JPH01154573A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH01154573A
JPH01154573A JP62312023A JP31202387A JPH01154573A JP H01154573 A JPH01154573 A JP H01154573A JP 62312023 A JP62312023 A JP 62312023A JP 31202387 A JP31202387 A JP 31202387A JP H01154573 A JPH01154573 A JP H01154573A
Authority
JP
Japan
Prior art keywords
layer
electrode
photoactive layer
photoelectric conversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312023A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
哲郎 鈴木
Masao Yoshikawa
吉川 雅夫
Akio Kojima
小島 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62312023A priority Critical patent/JPH01154573A/en
Publication of JPH01154573A publication Critical patent/JPH01154573A/en
Priority to US07/450,288 priority patent/US4992109A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To obtain a photoelectric converter which exhibits a high optical current and has a large area inexpensively by adding specific diaminocarbazole derivative to an optically active layer. CONSTITUTION:An optically active layer contains at least diaminocarbazole derivative represented by a formula I. Thus, its optical current is largely increased. As a result, its photoelectric conversion efficiency is raised. In the formula I, R1 to R5 are halogen, and substituted or nonsubstituted alkyl group, substituted or nonsubstituted alkyl group, which may be the same or different. This photoelectric converter is composed by sandwiching, for example, a photoconductive organic semiconductor and the layer 2 containing the above compound between a front electrode 1 and a back electrode 4. Since light is incident from the front electrode, the electrode 1 is light transmittive. Both the front and back electrodes may be solely employed, or may be provided with a support or a protective layer.

Description

【発明の詳細な説明】 [技術分野] 本発明は有機光導電体を用いた光電変換素子(有機太陽
電池)に関するものであり、光センサ−、イメージセン
サ−等に応用される。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photoelectric conversion element (organic solar cell) using an organic photoconductor, and is applied to optical sensors, image sensors, etc.

[従来技術] 無機半導体を用いた光電変換素子を作製する試みは多く
なされてきている。その目標はa)変換率が高く、b)
安値な光電変換素子である。
[Prior Art] Many attempts have been made to produce photoelectric conversion elements using inorganic semiconductors. The goal is a) high conversion rate and b)
It is a low-priced photoelectric conversion element.

単結晶Si、多結晶S i、Cd55CdTe。Single crystal Si, polycrystalline Si, Cd55CdTe.

GaAs、アモルファスSi等の実用化が試みられてい
るが、これらは全てb)の目標を満足しているとは言い
難い。
Attempts have been made to put GaAs, amorphous Si, etc. into practical use, but it is difficult to say that all of these satisfy the goal b).

この欠点を改善するために有機半導体を用いて光電変換
素子を作製する試みが近年なされている。使用された有
機半導体層としては以下の例がある。
In order to improve this drawback, attempts have been made in recent years to fabricate photoelectric conversion elements using organic semiconductors. Examples of the organic semiconductor layers used are as follows.

(イ)スピナー塗布されたメロシアニン染料層(特開昭
51−122389 、特開昭53−131782及び
−−、ケー、ゴウシュ(A、に、Ghosh)著の「ジ
ャーナル、オブ、アプライド、フィジックス(J、Ap
pl、Phys、)Jす、5982.1978)(ロ)
フタロシアニン蒸召層またはオバレン等の電子供5体層
とピリリウム系染料等の電子受容体層を積層したもの(
特開昭54−27787特開昭60−201672及び
アール、オー、ラウトフィ(R,0,Loutfy)著
の「ジャーナル、オフ。アプライド、フィジックス J
、Appl。
(a) Merocyanine dye layer coated with a spinner (JP-A-51-122389, JP-A-53-131782, and K. Ghosh, "Journal of Applied Physics (J. , Ap
pl, Phys, )JS, 5982.1978) (b)
Laminated with a 5-electron layer such as a phthalocyanine vaporized layer or obalene and an electron acceptor layer such as pyrylium dye (
JP-A-54-27787, JP-A-60-201672, and “Journal of Applied Physics J” by R. O. Loutfy.
, Appl.

