetic flux Φt is based on a high-frequency electric current,
The container wall tOa is heated in the same manner as in the case of the reactor device 4.

リアクトル装置4及びIIにおいて上述のようにして容
器壁3a及び101が加熱されると、この加熱に費やさ
れた電力がリアクトル2.9に加えられた電力から損失
とし℃失われることになるので、上述したりアクドル2
.9には、電力損失を少なくするために、容器壁3as
 toaを対応するりアクドルから遠ざける必要があっ
て、このためリアクトル装置ii4.lIが大形になる
という問題点がある。また、リアクトル2.9には、こ
れらのりアクドルと容器m3a@  101との間にフ
ェライト等の透磁性はよいが導電性の悪い材料で遮蔽壁
を設けることによってリアクトル装置4゜11の大形化
を防止することができるが、この場合、リアクトル装置
4.11の構造が複雑になって、これらの製造が面倒に
なるという問題点もある。
When the vessel walls 3a and 101 are heated as described above in the reactor devices 4 and II, the electric power spent on this heating is lost as a loss from the electric power applied to the reactor 2.9. , as mentioned above or Akudol 2
.. 9, in order to reduce power loss, the container wall 3as
It is necessary to move the toa away from the accelerator, and for this reason, the reactor device ii4. There is a problem that lI becomes large. In addition, in the reactor 2.9, the size of the reactor device 4゜11 can be increased by providing a shielding wall made of a material such as ferrite that has good magnetic permeability but poor conductivity between these glue handles and the container m3a@101. However, in this case, there is also the problem that the structure of the reactor device 4.11 becomes complicated and the manufacturing thereof becomes troublesome.

本発明の目的は、前述したような容器壁を加熱する漏れ
磁束が少なくなるようにして、リアクトル装置の小形化
と該リアクトル装置の製造の容易化とが図れるようにす
ることにある。
An object of the present invention is to reduce the leakage magnetic flux that heats the container wall as described above, thereby making it possible to downsize a reactor device and facilitate manufacturing of the reactor device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために1本発明によれば。 According to one aspect of the present invention, the above problems are solved.

直列に接続された偶数個のコイルを備え、a記コイルは
離し℃配置された2個の前記コイルの組の少なくとも一
組からなり、かつ前記組ななす2個の前記コイルは該コ
イルの各々の発生する起磁力が互い忙打ち消し合うよう
に構成され℃いるようにしてリアクトルを構成するもの
とする。
an even number of coils connected in series, the coil a consisting of at least one set of two sets of the coils arranged apart from each other, and the two coils forming the set each having a The reactor is configured such that the magnetomotive forces generated by the two elements cancel each other out.

〔作用〕[Effect]

上記のように構成すると、各起磁力が互い和打ち消し合
うように構成された二個のコイルの周囲におい℃は漏れ
磁束が少な(なり、このようなり直 アクドルは、前記コイルの各々の嚢近に生じた磁界中の
磁気エネルギーにもとづい℃リアクトル動作をするので
、リアクトルを収容する容器の壁体なコイルに近づけて
も該壁体が加熱されるということがたくなりC1この結
果、供給電力に対する効率の低下を招くことなくリアク
トル装置の小形化と該リアクトル装置の製造の容易化と
が図れることになる。
With the configuration described above, there is little leakage magnetic flux around the two coils, where the magnetomotive forces cancel each other out. Since the reactor operates based on the magnetic energy in the magnetic field generated by The reactor device can be made smaller and the reactor device can be manufactured more easily without reducing efficiency.

〔実施例〕 第1図は本発明の第1実施例としての空心リアクトル1
3の構成説明図で、同図囚、同図■、同図ρはそれぞれ
第7図における囚、(ハ)、0の各図に対応した平面図
、x−xUr面図、電気的等価回路図である。第1図の
第7図と異なる所は、第7図の空心リアクトル2に対応
する空心リアクトル13が直列接続された空心コイル1
4と15とで構成されていることで、この場合このよう
に直列接続されたコイル14と15とが端子U、V間に
接続され℃いる。そうして、さらj/c、コイル14及
び15は1通電電流Iによつ℃各コイルに生じる起磁力
FilとFl、とが互いに打ち消し合うよう和しC離し
て配置され℃いる。つまり、この場合。
[Example] Figure 1 shows an air-core reactor 1 as a first example of the present invention.
3 is a diagram explaining the configuration of Figure 3, where Figure 7, Figure ■, and Figure ρ are the plan views, x-xUr plane views, and electrical equivalent circuits corresponding to Figures 7, (C), and 0, respectively. It is a diagram. The difference between FIG. 1 and FIG. 7 is that an air-core coil 1 is connected in series with an air-core reactor 13 corresponding to the air-core reactor 2 in FIG.
In this case, the coils 14 and 15 connected in series are connected between the terminals U and V. Then, the coils 14 and 15 are spaced apart by C so that the magnetomotive forces Fil and Fl generated in each coil by one current I cancel each other out. That is, in this case.