Phys、) J 52. 5218.1981)(ハ
)ピリリウム系染料とポリカーボネートから生成する共
晶錯体層(特開昭54−27387)(ニ)無金属フタ
ロシアニンをバインダーに分散させた層(特開昭55−
9497) (ホ)n型シリコンとp型ドープされたポリアセチレン
薄膜を積層したちの く特開昭55−H0182、特開
昭55−H3879及びビー、アール、ワインバーガー
(B、R,Welnnberger)著のアプライド、
フィジックス、レター (Appl、Phys、Lett、)38. 555.
1981)(へ)真空蒸むされたメロシアニン染料層(
特開昭56−35477) これらは、これらの有機半導体を単独または適当なバイ
ンダーと共に媒体中に溶解または分散した溶液を基板上
に塗布したり、あるいは低温度で真空蒸着し、更にその
上に別の導電層を設けることで安価に大面積のものが得
られるが、変換効率が低すぎ、実用には供されなかった
Phys, ) J 52. 5218.1981) (c) Eutectic complex layer formed from pyrylium dye and polycarbonate (JP-A-54-27387) (d) Layer in which metal-free phthalocyanine is dispersed in a binder (JP-A-55-1999)
9497) (e) Laminated layer of n-type silicon and p-type doped polyacetylene thin film: JP-A-55-H0182, JP-A-55-H3879, and B.R. Wennberger. applied,
Physics, Letters (Appl, Phys, Lett,) 38. 555.
1981) (to) Vacuum steamed merocyanine dye layer (
(Japanese Patent Application Laid-Open No. 56-35477) These organic semiconductors are prepared by coating a solution of these organic semiconductors alone or together with a suitable binder dissolved or dispersed in a medium on a substrate, or by vacuum evaporating at low temperature, and then applying a separate layer on top of the solution. By providing a conductive layer, a large-area device can be obtained at low cost, but the conversion efficiency was too low to be put to practical use.

[目 的] 本発明は以上のような従来の欠点を解決するためになさ
れたものであって、安価で大面積が容易に作製でき、可
撓性もあって有機材料を用いたものとしては、高い変換
効率を有し、従来に比べて太陽光、室内光のスペクトル
分布にあった光電変換素子を提供することを目的として
いる。
[Purpose] The present invention has been made to solve the above-mentioned conventional drawbacks, and is inexpensive, easy to manufacture in a large area, flexible, and suitable for use with organic materials. The purpose of this invention is to provide a photoelectric conversion element that has high conversion efficiency and matches the spectral distribution of sunlight and indoor light compared to conventional photoelectric conversion elements.

[構 成] 本発明は上記目的を達成するために、可視光領域で光キ
ヤリア生成能力のある有機半導体がそれ単独または適当
なバインダーとともに用いられた場合[前記(イ)〜(
へ)]の欠点を改良すべく鋭意研究した結果、 透光性フロント電極、光活性層および背面電極を有する
光電変換素子において、前記光活性層が少なくとも、下
記一般式で示されるジアミノカルバゾール誘導体を含有
することによって、光電流が大幅に上昇し、その結果、
光電変換効率が上昇するという発見に基づくものである
[Structure] In order to achieve the above object, the present invention provides an organic semiconductor capable of generating optical carriers in the visible light region when used alone or with an appropriate binder [said (a) to (a).
As a result of intensive research to improve the drawbacks of By containing the photocurrent, the photocurrent increases significantly, and as a result,
This is based on the discovery that photoelectric conversion efficiency increases.

一般式 ただし、上記一般式における、RIないしR5は水素、
置換または無置換のアルキル基、置換または無置換のア
リール基であり、同一であっても異なっていてもよい。
General formula However, in the above general formula, RI to R5 are hydrogen,
A substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, which may be the same or different.

本発明の光電変換素子は、例えば、光導電性有機半導体
と上記化合物を含む光活性層(I)が2つの電極(フロ
ント電極、背面電極)にサンドイッチされた構成から成
る。
The photoelectric conversion element of the present invention has, for example, a structure in which a photoactive layer (I) containing a photoconductive organic semiconductor and the above compound is sandwiched between two electrodes (front electrode, back electrode).

フロント電極側から光が入射するため、フロント電極は
光透過性となっている。
Since light enters from the front electrode side, the front electrode is transparent.

フロント、背面電極ともilt独で使用されてもよいし
、支持体あるいは保護層が設けられていてもよい。第1
〜第3図にはこれらの例が示されている。
Both the front and back electrodes may be used alone or may be provided with a support or a protective layer. 1st
Examples of these are shown in FIG.

フロント電極、背面電極からはリード線等により、外部
回路と接続され、実際の使用に供される。
The front electrode and the back electrode are connected to an external circuit through lead wires, etc., and used for actual use.

光活性層は単層である必要はなく、2層の例が第1〜第
3図の(b)図にそれぞれ示されている。この光活性層
(If)は光活性層(1)と同様に光により電荷を発生
させる層でもよいし、光活性層(1)で発生した電荷を
効率よく移動させる層でもよい。第1(b)図の例では
光活性層(1)がフロント電極側に描かれているが、光
活性層(n)がフロント電極側にあっても勿論良い。ま
た、光活性層(1)は異なる光導電性有機材料から成る
複層であってもよい。
The photoactive layer need not be a single layer; examples of two layers are shown in FIGS. 1-3(b), respectively. This photoactive layer (If) may be a layer that generates charges by light like the photoactive layer (1), or may be a layer that efficiently transfers the charges generated in the photoactive layer (1). In the example of FIG. 1(b), the photoactive layer (1) is drawn on the front electrode side, but it goes without saying that the photoactive layer (n) may be on the front electrode side. The photoactive layer (1) may also be a multilayer consisting of different photoconductive organic materials.