FllとFllとは大きさが等しくかつ逆向きとなって
いる。したがって、空心リアクトル13におい℃は、F
lm及びFllによる出来Φがコイル14゜15の各近
傍にのみ存在し、リアクトル13のまわりには漏れ出来
が存在しないことになる。故K。
Fll and Fll are equal in size and in opposite directions. Therefore, the temperature in the air core reactor 13 is F
The formation Φ due to lm and Fll exists only in the vicinity of the coils 14 and 15, and there is no leakage around the reactor 13. The late K.

第1図のようにリアクトル13を構成すると、容器壁3
11をリアクトル13に近づけても該容器壁が加熱され
ることはないから、容器壁3aをリアクトル13に近づ
け℃容器3を小形にすることによつ℃リアクトル13と
容器3とからなるリアクトル装fj116における電力
利用効率の低下を招くことなく、該装置16の小形化を
図ることができること忙なる。また、この場合、前述し
た9気遮蔽11kを容器Jj!e3mの内側に設ける必
要がないから。
When the reactor 13 is configured as shown in FIG.
11 is brought close to the reactor 13, the container wall will not be heated. Therefore, by bringing the container wall 3a closer to the reactor 13 and making the °C container 3 smaller, a reactor system consisting of the °C reactor 13 and the container 3 can be reduced. It would be great if the device 16 could be made smaller without reducing the power usage efficiency in the fj 116. In addition, in this case, the above-mentioned 9 air shielding 11k is placed in the container Jj! There is no need to provide it inside e3m.

電力利用効率の低下な防止しようとするとりアクドル装
置の製造が面倒になるということはない。
In order to prevent a decrease in power utilization efficiency, manufacturing of the accelerator device does not become complicated.

第2図は本発明の第2実施例とし℃の空心リアクトル1
7の構成説明図で、同図^は第1図囚に対応する平面図
、同図eは同回内におけるZ−2断面図である。第2図
の第1図と異なる所は、空心リアクトル17が直列に接
続された6個の空心コイル18から構成されていること
で、さらに。
Figure 2 shows a second embodiment of the present invention, and an air-core reactor 1 at °C.
7, in which Figure ^ is a plan view corresponding to Figure 1, and Figure e is a Z-2 sectional view within the same gyrus. The difference between FIG. 2 and FIG. 1 is that the air-core reactor 17 is composed of six air-core coils 18 connected in series.

この場合、リアクトル17は、離して配置された2個の
コイル18の組の3組からなり、かつ前記した組をなす
2個のコイル18の各々の発生する起磁力Fが互いに打
ち消し合うように等しい大きさでかつ逆向きに構成され
℃いることである。第2図では、リアクトル17が上述
のように構成され℃いるので、該リアクトルに一流工が
流れ℃も該リアクトルの周囲に漏れ磁束を生じることは
なく、リアクトル17は各コイル18の近傍に生じる磁
界中の磁気エネルギーにもとづい℃リアクトル動作を行
うこと[なる。故に、このようなりアクドル17を採用
1−るとリアクトル収容容器な小さ(することができ″
C,該容器とりアクドルI7とからなるリアクトル装置
の小形化と該リアクトル装置の製造の容易化とを、リア
クトル装置における電力利用効率の低下を招くことな(
契現することができることになる。
In this case, the reactor 17 is composed of three sets of two coils 18 arranged apart from each other, and the reactor 17 is configured such that the magnetomotive force F generated by each of the two coils 18 forming the above-mentioned sets cancels each other out. They should be of equal size and oppositely oriented. In FIG. 2, since the reactor 17 is configured as described above and is located at 18°C, a first-class engineer flows through the reactor and no leakage magnetic flux is generated around the reactor, and the reactor 17 is located near each coil 18. ℃ reactor operation based on magnetic energy in a magnetic field. Therefore, if the accelerator 17 is adopted like this, the reactor storage container can be made small.
C. Miniaturization of the reactor device consisting of the container handler I7 and ease of manufacture of the reactor device without causing a decrease in power utilization efficiency in the reactor device (
It will be possible to manifest.

第3図は、本発明の第31!施例としての鉄心付きりア
クドル19の構成説明図で1本図における囚、■、1Q
の各図は第8図における囚、■、0の各図のそれぞれに
対応する平面図、Y−Y断面@、電気的等価回路図であ
る。第3図の第8図と異なる所は、コイル7及び8の電
流工にもとづく各起磁力F、 、 Fsが1図示したよ
うに、逆向きであって、かつF、とF、とがはぼ等しい
大きさに形成され工いることである。鉄心付きりアクド
ル19は上述のように構成され℃いるので、このリアク
トル19は、電流Iが流れた場合、鉄心の中央脚5a及
び6aと間隙12aとからなる磁極の強さがほぼ零の棒
磁石と等価である。故に、このようなりアクドル19に
おいては1間隙12al12b。
FIG. 3 shows the 31st part of the present invention! This is an explanatory diagram of the configuration of the axle with iron core 19 as an example.
The figures are a plan view, a Y-Y cross section @, and an electrical equivalent circuit diagram, respectively, corresponding to the figures marked 2, 2, and 0 in FIG. The difference between Fig. 3 and Fig. 8 is that the magnetomotive forces F, , Fs based on the current flow of coils 7 and 8 are in opposite directions as shown in Fig. 1, and F and F are different. It is formed and machined to approximately the same size. Since the cored accelerator 19 is constructed as described above and has a temperature of 100° C., when the current I flows through the reactor 19, the reactor 19 becomes a bar whose magnetic pole strength is almost zero, consisting of the central legs 5a and 6a of the core and the gap 12a. It is equivalent to a magnet. Therefore, in the adle 19, there is one gap 12al12b.

L2Cと1間隙12aと12bとの間の空所20aと1
間隙12aと12Gとの間の空所20bとには工にもと
づく磁束が存在するが、リアクトル19の周囲に漏れる
日東は殆どないことになる。
Spaces 20a and 1 between L2C and 1 gaps 12a and 12b
Although there is magnetic flux due to the construction in the space 20b between the gaps 12a and 12G, almost no magnetic flux leaks around the reactor 19.

故に、リアクトル19を採用すると、供給電力に対する
効率の低下を招くことなくリアクトル装置の小形化と該
リアクトル装置の製造の容易化とを図ることができるこ
とになる。
Therefore, by employing the reactor 19, it is possible to downsize the reactor device and facilitate manufacturing of the reactor device without causing a decrease in efficiency with respect to supplied power.

第4図は本発明の第4実施例としての鉄心付きりアクド
ル21の構成説明図で1本図における(2)図はM3図
回内対応した平l1lli図、第4図■は第4図囚にお
けるP矢視図である。第4図の第3図と異なる所は、E
字状鉄心22.23のそれぞれの対応する脚が距離り、
をおい℃対向するように。
Fig. 4 is an explanatory diagram of the configuration of an iron cored axle 21 as a fourth embodiment of the present invention. It is a P arrow view of a prisoner. The difference between Figure 4 and Figure 3 is E.
Each corresponding leg of the character-shaped core 22.23 is spaced apart,
So that they are facing each other.

鉄心22.23が配置され、鉄心22.23における一
組の対向した凹部22al 23a内に図示したように
コイル7が配置され、さらに、鉄心22゜23における
他の一組の対向した凹部22b、23b内にコイル8が
図示したように配置され工いることである。この場合、
コイル7と8とが直列に接読され、かつ起磁力F、とF
、とが逆向きになっていて、かつF、とF、とがほぼ等
しい大きさに形成され℃いることは第3図の場合と同様
である。
A core 22.23 is arranged, and a coil 7 is arranged as shown in a set of opposed recesses 22al 23a in the core 22.23, and another set of opposed recesses 22b in the core 22.23, The coil 8 is arranged and worked within 23b as shown. in this case,
Coils 7 and 8 are read directly in series, and magnetomotive forces F, and F
, are in opposite directions, and F and F are formed to have approximately the same size and are similar to the case of FIG. 3.

リアクトル21を上述のように構成し℃も、前述したり
アクドル19におげろと同様に、リアクトル21への供
給電力に対する効率の低下を招くことたくりアクドル装
置の小形化と該リアクトル装置の製造の容易化とを図り
得ることは、説明するまでもなく明らかである。
By configuring the reactor 21 as described above, the temperature also decreases in temperature, as described above and in the same manner as when the axle 19 is lowered. It is obvious that this can be simplified without further explanation.