本発明は上記光活性層(I)にかかわるものである。The present invention relates to the photoactive layer (I).

光活性層(I)は光照射で正孔と電子を発生させる層で
ある。このためには、層内に電界が存在することが必要
で、これはフロント電極と背面電極の間に外部から電圧
を印加するか、または異なる仕事関数を有する金属をフ
ロント電極と背面電極に使用するか、または光活性層(
1)がフロントまたは背面電極もしくは光活性層(n)
と接合した時に、お互いのフェルミレベル(または仕!
μ関数)の違いにより、熱キャリアが移動し、接合障壁
が形成されることで外部電圧なしでも達成される。
The photoactive layer (I) is a layer that generates holes and electrons when irradiated with light. This requires the presence of an electric field within the layer, either by applying an external voltage between the front and back electrodes or by using metals with different work functions for the front and back electrodes. or a photoactive layer (
1) is the front or back electrode or photoactive layer (n)
When joined, each other's Fermi level (or Shi!
Due to the difference in the μ function), thermal carriers move and a junction barrier is formed, which is achieved without an external voltage.

光活性層(1)は層中に一般式(A)で示されるジアミ
ノカルバゾール誘導体を含む層である。この層には他の
必須成分として、可視光に吸収を有する光導電性有機半
導体を含んでいる。
The photoactive layer (1) is a layer containing a diaminocarbazole derivative represented by the general formula (A). This layer contains, as another essential component, a photoconductive organic semiconductor that absorbs visible light.

また必要ならば適当なバインダーを含んでいてもよい。It may also contain a suitable binder if necessary.

発明者はかかるジアミノカルバゾール誘導体が存在する
と、存在しない場合に比較して、光活性層(1)で光照
射時に生成する光電流量が飛躍的に増大し、それにより
変換効率か増大することを見出した。
The inventors have discovered that when such diaminocarbazole derivatives exist, the amount of photocurrent generated in the photoactive layer (1) upon irradiation with light increases dramatically compared to the case where such diaminocarbazole derivatives do not exist, thereby increasing the conversion efficiency. Ta.

ここで光変換素子とは、第1図のフロントおよび背面電
極間に外部電圧を印加しないで光照射した場合に起電力
または電流もくしはその両方を生じ、また外部電圧の印
加の状態では大きな光電流がとり出せる素子のことであ
る。
Here, a photoconversion element is one that generates an electromotive force or current, or both, when light is irradiated without applying an external voltage between the front and back electrodes in Figure 1, and that generates a large amount of electromotive force or current when an external voltage is applied. This is an element from which photocurrent can be extracted.

光活性層(1)は前述のごとく、一般式(A)で示され
るジアミノカルバゾール誘導体と可視光に吸収を有する
光導電性有機半導体を必須成分として含む層である。
As described above, the photoactive layer (1) is a layer containing as essential components the diaminocarbazole derivative represented by the general formula (A) and a photoconductive organic semiconductor that absorbs visible light.

一般式(A)で表わされるジアミノカルバゾール誘導体
は層中で他の有機半導体やバインダーと結晶化せずに均
一に相溶する能力が高く、また、有機化合物の中ではイ
オン化ポテンシャルが小さく、また正孔移動度も高い。
The diaminocarbazole derivative represented by the general formula (A) has a high ability to uniformly dissolve with other organic semiconductors and binders in the layer without crystallizing, and also has a low ionization potential among organic compounds and a positive Pore mobility is also high.

ここで光活性層(1)での各成分の組成は、ジアミノカ
ルバゾール誘導体 5〜50シt%ロ■視先に吸収を有
する光導電性有機半導体30〜90wt% バインダー         0〜50wt%であり、
好ましくはそれぞれ10〜40wt%、40〜70wL
%、10〜40wL%である。
Here, the composition of each component in the photoactive layer (1) is: diaminocarbazole derivative 5 to 50 wt%; photoconductive organic semiconductor having absorption in the visual field 30 to 90 wt%; binder 0 to 50 wt%;
Preferably 10 to 40 wt% and 40 to 70 wL, respectively.
%, 10 to 40 wL%.

ジアミノカルバゾール誘導体の割合が低くなると、同化
合物の添加の効果が弱くなり、また、ジアミノカルバゾ
ール誘導体の割合が高くなると相対的に光吸収光導電性
有機半導体の濃度が低くなり、それにより光吸収量が小
さくなる。
As the proportion of the diaminocarbazole derivative decreases, the effect of adding the same compound becomes weaker, and as the proportion of the diaminocarbazole derivative increases, the concentration of the light-absorbing photoconductive organic semiconductor becomes relatively low, thereby reducing the amount of light absorbed. becomes smaller.