第5図は本発明の第5実施例としての鉄心付きりアクド
ル24の構成説明図で1本図は第3図囚に対応した平面
図である。そうして1本図の第3区内と異なる所は、そ
れぞれU字状鉄心25の一脚に巻かれたコイル26の四
個が端子U、 VrIIIK直列に接続されていること
で、この場合、第2図におけると同様に、コイル26が
2個で一組をなすように構成され、かつこの組をなした
2個のコイル26の各起磁力Fが相対向するように1両
コイル26とこれらのコイルを巻いた両鉄心25とが構
成され℃いる。そうし℃、この場合も、対向する上述の
自起出力Fはそれぞれ大きさがほぼ等しく形成されてい
る。第5図ではりアクドル24が上述のように構成され
工いるので、このリアクトルの周囲忙漏れ磁束が生じる
ことはない。
FIG. 5 is an explanatory view of the configuration of an iron cored axle 24 as a fifth embodiment of the present invention, and the first figure is a plan view corresponding to FIG. 3. The difference from the third section in this figure is that the four coils 26 wound around each leg of the U-shaped core 25 are connected in series to the terminals U and VrIIIK. , as in FIG. 2, the two coils 26 are configured to form a set, and one coil 26 is arranged such that the magnetomotive forces F of the two coils 26 in the set face each other. and both iron cores 25 around which these coils are wound. In this case as well, the above-mentioned opposing spontaneous outputs F are formed to have approximately the same magnitude. In FIG. 5, since the beam handle 24 is constructed and operated as described above, leakage magnetic flux around the reactor does not occur.

第6図は本発明の第6実施例とし℃の鉄心付きりアクド
ル27の構成説明図で1本図は第5図に対応した図面で
ある。第6図の第5図と異なる所は、平行に配置された
5個の工学状鉄心28a〜286の第2鉄心28bと第
4鉄心28dとにそれぞれ2個のコイル26が離し℃巻
かれ又い℃。
FIG. 6 is an explanatory diagram of the configuration of an iron cored axle 27 according to a sixth embodiment of the present invention, and one figure corresponds to FIG. 5. The difference between FIG. 6 and FIG. 5 is that two coils 26 are wound at a distance between each of the second and fourth cores 28b and 28d of the five engineered cores 28a to 286 arranged in parallel. It's hot.

かつこのように巻かれた都合4個のコイル26がスヘて
1列にli!続され℃いることで、この場合。
The four coils 26 wound in this way are arranged in one row! In this case, it is continued.

共通の快心に巻かれた2個のコイル26は、″X流工に
もとづく各起磁力Fの大きさがほぼ等しくてかつ各起磁
力Fの向きが逆向きになるように構成されている。した
がって、第6図においても、リアクトル27の周囲に1
!流工による漏れ磁束が生じることはない。
The two coils 26 wound around a common core are constructed so that the magnitudes of the respective magnetomotive forces F are approximately equal and the directions of the respective magnetomotive forces F are opposite to each other based on the "X style" method. .Therefore, in Fig. 6 as well, there is a
! No magnetic flux leakage occurs due to drifting.

第5図及び第6図においては、上述したように。In FIGS. 5 and 6, as described above.

リアクトル24.27の周囲に漏れ磁束が生じることは
ないから、これらのりアクドルを採用すると、Uリアク
トルへの供給電力に対する効率の低下を招くことなくリ
アクトル装置の小形化と該リアクトル装置の製造の容易
化とを実現できることになる。
Since leakage magnetic flux does not occur around the reactors 24 and 27, when these glue handles are used, the reactor device can be made smaller and the reactor device can be easily manufactured without reducing the efficiency of power supplied to the U reactor. It will be possible to realize the following.

〔発明の効果〕〔Effect of the invention〕

上述したように1本発明においては、直列忙接続された
偶数個のコイルを備え、前記コイルは離して配置された
2個のコイルの組の少なくとも一組からなり、かつ前記
の組をなす2個のコイルを;該コイルの各々の発生する
起−力が互いに打ち消し合うようにDI成され℃いるよ
うにし℃リアクトルを構成した。
As described above, one aspect of the present invention includes an even number of coils connected in series, the coils comprising at least one set of two separately arranged coils, and two coils forming the set. A ℃ reactor was constructed by arranging DI coils so that the electromotive forces generated by the coils canceled each other out.