光導電性有機半導体の割合が低くなると光吸収量が小さ
くなり、また、該割合が高くなると、ジアミノカルバゾ
ール誘導体の濃度が相対的に低くなり、添加効果が弱く
なる。
When the proportion of the photoconductive organic semiconductor becomes low, the amount of light absorbed becomes small, and when the proportion becomes high, the concentration of the diaminocarbazole derivative becomes relatively low, and the effect of addition becomes weak.

バインダーの量が少いとジアミノカルバゾール誘導体が
結晶化する確立が高まり、また、多いと光電荷の発生、
移動にかかわる部分の量が少くなり、効率が低下する。
When the amount of binder is small, the probability that the diaminocarbazole derivative crystallizes increases, and when it is large, the generation of photocharge,
The amount of moving parts is reduced, reducing efficiency.

光活性層の膜厚は0.01〜10μmで適当である。The thickness of the photoactive layer is suitably 0.01 to 10 μm.

最適膜Wは用いる光導電性有機半導体の種類や樹脂によ
っても異なるが0.05〜3μlが好ましい。薄いと光
吸収量が小さくなり、またフロント/背面電極間でピン
ホールの確率が高くなる。
The optimum film W varies depending on the type of photoconductive organic semiconductor and resin used, but is preferably 0.05 to 3 μl. If it is thin, the amount of light absorbed will be small, and the probability of pinholes occurring between the front and back electrodes will increase.

厚くなると発生した正孔および電子の一方が電極に到達
するまでの距離が長くなり、途中で失活する確率が高ま
り、効率が低下する。
When the thickness becomes thicker, the distance for one of the generated holes and electrons to reach the electrode becomes longer, increasing the probability that they will be deactivated on the way, and reducing efficiency.

尚、水層は上記有機半導体を必要ならば樹脂とともに適
当な媒体中に混合し、上記有機半導体が顔料の場合はボ
ールミル等の方法で顔料を粉砕し、均一なスラリーを作
製するが、有機アミン等の溶剤中に顔料を溶解するかし
た後、ジアミノカルバゾール誘導体を添加し、これらを
背面電極あるいは支持体上の背面電極あるいは支持体上
のフロント電極上に塗布して形成される。
For the aqueous layer, mix the above organic semiconductor with a resin if necessary in a suitable medium, and if the above organic semiconductor is a pigment, grind the pigment using a method such as a ball mill to create a uniform slurry. After dissolving the pigment in a solvent such as the like, a diaminocarbazole derivative is added, and these are coated on the back electrode or the back electrode on the support, or the front electrode on the support.

この様に形成された光活性層は、ジアミノカルバゾール
誘導体がない場合とくらべ、開放電圧(Voc)が若干
増大し、また、短絡電流(Jsc)が大幅に上昇する。
The photoactive layer formed in this manner has a slightly increased open circuit voltage (Voc) and a significantly increased short circuit current (Jsc) compared to the case without the diaminocarbazole derivative.

変換効率(η)は次式、η−t o o 、 V o 
c xJ s c X f fPin (Pin:入射光エネルギー、ff:フィルファクター
)で決定される。
The conversion efficiency (η) is expressed by the following formula, η-t o , V o
It is determined by c x J s c X f fPin (Pin: incident light energy, ff: fill factor).

本発明の素子はジアミノカルバゾール誘導体を添加して
いないものとくらべ、高い変換効率をもたらす。この理
由としてジアミノカルバゾール誘導体は有機物としては
低いイオン化ポテンシャルを有するため、光吸収により
光導電性有機半導体中に生成した光電荷のうち、正孔が
容易にジアミノカルバゾール誘導体に注入される。また
、該化合物は正孔移動度も高い。このため、未添加の系
とくらべ、正孔と電子の再結合の確率の低下がもたらさ
れ、また正孔の移動効率の上昇も図られたことが考えら
れる。
The device of the present invention provides higher conversion efficiency than that without the addition of diaminocarbazole derivatives. The reason for this is that since the diaminocarbazole derivative has a low ionization potential as an organic substance, holes among the photocharges generated in the photoconductive organic semiconductor due to light absorption are easily injected into the diaminocarbazole derivative. Furthermore, the compound also has high hole mobility. For this reason, it is considered that the probability of recombination of holes and electrons is lowered and the efficiency of hole transfer is increased compared to the system without addition.

また、勿論外部から電圧を印加した場合にも、大きな光
電流が取り出せ、従って感度に優れた光電変換素子とし
て用いられる。
Moreover, of course, even when a voltage is applied from the outside, a large photocurrent can be extracted, and therefore it is used as a photoelectric conversion element with excellent sensitivity.

本発明で用いられるジアミノカルバゾール誘導体の具体
例としては下記の構造のものが挙げられる。
Specific examples of the diaminocarbazole derivatives used in the present invention include those with the following structures.

フロント電極層及びその支持体についてニアルミニウム
、鉛、亜鉛、タンタル、ニッケル、チタン、コバルト、
ニオブ、銅、ハステロイC1金、白金、銀、パラジウム
等の半透明の金属や酸化スズ、ITO等の金属酸化物等
がフロント電極として使用でき、支持体としては、ガラ
ス、透明プラスチックフィルムが用いられる。
For the front electrode layer and its support: Nialuminum, lead, zinc, tantalum, nickel, titanium, cobalt,
Translucent metals such as niobium, copper, Hastelloy C1 gold, platinum, silver, and palladium, and metal oxides such as tin oxide and ITO can be used as the front electrode, and glass and transparent plastic films can be used as the support. .

背面電極及びその支持体について: ほとんどの金属が背面電極として使用できる。Regarding the back electrode and its support: Most metals can be used as the back electrode.

支持体としてはガラス、透明プラスチックフィルムが用
いられる。
Glass or transparent plastic film is used as the support.

光活性層(I[)について: この層はa)光活性層(I)に使用の顔料の感光波長の
低い領域をおぎなうために、他の電荷発生有機半導体を
含むか、b)光活性層(I)との間で接合障壁を形成す
る層か、C)光活性層(1)で発生した正孔と電子のど
ちらかを有効に移動させる層である。
Regarding the photoactive layer (I[): This layer either a) contains other charge-generating organic semiconductors to cover the low sensitivity wavelength range of the pigments used in the photoactive layer (I), or b) contains a photoactive layer. (I) A layer that forms a junction barrier between the photoactive layer (C) and a layer that effectively moves holes and electrons generated in the photoactive layer (1).

このうちa)の層は後述の光活性層(1)の例示化合物
のうち(1)と補正の色調を有する化合物が効果が高く
、これは光活性層(1)と同様に塗布して形成される。
Among these, for layer a), a compound having a color tone that corrects that of (1) among the exemplified compounds for photoactive layer (1) described later is highly effective, and it is formed by coating in the same manner as photoactive layer (1). be done.

b)の層は酸化亜鉛、酸化チタン、硫化カドミウム、セ
レン結晶、酸化鉛等の微粒子を接着剤樹脂に分散して形
成される。
The layer b) is formed by dispersing fine particles of zinc oxide, titanium oxide, cadmium sulfide, selenium crystals, lead oxide, etc. in an adhesive resin.

C)の層として光活性層(I)の添加剤か、それより更
にIp値の低い電子供与体を適当な樹脂に混合して形成
される。
The layer C) is formed by mixing the additive of the photoactive layer (I) or an electron donor with an even lower Ip value with a suitable resin.

本発明の必須成分として用いられる光吸収性角゛機半導
体はジスアゾ顔料、トリスアゾ顔料等のアゾ顔料、フタ
ロシアニン系顔料、キナクリドン系顔料、ペリレン系顔
料、芳香族多環牛ノン系顔料、インジゴ系顔料、チオイ
ンジゴ系顔料等の顔料やトリフェニルメタン染料、シア
ニン染料、メロシアニン染料等の染料が挙げられる。
The light-absorbing keratotic semiconductor used as an essential component of the present invention includes azo pigments such as disazo pigments and trisazo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, aromatic polycyclic boron pigments, and indigo pigments. , thioindigo pigments, and dyes such as triphenylmethane dyes, cyanine dyes, and merocyanine dyes.

バインダとして用いられる樹脂の例としては、ポリエス
テル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポ
リウレタン樹脂、エポキシ樹脂、アルキッド樹脂、フェ
ノール樹脂、メラミン樹脂、アクリル樹脂、セルロース
樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデ
ン樹脂、フッ化ビニリデン樹脂、ブチラール樹脂、ポリ
ビニルカルバゾール樹脂、ポリスチレン樹脂、ポリイミ
ド樹脂、ポリアクリロニトリル樹脂、塩ビー酢ビ共重合
体、塩化ビニリデン−アクリロニトリル共重合体、スチ
レン−無水マレイン酸共重合体、スチレン−ブタジェン
共重合体、エチルセルロース等が挙げられる。
Examples of resins used as binders include polyester resins, polycarbonate resins, polyamide resins, polyurethane resins, epoxy resins, alkyd resins, phenolic resins, melamine resins, acrylic resins, cellulose resins, vinyl acetate resins, vinyl chloride resins, and vinylidene chloride. Resin, vinylidene fluoride resin, butyral resin, polyvinylcarbazole resin, polystyrene resin, polyimide resin, polyacrylonitrile resin, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-acrylonitrile copolymer, styrene-maleic anhydride copolymer, styrene -butadiene copolymer, ethyl cellulose, etc.

次に本発明の光電変換素子の構造例を第1〜3図に示し
た概略図で説明する。b図はa図で示した光活性層を補
足するために第2の光活性層を追加した例を示す。
Next, structural examples of the photoelectric conversion element of the present invention will be explained with reference to the schematic diagrams shown in FIGS. 1 to 3. Figure b shows an example in which a second photoactive layer is added to supplement the photoactive layer shown in figure a.

図中、■は透光性フロント電極、2は光活性層(I)、
3は光活性層(n)、4は背面電極、5はフロント電極
支持体、6は背面電極支持体を示す。なお、これらの構
造は用途に応じているいろと応用変化させることができ
ることを理解すべきである。
In the figure, ■ is a translucent front electrode, 2 is a photoactive layer (I),
3 is a photoactive layer (n), 4 is a back electrode, 5 is a front electrode support, and 6 is a back electrode support. It should be understood that these structures can be varied in various ways depending on the application.

本発明をさらに具体的に説明するために以下に実施例を
示すが、本発明はこれに限定され゛るものではない。
Examples will be shown below to explain the present invention more specifically, but the present invention is not limited thereto.

実施例1 下記の構造のアゾ顔料0.8gとブチラール樹脂(UC
C社9XYHL)の5%テトラヒドロフラン溶液8gと
を3日間ボールミリングした後にテトラヒドロフランで
更に希釈し 1.5wL%の顔料分散液を作製した。
Example 1 0.8g of azo pigment with the following structure and butyral resin (UC
After ball milling 8 g of a 5% tetrahydrofuran solution from Company C (9XYHL) for 3 days, the dispersion was further diluted with tetrahydrofuran to prepare a 1.5 wL% pigment dispersion.

この顔料分散液に顔料と同Tfl量の添加物(化合物N
o、3)を加え、撹拌した後に塗布液を作製した。
To this pigment dispersion, an additive (compound N
After adding o and 3) and stirring, a coating liquid was prepared.

この塗布液にインジウムをドープした酸化スズ(以下I
TOと称する)を設けたガラス基板を浸漬し、2101
11/秒の速度で基板をひきあげ、ITO基板上に塗膜
を設けた。
This coating solution is indium-doped tin oxide (hereinafter referred to as I).
2101 by dipping a glass substrate provided with
The substrate was pulled up at a speed of 11/sec to form a coating film on the ITO substrate.

この上に、580n1こおける透過率が約5,1%にな
る様に半透明のアルミニウムを真空蒸るした後、ITO
とアルミニウムに銀ペーストにて銅の細線を接続した。
On top of this, semi-transparent aluminum was vacuum-steamed so that the transmittance at 580n1 was about 5.1%, and then ITO
A thin copper wire was connected to the aluminum using silver paste.

この試料に対し、AI電極側から580nmの単色光を
照射(顔料分散膜に到達【また光ff1P+n’を1.
55μv/c−に設定)しながら、画電極にBmv/秒
で掃引されるランプ波を印加して電流−電圧特性を測定
した。その結果 Voc=0.92V Jsc−69,7nA/cd rr−0,20 であった。
This sample is irradiated with 580 nm monochromatic light from the AI electrode side (reaching the pigment dispersion film).
The current-voltage characteristics were measured by applying a ramp wave swept at a rate of Bmv/sec to the picture electrode while applying a ramp wave to the picture electrode. As a result, Voc=0.92V Jsc-69.7nA/cd rr-0.20.

電極の透過率を補正した580■mにおける光電変換特
性(η′)は0.82796であった。
The photoelectric conversion characteristic (η') at 580 μm after correcting the transmittance of the electrode was 0.82796.

比較例1 実施例1の添加剤を加えないこと以外は実施例1と同様
に顔料分散膜を作製し、580■における透過率が7.
7%になるように半透明のアルミニウムを真空蒸着し試
料とした。この試料に580■mの単色光をITO電極
側から入射CPin’−1,6μν/cm2)L、実施
例1と同様に光電変換特性を測定したところ下記のよう
な結果が得られた。
Comparative Example 1 A pigment dispersion film was prepared in the same manner as in Example 1 except that the additives in Example 1 were not added, and the transmittance at 580 cm was 7.
Translucent aluminum was vacuum-deposited to a concentration of 7% and used as a sample. When monochromatic light of 580 .mu.m was incident on this sample from the ITO electrode side CPin'-1,6 .mu.v/cm.sup.2)L, the photoelectric conversion characteristics were measured in the same manner as in Example 1, and the following results were obtained.

Voc=0.74V Jsc−2,50n^/ cd f’f’−0,22 η′閤0.026% 実施例2 実施例1のアゾ顔料を下記の構造のものにした以外は実
施例1と同様に顔料分散液を作製し、同様に添加物(化
合物No、3)を溶解し、塗布υ この分散膜に58OnIIlにおける透過率が4.2%
になるように半透明のアルミニウム(A1)を真空蒸着
し、試料とした。
Voc=0.74V Jsc-2,50n^/ cd f'f'-0,22 η' 0.026% Example 2 Example 1 except that the azo pigment in Example 1 was changed to one with the following structure. A pigment dispersion was prepared in the same manner as above, and the additive (compound No. 3) was similarly dissolved and applied.
Translucent aluminum (A1) was vacuum-deposited to give a sample.

この試料に58On11の単色光をAl電極側から入射
(Pin’ −1,8μw/cd) L、実施例1と同
様に光電変換特性を測定したところ下記の様な結果が得
られた。
When monochromatic light of 58On11 was incident on this sample from the Al electrode side (Pin' -1, 8 μw/cd) L, and the photoelectric conversion characteristics were measured in the same manner as in Example 1, the following results were obtained.

Voc=0.85V Jsc−34,7nA/ cd 「「讃0,13 η−−0,230% 比較例2 実施例2の添加剤を加えないこと以外は実施例2と同様
に顔料分散膜を作製し5B0nmlこおける透過率が7
,2%になるように半透明のアルミニウムを真空蒸着し
、試料とした。
Voc=0.85V Jsc-34,7nA/cd 0.13 η--0.230% Comparative Example 2 A pigment dispersion film was prepared in the same manner as in Example 2 except that the additive in Example 2 was not added. The transmittance of the prepared 5B0nml is 7.
, 2% of translucent aluminum was vacuum-deposited and used as a sample.

この試料に560■mの単色光をAI主電極ら入射(P
in’ −1,6μv/cシ)して、実施例1と同様に
光電変換特性を測定したところ下記の様な結果が得られ
た。
Monochromatic light of 560 μm is incident on this sample from the AI main electrode (P
When the photoelectric conversion characteristics were measured in the same manner as in Example 1, the following results were obtained.

Voc−0,61V Jsc−4,80nA/ cd f’l’−0,20 η−−0,035% 実施例3 実施例1の添加剤を化合物No、2に変えた以外は実施
例1と同様に添加物を含有する試料を作製した。
Voc-0,61V Jsc-4,80nA/cd f'l'-0,20 η--0,035% Example 3 Same as Example 1 except that the additive in Example 1 was changed to compound No. 2. Samples containing additives were similarly prepared.

この試料に580r+mの単色光をAl電極側から入射
(Pin’=1.55μv/cd) L、実施例1と同
様に光電変換特性をfllll定したところ下記の様な
結果が得られた。
Monochromatic light of 580 r+m was incident on this sample from the Al electrode side (Pin' = 1.55 μv/cd) L, and the photoelectric conversion characteristics were determined in the same manner as in Example 1, and the following results were obtained.

Voc−0,88V Jsc−18,lnA/ cj 1’f’−0,23 η ″ −0,21% 実施例4 実施例1の添加剤を化合物No、4に変えた以外は実施
例1と同様に添加物を含有する試料を作製した。
Voc-0,88V Jsc-18,lnA/cj 1'f'-0,23 η'' -0,21% Example 4 Same as Example 1 except that the additive in Example 1 was changed to compound No. 4. Samples containing additives were similarly prepared.

この試料に580■mの単色光をA1電極側から入射(
P[n’= 1.55μv/cシ)し、実施例1と同様
に光電変換特性を測定したところ下記の様な結果が得ら
れた。
Monochromatic light of 580 μm is incident on this sample from the A1 electrode side (
When the photoelectric conversion characteristics were measured in the same manner as in Example 1, the following results were obtained.

Voc=0.90V Jsc−68,3n^/ cd f’f−0,20 η′−〇、77% 実施例5 実施例1のアゾ顔料をβ型銅フタロシアニンに変えた以
外は実施例1と同様に添加物を含有する試料を作製した
Voc=0.90V Jsc-68,3n^/ cd f'f-0,20 η'-〇, 77% Example 5 Same as Example 1 except that the azo pigment in Example 1 was changed to β-type copper phthalocyanine. Samples containing additives were similarly prepared.

この試料に[i20nmO7l1色光をAl電極側から
入射(PIn’=1.5 μv/ant) L、実施例
1と同様に光電変換特性を7111定したところ下記の
様な結果が得られた。
[i20nmO7l1 color light was incident on this sample from the Al electrode side (PIn'=1.5 μv/ant) L, and the photoelectric conversion characteristics were determined in the same manner as in Example 1, and the following results were obtained.

VocJ、94V Jsc−21、8nA/ ci 1’r−0,22 η−−0.30% 比較例3 添加物を加えないこと以外は実施例5と同様に試料を作
製し、620nmの単色光をAI電極から入射(Pin
”−1,5μν/cd)シて、同様に光電変換特性を測
定したところ下記の様な結果が得られた。
VocJ, 94V Jsc-21, 8nA/ci 1'r-0,22 η--0.30% Comparative Example 3 A sample was prepared in the same manner as in Example 5 except that no additives were added, and it was exposed to monochromatic light of 620 nm. is incident from the AI electrode (Pin
When the photoelectric conversion characteristics were measured in the same manner using 1.5μν/cd), the following results were obtained.

Voc−0,72V Jsc−10,4nA/ cd fl’−0,26 η=−0,13% [効 果] 以上述べた様に、本発明によれば、ジアミノカルバゾー
ル誘導体を光活性層に添加することにより、高い光電流
を示し、かつ安価で大面積の光電変換素子が達成できる
Voc-0,72V Jsc-10,4nA/cd fl'-0,26 η=-0,13% [Effect] As described above, according to the present invention, diaminocarbazole derivatives are added to the photoactive layer. By doing so, it is possible to achieve a photoelectric conversion element that exhibits a high photocurrent, is inexpensive, and has a large area.

このため、従来、単独またはバインダーとの混合系で、
低い光電流のため使用不可であった光導電性有機半導体
も有効に利用できる様になり、材料の選択範囲を広げる
ことができる。
For this reason, conventionally, alone or in combination with a binder,
Photoconductive organic semiconductors, which were previously unusable due to their low photocurrent, can now be used effectively, expanding the range of materials to choose from.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜第3図すは本発明の光電変換素子の断面を示
す概略図である。 ■・・・透光性フロント電極、2・・・光活性層(1)
、3・・・光活性層(II)、4・・・背面電極、5・
・・フロント電極支持体、 6・・・背面電極支持体。
FIGS. 1a to 3 are schematic diagrams showing cross sections of the photoelectric conversion element of the present invention. ■...Transparent front electrode, 2...Photoactive layer (1)
, 3... Photoactive layer (II), 4... Back electrode, 5...
...Front electrode support, 6...Back electrode support.

Claims (1)

【特許請求の範囲】  透光性フロント電極、光活性層および背面電極を有す
る光電変換素子において、前記光活性層が少なくとも、
下記一般式で示されるジアミノカルバゾール誘導体を含
有していることを特徴とする光電変換素子。 一般式 ▲数式、化学式、表等があります▼ ただし、上記一般式における、R_1ないしR_5は水
素、置換または無置換のアルキル基、置換または無置換
のアリール基であり、同一であっても異なっていてもよ
い。
[Scope of Claims] A photoelectric conversion element having a translucent front electrode, a photoactive layer, and a back electrode, wherein the photoactive layer at least comprises:
A photoelectric conversion element characterized by containing a diaminocarbazole derivative represented by the following general formula. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, in the above general formula, R_1 to R_5 are hydrogen, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, and they may be the same or different. You can.
JP62312023A 1987-12-11 1987-12-11 Photoelectric converter Pending JPH01154573A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62312023A JPH01154573A (en) 1987-12-11 1987-12-11 Photoelectric converter
US07/450,288 US4992109A (en) 1987-12-11 1989-12-13 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312023A JPH01154573A (en) 1987-12-11 1987-12-11 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH01154573A true JPH01154573A (en) 1989-06-16

Family

ID=18024288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312023A Pending JPH01154573A (en) 1987-12-11 1987-12-11 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH01154573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371016U (en) * 1989-11-17 1991-07-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371016U (en) * 1989-11-17 1991-07-17

Similar Documents

Publication Publication Date Title
US4175982A (en) Photovoltaic cell
CA1096022A (en) Photovoltaic cell
US4281053A (en) Multilayer organic photovoltaic elements
US4164431A (en) Multilayer organic photovoltaic elements
US4127738A (en) Photovoltaic device containing an organic layer
US6153824A (en) Photo-semiconductive electrode and photo-electic cell using the same
CA1085947A (en) Multilayer organic photovoltaic elements
US4992109A (en) Photoelectric conversion element
JPH01154571A (en) Photoelectric converter
JPH01208873A (en) Photoelectric converter
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JPH01154573A (en) Photoelectric converter
JPH01165177A (en) Photoelectric converter
JP4977358B2 (en) Photovoltaic element and manufacturing method thereof
JPH03120763A (en) Photo-electric transducer
JPH01168070A (en) Photoelectric conversion device
JPH01215069A (en) Photoelectric conversion element
JPH01154572A (en) Photoelectric converter
JPH01166575A (en) Photoelectric converter
JP2756711B2 (en) Photoelectric conversion power generation element
JP2516750B2 (en) Photoelectric conversion element
JP2947593B2 (en) Stacked organic solar cells
JPH02162775A (en) Photoelectric conversion element
JP2756712B2 (en) Photoelectric conversion power generation element
JPH02121372A (en) Photoelectric conversion element