このため、上記のように構成すると、各起磁力が互いに
打ち消し合うように構成された二個のコに生じた磁界中
の磁気エネルギーにもとつい℃リアクトル拗咋をするの
で、リアクトルを収容する容器の壁体なコイルに近づけ
ても該壁体が加熱されるということがなくなって、この
結果1本発明には、供給電力に対する効率の低下を招く
ことなくリアクトル装置の小形化と該リアクトル装置の
製造の容易化とが図れるという効果があることになる。
Therefore, with the above configuration, the reactor is compressed based on the magnetic energy in the magnetic field generated between the two magnetomotive forces that are configured to cancel each other out. Even if the wall of the container is brought close to the coil, the wall will not be heated.As a result, the present invention has the following advantages: miniaturization of the reactor device without reducing the efficiency of the supplied power; This has the effect of facilitating the manufacture of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図、第6図はそ
れぞれ本発明の第1実施例、第2実施例。 第3実施例、第41!施例、第5実施例、第6実施例の
各構成説明図で、第1区内は平面図、第1図(ハ)は第
1区内におけるX−X断面図、第1図0は電気的等価回
路図、第2図Nは平面図、第2回(ハ)は第2図(AJ
Vcおけるz−2断面図、第3図Nは平面図、第3図(
ハ)は第31囚におけるY−Y断面図。 第3図Di工電気的等価回路図、第4図(2)は平面図
。 例、第2例の各構成N52明図で、第7回内は平面図。 第7図B)は第7回内におけるX−X断面図、第7図G
は電気的等価回路図%第8図(5)は平面図、第8図■
は第8図(2)におけるY−Y断面図、第8図0は電気
的等価回路図である。 2、9.13.17.19.21.24.27・・・・
・・ リアクトル、  516* 2262312L 
28a〜211・・・・・・鉄心。 7、8.14.15.18.26・・・・・・コイル、
F、F、〜F、。 Fit @ Fil・・・・・・起磁力、Φ、Φか・・
・・・磁束。 コ>     )F> 箋  3  口 #、  4[!] 箋  6  図 箋  7  口
1, 2, 3, 4, 5, and 6 show a first embodiment and a second embodiment of the present invention, respectively. Third example, 41st! In each of the configuration explanatory diagrams of Example, Fifth Example, and Sixth Example, the first section is a plan view, FIG. Electrical equivalent circuit diagram, Figure 2 N is a plan view, Part 2 (C) is Figure 2 (AJ
z-2 sectional view at Vc, Figure 3 N is a plan view, Figure 3 (
c) is a YY sectional view of the 31st prisoner. Fig. 3 is an electrical equivalent circuit diagram of the electrical circuit, and Fig. 4 (2) is a plan view. Example, each configuration N52 diagram of the second example, the seventh part is a plan view. Figure 7B) is a sectional view taken along line X-X within the 7th round, Figure 7G
is an electrical equivalent circuit diagram % Figure 8 (5) is a plan view, Figure 8 ■
is a YY sectional view in FIG. 8(2), and FIG. 80 is an electrical equivalent circuit diagram. 2, 9.13.17.19.21.24.27...
・・Reactor, 516* 2262312L
28a-211... Iron core. 7, 8.14.15.18.26... Coil,
F, F, ~F,. Fit @ Fil...Magnetomotive force, Φ, Φ...
...magnetic flux. Ko> )F> Notebook 3 Mouth #, 4[! ] Notebook 6 Picture note 7 Mouth

Claims (1)

【特許請求の範囲】[Claims]  直列に接続された偶数個のコイルを備え、前記コイル
は離して配置された2個の前記コイルの組の少なくとも
一組からなり、かつ前記組をなす2個の前記コイルは該
コイルの各々の発生する起磁力が互いに打ち消し合うよ
うに構成されていることを特徴とするリアクトル。
an even number of coils connected in series, said coils comprising at least one set of two separately arranged sets of said coils, and said two said coils forming said set having a A reactor characterized by being configured so that generated magnetomotive forces cancel each other out.
JP62313790A 1987-12-11 1987-12-11 Reactor Expired - Fee Related JP2737876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313790A JP2737876B2 (en) 1987-12-11 1987-12-11 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313790A JP2737876B2 (en) 1987-12-11 1987-12-11 Reactor

Publications (2)

Publication Number Publication Date
JPH01155607A true JPH01155607A (en) 1989-06-19
JP2737876B2 JP2737876B2 (en) 1998-04-08

Family

ID=18045562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313790A Expired - Fee Related JP2737876B2 (en) 1987-12-11 1987-12-11 Reactor

Country Status (1)

Country Link
JP (1) JP2737876B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084757A1 (en) * 2007-01-09 2008-07-17 Mitsubishi Electric Corporation Shared reactor transformer
WO2009110061A1 (en) * 2008-03-04 2009-09-11 三菱電機株式会社 Electric transformer
JP4523076B1 (en) * 2009-02-13 2010-08-11 三菱電機株式会社 Transformer
JP2011035339A (en) * 2009-08-06 2011-02-17 Panasonic Corp Light-emitting circuit for stroboscopic device, and stroboscopic device mounted the same
CN102610361A (en) * 2012-04-06 2012-07-25 株洲市科达电机技术有限公司 Omni-directional magnetic shielding direct current filter reactor
US11236703B2 (en) 2015-06-30 2022-02-01 Aerojet Rocketdyne, Inc. Dual stage catalytic thruster

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124064A1 (en) * 2020-12-07 2022-06-16 株式会社村田製作所 High-frequency module
WO2022124063A1 (en) * 2020-12-07 2022-06-16 株式会社村田製作所 Inductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610912A (en) * 1979-07-05 1981-02-03 Toshiba Corp Air-core reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610912A (en) * 1979-07-05 1981-02-03 Toshiba Corp Air-core reactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902952B2 (en) 2007-01-09 2011-03-08 Mitsubishi Electric Corporation Shared reactor transformer
WO2008084757A1 (en) * 2007-01-09 2008-07-17 Mitsubishi Electric Corporation Shared reactor transformer
JPWO2008084757A1 (en) * 2007-01-09 2010-05-06 三菱電機株式会社 Reactor shared transformer
KR101132890B1 (en) * 2007-01-09 2012-04-03 미쓰비시덴키 가부시키가이샤 Shared reactor transformer
US8274804B2 (en) 2008-03-04 2012-09-25 Mitsubishi Electric Corporation Voltage transforming apparatus
WO2009110061A1 (en) * 2008-03-04 2009-09-11 三菱電機株式会社 Electric transformer
JP5217061B2 (en) * 2008-03-04 2013-06-19 三菱電機株式会社 Transformer
WO2010092676A1 (en) * 2009-02-13 2010-08-19 三菱電機株式会社 Transformer
JP4523076B1 (en) * 2009-02-13 2010-08-11 三菱電機株式会社 Transformer
US8421571B2 (en) 2009-02-13 2013-04-16 Mitsubishi Electric Corporation Transformer
JP2011035339A (en) * 2009-08-06 2011-02-17 Panasonic Corp Light-emitting circuit for stroboscopic device, and stroboscopic device mounted the same
CN102610361A (en) * 2012-04-06 2012-07-25 株洲市科达电机技术有限公司 Omni-directional magnetic shielding direct current filter reactor
US11236703B2 (en) 2015-06-30 2022-02-01 Aerojet Rocketdyne, Inc. Dual stage catalytic thruster

Also Published As

Publication number Publication date
JP2737876B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US7026905B2 (en) Magnetically controlled inductive device
US3878495A (en) Magnetic core for electrical inductive apparatus
JPH01155607A (en) Reactor
Beddingfield et al. Shielding of leakage flux induced losses in high power, medium frequency transformers
US4098643A (en) Dual-function magnetic structure for toroidal plasma devices
Ghabeli et al. Optimization of distributive ratios of apportioned winding configuration in HTS power transformers for hysteresis loss and leakage flux reduction
JPH0366108A (en) Stationary electromagnetic induction apparatus
US2703391A (en) Saturable reactor
Daneshmand et al. Hysteresis loss improvement in HTS transformers using hybrid winding schemes
JPS61159950A (en) Magnet for mri
Cariglia et al. Topologically stable gapped state in a layered superconductor
Howard et al. A numerical study of the coupling coefficients for pot core transformers
CN108448738B (en) Electromagnetic coupling mechanism of three-phase induction type wireless power transmission system
EP1676284A1 (en) Controllable inductive device
JP2500365B2 (en) Superconducting converter
Oshiro et al. Structures and characteristics of planar transformers
JP2021019104A (en) Reactor device
TW201123225A (en) Magnetic device with series excitation magnetic core.
CN215680378U (en) Reactor with staggered air gap positions
JPS60152012A (en) Transformer
Zhou et al. Magnetic coupling enhancement using a flux transformer
SU1469510A1 (en) Non-linear ferromagnetic medium field simulation
JPH06101413B2 (en) Air core reactor
JPH04328812A (en) Transformer device
JPH01281510A (en) High magnetic field generating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees