JP4977358B2 - Photovoltaic element and manufacturing method thereof - Google Patents

Photovoltaic element and manufacturing method thereof Download PDF

Info

Publication number
JP4977358B2
JP4977358B2 JP2005350764A JP2005350764A JP4977358B2 JP 4977358 B2 JP4977358 B2 JP 4977358B2 JP 2005350764 A JP2005350764 A JP 2005350764A JP 2005350764 A JP2005350764 A JP 2005350764A JP 4977358 B2 JP4977358 B2 JP 4977358B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
electron
compound
accepting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005350764A
Other languages
Japanese (ja)
Other versions
JP2007157999A (en
Inventor
義弘 磯野
ラフィックル イスラム モハメッド
啓介 椎名
弘章 遠藤
雅樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Tec Co Ltd
Original Assignee
U Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Tec Co Ltd filed Critical U Tec Co Ltd
Priority to JP2005350764A priority Critical patent/JP4977358B2/en
Publication of JP2007157999A publication Critical patent/JP2007157999A/en
Application granted granted Critical
Publication of JP4977358B2 publication Critical patent/JP4977358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、太陽電池,光センサ,フォトダイオードなどに有用な光起電力素子およびその製造方法に関し、更に詳しくは、ヘテロpn接合による内部電界を利用した光起電力素子およびその製造方法に関する。   The present invention relates to a photovoltaic device useful for solar cells, photosensors, photodiodes, and the like, and a method for manufacturing the same, and more particularly to a photovoltaic device using an internal electric field by a hetero pn junction and a method for manufacturing the photovoltaic device.

近年、環境に優しいエネルギーとして、太陽エネルギーの利用研究が活発に行なわれており、中でも、燃料が不要でかつ無尽蔵なクリーンエネルギーとして、太陽電池(光起電力素子)の本格的な実用化が大いに期待されている。この太陽電池のタイプとしては、単結晶、多結晶あるいはアモルファスのSiを用いたシリコン系太陽電池、GaAs,CdS等を用いた化合物半導体系太陽電池、有機色素や導電性高分子を用いた有機半導体系太陽電池、あるいは金属酸化物系(色素増感型)太陽電池等が知られている。   In recent years, research on the use of solar energy has been actively conducted as environmentally friendly energy, and in particular, full-scale practical application of solar cells (photovoltaic devices) has been greatly promoted as clean energy that does not require fuel and is inexhaustible. Expected. As the type of this solar cell, a silicon solar cell using monocrystalline, polycrystalline or amorphous Si, a compound semiconductor solar cell using GaAs, CdS, etc., an organic semiconductor using an organic dye or a conductive polymer Known are solar cells, metal oxide (dye sensitized) solar cells, and the like.

ところで、現在最も普及しているシリコン系太陽電池や化合物半導体系太陽電池は、光電変換効率が高いという特徴を有するが、その反面、材料・製造コストが高く、作製に際して大規模な製造設備と多くのエネルギーを要することや、有毒な原料ガスを用いる等の問題も指摘されている。   By the way, silicon solar cells and compound semiconductor solar cells, which are most widely used at present, are characterized by high photoelectric conversion efficiency, but on the other hand, their materials and manufacturing costs are high, and many large-scale manufacturing facilities and many are required for manufacturing. It has been pointed out that it requires a lot of energy and uses toxic source gas.

一方、有機半導体を用いた光起電力素子は、材料が比較的安価で、大規模な設備や有毒な原料を必要とせず、大量生産によるコストダウンが期待できるため、その光電変換効率の向上を狙った研究開発が行なわれており、例えば、ペリレン誘導体からなる電子受容性(n型)有機物層と塩化インジウムフタロシアニンからなる電子供与性(p型)有機物層とを積層して形成した有機光起電力素子(特許文献1)、バインダー樹脂中に電子供与性有機顔料を分散させたp型半導体層と電子受容性有機顔料の蒸着膜からなるn型半導体層とを積層して形成した有機太陽電池(特許文献2)や、p型有機半導体層の一方の表面上にn型無機半導体粉末を分散・沈降させて形成した光電変換層を有する太陽電池(特許文献3)等の提案がなされている。
特開平5−275728号公報 特開平7−240530号公報 特開2004−55686号公報
On the other hand, photovoltaic devices using organic semiconductors are relatively inexpensive, do not require large-scale equipment and toxic raw materials, and can be expected to reduce costs through mass production. For example, organic photovoltaics formed by laminating an electron-accepting (n-type) organic material layer made of a perylene derivative and an electron-donating (p-type) organic material layer made of indium phthalocyanine chloride. Power element (Patent Document 1), organic solar cell formed by laminating a p-type semiconductor layer in which an electron-donating organic pigment is dispersed in a binder resin and an n-type semiconductor layer made of a deposited film of an electron-accepting organic pigment (Patent Document 2) and solar cells (Patent Document 3) having a photoelectric conversion layer formed by dispersing and precipitating n-type inorganic semiconductor powder on one surface of a p-type organic semiconductor layer have been proposed.
JP-A-5-275728 JP-A-7-240530 JP 2004-55686 A

しかしながら、n型有機半導体は、空気中で不安定であり、酸素と結合するとその性質が変化してp型に反転してしまうだけでなく、電荷移動度も低いという問題がある。そのため、特許文献1,2のようなp型有機半導体/n型有機半導体からなるヘテロ接合光起電力素子は、光電変換効率の向上が難しく、また製造に際し、脱酸素環境を構築するための大掛かりな設備が必要となる場合がある。   However, n-type organic semiconductors are unstable in the air, and when they are combined with oxygen, their properties change and invert to p-type, and there is a problem that charge mobility is low. Therefore, the heterojunction photovoltaic device made of p-type organic semiconductor / n-type organic semiconductor as in Patent Documents 1 and 2 is difficult to improve the photoelectric conversion efficiency, and is a large scale for constructing a deoxygenation environment in manufacturing. Equipment may be required.

また、特許文献3のように、n型無機半導体粉末をp型有機半導体層に分散・沈降させて光電変換層を形成する方法は、粉末の沈降状態のコントロールが難しく、均質な光電変換層を形成することが困難であると考えられるため、製品歩留まりの低下が懸念される。   Further, as in Patent Document 3, the method of forming a photoelectric conversion layer by dispersing and precipitating n-type inorganic semiconductor powder in a p-type organic semiconductor layer is difficult to control the sedimentation state of the powder, and a homogeneous photoelectric conversion layer is formed. Since it is thought that it is difficult to form, there is a concern about a decrease in product yield.

本発明は、上記する課題に対処するためになされたものであり、安価でかつ光電変換効率の高いヘテロpn接合型の光起電力素子と、この光起電力素子を安全に低コストで作製でき、大面積にも対応可能な製造方法を提供することを目的としている。   The present invention has been made in order to cope with the above-described problems, and is capable of producing a hetero pn junction type photovoltaic element that is inexpensive and has high photoelectric conversion efficiency, and can be manufactured safely and at low cost. An object of the present invention is to provide a manufacturing method capable of dealing with a large area.

安価でかつ大面積化にも対応できる光起電力素子を考えた場合、n型半導体層とp型半導体層とを、複雑な製造設備を必要としない塗布製法により積層して形成できれば、そのメリットは極めて大きい。本発明者は、塗布による積層が可能なpn接合を種々検討した結果、増感剤として塩基性染料を添加したn型無機半導体と、電子受容性化合物を添加したp型有機半導体とを組み合わせることにより、光電変換効率を従来に比べ大幅に向上させられることを見出した。   When considering a photovoltaic device that is inexpensive and can accommodate a large area, it is advantageous if an n-type semiconductor layer and a p-type semiconductor layer can be laminated by a coating method that does not require complicated manufacturing equipment. Is extremely large. As a result of various investigations of pn junctions that can be laminated by coating, the present inventor combined an n-type inorganic semiconductor added with a basic dye as a sensitizer and a p-type organic semiconductor added with an electron-accepting compound. Thus, it has been found that the photoelectric conversion efficiency can be significantly improved as compared with the conventional one.

本発明は以上のような知見に基づき行なわれたものであり、請求項1に記載の発明は、少なくとも一方が透光性を有する2つの電極の間に、互いに隣接するn型半導体層とp型半導体層とが配置された光起電力素子であって、前記n型半導体層が、電子受容性無機物を主成分とし、塩基性染料を含有する材料から構成されているとともに、前記p型半導体層が、電子供与性有機物を主成分とし、電子受容性化合物を含有する材料から構成されており、前記n型半導体層を構成する電子受容性無機物および塩基性染料が、それぞれ酸化亜鉛化合物およびローダミン化合物であり、前記p型半導体層を構成する電子供与性有機物および電子受容性化合物が、それぞれフタロシアニン化合物およびフルオレノン系化合物であることを特徴とする。 The present invention has been made on the basis of the above findings, and the invention according to claim 1 is characterized in that at least one of the n-type semiconductor layers and p adjacent to each other between two electrodes having translucency. The n-type semiconductor layer is composed of a material containing an electron-accepting inorganic substance as a main component and a basic dye, and the p-type semiconductor. The layer is composed of a material containing an electron-donating organic substance as a main component and containing an electron-accepting compound, and the electron-accepting inorganic substance and the basic dye constituting the n-type semiconductor layer are a zinc oxide compound and a rhodamine, respectively. The electron-donating organic substance and the electron-accepting compound that are compounds and constitute the p-type semiconductor layer are a phthalocyanine compound and a fluorenone compound, respectively .

すなわち、請求項1に記載の発明によれば、少なくとも一方が透光性を有する2つの電極の間に、電子受容性無機物を主成分とし、塩基性染料を含有する材料から構成されたn型半導体層と、電子供与性有機物を主成分とし、電子受容性化合物を含有する材料から構成されたp型半導体層とによるヘテロ接合半導体膜を形成することにより、光電変換効率の高い光起電力素子を実現することができる。   That is, according to the first aspect of the present invention, at least one of the two electrodes having translucency is an n-type composed of a material containing an electron-accepting inorganic substance as a main component and containing a basic dye. Photovoltaic element having high photoelectric conversion efficiency by forming a heterojunction semiconductor film comprising a semiconductor layer and a p-type semiconductor layer composed mainly of an electron-donating organic material and containing an electron-accepting compound Can be realized.

なお、この半導体膜を形成する方法としては、塗布による作製が最も安全かつ容易である。従って、塗布法により半導体膜を形成する場合、これら半導体膜の主成分である電子受容性無機物および電子供与性有機物は、塗布用の溶液作製に用いる溶剤に分散させることができるものが望ましい。また、これら電子受容性無機物および電子供与性有機物に添加される塩基性染料および電子受容性化合物も、主成分に対して分子レベルで均一に付着させることが必要であるため、同じく塗布用の溶液作製に用いる溶剤に分散(溶解)できるものが望ましい。   As a method for forming this semiconductor film, production by coating is the safest and easiest. Therefore, when a semiconductor film is formed by a coating method, it is desirable that the electron-accepting inorganic substance and the electron-donating organic substance, which are the main components of these semiconductor films, can be dispersed in a solvent used for preparing a coating solution. Also, since the basic dye and the electron accepting compound added to these electron accepting inorganic substance and electron donating organic substance need to be uniformly attached to the main component at the molecular level, the same solution for coating Those that can be dispersed (dissolved) in the solvent used for the production are desirable.

また、上記のような化合物の組み合わせにより、光起電力素子の変換効率を最適に設計することが可能となる。なお、n型半導体層における酸化亜鉛化合物とローダミン化合物の好ましい配合比(重量)は80:1〜10:1、更に好ましくは60:1〜20:1の範囲であり、p型半導体層におけるフタロシアニン化合物とフルオレノン系化合物の好ましい配合比(重量)は20:1〜2:1、更に好ましくは10:1〜10:3の範囲である。 Moreover, it becomes possible to design the conversion efficiency of a photovoltaic device optimally by the combination of the above compounds. In addition, the preferable compounding ratio (weight) of the zinc oxide compound and the rhodamine compound in the n-type semiconductor layer is in the range of 80: 1 to 10: 1, more preferably 60: 1 to 20: 1, and the phthalocyanine in the p-type semiconductor layer. A preferable blending ratio (weight) of the compound and the fluorenone compound is in the range of 20: 1 to 2: 1, more preferably 10: 1 to 10: 3.

また、前記透光性を有する一方側電極に対向する他方側電極は、樹脂中に導電性物質を分散させた材料を用いて形成することが好ましい(請求項)。 The other side electrode opposed to the one side electrode having the light transmitting property, it is preferably formed using a material obtained by dispersing a conductive material in the resin (claim 2).

この構成により、他方側電極を塗布により作製することが可能となる。従って、本発明の光起電力素子によれば、透光性を有する一方側電極を除くすべての構造を、塗布のみで形成することができる。   This configuration makes it possible to produce the other electrode by coating. Therefore, according to the photovoltaic element of the present invention, all structures except for the translucent one-side electrode can be formed only by coating.

次に、請求項に記載の発明は、少なくとも一方が透光性を有する2つの電極の間に、互いに隣接するn型半導体層とp型半導体層とが形成された光起電力素子の製造方法であって、電子受容性無機物としての酸化亜鉛化合物に塩基性染料としてのローダミン化合物とバインダー樹脂と溶剤を添加したn型半導体塗布液と、電子供与性有機物としてのフタロシアニン化合物に電子受容性化合物としてのフルオレノン系化合物とバインダー樹脂と溶剤を添加したp型半導体塗布液とを、前記透光性を有する一方側電極の上に順次塗布して積層させて電子受容性無機物を主成分とする前記n型半導体層と電子供与性有機物を主成分とする前記p型半導体層を形成した後、これら半導体層の上に前記一方側電極に対向する他方側電極を形成することを特徴とする。 Next, according to a third aspect of the present invention, there is provided a photovoltaic device in which an n-type semiconductor layer and a p-type semiconductor layer adjacent to each other are formed between two electrodes, at least one of which has translucency. An n-type semiconductor coating solution in which a rhodamine compound as a basic dye , a binder resin and a solvent are added to a zinc oxide compound as an electron-accepting inorganic substance, and an electron-accepting compound to a phthalocyanine compound as an electron-donating organic substance The fluorenone-based compound, a p-type semiconductor coating solution to which a binder resin and a solvent are added are sequentially applied and laminated on the translucent one-side electrode, and the electron-accepting inorganic material is the main component. after forming the p-type semiconductor layer composed mainly of n-type semiconductor layer and the electron donating organic material, on these semiconductor layers, child forms the other side electrode opposed to the one side electrode The features.

また、前記他方側電極を、前記n型半導体層及び前記p型半導体層の上に、樹脂中に導電性物質を分散させた導電性ペーストを塗布することにより形成することが好ましい(請求項4)。
以上の方法により、透光性を有する一方の電極を除くすべての構造(半導体層および他方の電極)を、塗布のみで形成することができる。従って、本発明の製造方法によれば、従来のような大規模な設備を用いることなく、光起電力素子を安全かつ低コストで製造することが可能になるとともに、連続生産設備が容易に構築できることから、光起電力素子の大面積化への対応も容易になる。
Preferably, the other electrode is formed by applying a conductive paste in which a conductive substance is dispersed in a resin on the n-type semiconductor layer and the p-type semiconductor layer. ).
By the above method, all the structures (semiconductor layer and the other electrode) except for one electrode having translucency can be formed only by coating. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture a photovoltaic device safely and at low cost without using a large-scale facility as in the past, and easily construct a continuous production facility. As a result, it is possible to easily cope with an increase in the area of the photovoltaic element.

以上のように、本発明の光起電力素子によれば、従来の有機光起電力素子に比べ、大幅に光電変換効率を向上させることができる。   As described above, according to the photovoltaic element of the present invention, the photoelectric conversion efficiency can be greatly improved as compared with the conventional organic photovoltaic element.

また、本発明の光起電力素子の製造方法によれば、光電変換効率の高い光起電力素子を低コストで作製することが可能になるとともに、この光起電力素子の大面積化も、比較的容易に行なうことができる。   In addition, according to the method for manufacturing a photovoltaic device of the present invention, it is possible to produce a photovoltaic device with high photoelectric conversion efficiency at a low cost. Can be done easily.

以下、図面を参照しつつこの発明を実施するための形態について説明する。
図1および図2は、本発明の実施形態における光起電力素子の概略構成図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
1 and 2 are schematic configuration diagrams of a photovoltaic element according to an embodiment of the present invention.

本実施形態における光起電力素子は、図1のように、透明な絶縁性基板1と、表面電極となる透明電極2と、n型半導体層3と、p型半導体層4と、背面(裏面)電極層5とから構成されている。なお、電極に取り付けられるリード(電線)や光起電力素子への水分の浸入を防止する防護樹脂等は、図示を省略している。   As shown in FIG. 1, the photovoltaic element in this embodiment includes a transparent insulating substrate 1, a transparent electrode 2 to be a surface electrode, an n-type semiconductor layer 3, a p-type semiconductor layer 4, and a back surface (back surface). ) Electrode layer 5. In addition, illustration is abbreviate | omitted about the lead (electric wire) attached to an electrode, protective resin etc. which prevent the penetration | invasion of the water | moisture content to a photovoltaic element.

透明絶縁性基板1は、可視光領域の波長を広く透過するものが好ましく、例えばガラス,プラスチックフィルム等を、シート状あるいはプレート状など、適宜の形で用いることができる。また、透明電極2は、透明絶縁性基板1と同様、可視光領域の波長を広く透過するものが好ましく、酸化スズインジウム(ITO),酸化スズ(NESA),酸化インジウム等が用いられる。   The transparent insulating substrate 1 is preferably one that transmits a wide range of wavelengths in the visible light region. For example, glass, plastic film, or the like can be used in an appropriate form such as a sheet or plate. Further, like the transparent insulating substrate 1, the transparent electrode 2 preferably transmits a wide wavelength in the visible light region, and indium tin oxide (ITO), tin oxide (NESA), indium oxide, or the like is used.

本実施形態における光起電力素子の特徴は、電子受容性無機物と塩基性染料およびバインダー樹脂からなるn型半導体層3と、電子供与性有機物と電子受容性化合物およびバインダー樹脂からなるp型半導体層4とによるヘテロpn接合型半導体膜が形成されている点である。   The photovoltaic element in this embodiment is characterized by an n-type semiconductor layer 3 made of an electron-accepting inorganic substance, a basic dye and a binder resin, and a p-type semiconductor layer made of an electron-donating organic substance, an electron-accepting compound and a binder resin. 4 is a hetero pn junction type semiconductor film.

本実施形態においてn型半導体層3に用いることのできる電子受容性無機物としては、酸化亜鉛(ZnO),二酸化チタン(TiO)等の金属酸化物半導体が挙げられるが、特に好ましくは、酸化亜鉛顔料が使用される。なお、この酸化亜鉛顔料は、粉末の平均粒径が数nm〜数十nm程度のものを使用することができる。しかしながら、光電変換効率の観点からすると、平均粒径が20〜30nmであるものを用いることが望ましい。 Examples of the electron-accepting inorganic material that can be used for the n-type semiconductor layer 3 in the present embodiment include metal oxide semiconductors such as zinc oxide (ZnO) and titanium dioxide (TiO 2 ), and zinc oxide is particularly preferable. Pigments are used. In addition, as this zinc oxide pigment, a powder having an average particle diameter of about several nm to several tens of nm can be used. However, from the viewpoint of photoelectric conversion efficiency, it is desirable to use one having an average particle diameter of 20 to 30 nm.

また、本実施形態においてn型半導体層3に用いる塩基性染料としては、ローダミンB,ローダミン6G等のキサンテン染料、メチレンブルー,メチレンバイオレット等のチアジン染料などを挙げることができる。前記電子受容性無機物に酸化亜鉛顔料を用いる場合は、ローダミンBが好適である。   In addition, examples of the basic dye used for the n-type semiconductor layer 3 in the present embodiment include xanthene dyes such as rhodamine B and rhodamine 6G, and thiazine dyes such as methylene blue and methylene violet. Rhodamine B is preferred when a zinc oxide pigment is used for the electron-accepting inorganic material.

更にまた、本実施形態においてn型半導体層3に用いるバインダー樹脂は、ポリビニルブチラール樹脂,ポリビニルホルマール樹脂,ポリスチレン樹脂,ポリエステル樹脂,セルロース系樹脂等の広範囲な絶縁性樹脂から選択することができる。これらのバインダー樹脂は、単独または2種以上を混合して使用しても良い。なお、本実施形態においては、ポリビニルブチラール樹脂を好適に採用した。また、前記電子受容性無機物とバインダー樹脂との好ましい配合比(重量)は40:1〜1:1、更に好ましくは20:1〜5:1の範囲である。   Furthermore, the binder resin used for the n-type semiconductor layer 3 in this embodiment can be selected from a wide range of insulating resins such as polyvinyl butyral resin, polyvinyl formal resin, polystyrene resin, polyester resin, and cellulose resin. These binder resins may be used alone or in combination of two or more. In the present embodiment, polyvinyl butyral resin is suitably employed. Moreover, the preferable compounding ratio (weight) of the said electron-accepting inorganic substance and binder resin is the range of 40: 1 to 1: 1, More preferably, it is the range of 20: 1 to 5: 1.

次に、本実施形態においてp型半導体層4に用いることのできる電子供与性有機物としては、フタロシアニン系顔料,キナクリドン系顔料,インジゴあるいはチオインジゴ系顔料(染料)等が挙げられるが、特に好ましくは、フタロシアニン系顔料が使用される。なお、ここで用いるフタロシアニン系顔料とは、例えば、無金属フタロシアニンおよび金属フタロシアニン,並びにこれらの環の一部を適当な置換基によって置換したものである。また、金属フタロシアニンの中心金属としては、マグネシウム(Mg),亜鉛(Zn),銅(Cu),銀(Ag),アルミニウム(Al),チタン(Ti),鉄(Fe),コバルト(Co),スズ(Sn)などが挙げられる。なお、フタロシアニン系顔料は、粉末の平均粒径が数μm〜数十μm程度のものが好ましく、光電変換効率の観点からすると、平均粒径が0.1〜10μmであるものを用いることが望ましい。   Next, examples of the electron-donating organic substance that can be used for the p-type semiconductor layer 4 in the present embodiment include phthalocyanine pigments, quinacridone pigments, indigo, and thioindigo pigments (dyes). Phthalocyanine pigments are used. The phthalocyanine pigment used here is, for example, metal-free phthalocyanine, metal phthalocyanine, and a part of these rings substituted with an appropriate substituent. As the central metal of metal phthalocyanine, magnesium (Mg), zinc (Zn), copper (Cu), silver (Ag), aluminum (Al), titanium (Ti), iron (Fe), cobalt (Co), Tin (Sn) etc. are mentioned. The phthalocyanine pigment preferably has a powder average particle size of about several μm to several tens of μm. From the viewpoint of photoelectric conversion efficiency, it is desirable to use a pigment having an average particle size of 0.1 to 10 μm. .

また、本実施形態においてp型半導体層4に用いる電子受容性化合物としては、p−ベンゾキノン,クロラニル,アントラキノン等のキノン系化合物、2,4,7−トリニトロフルオレノン,2,4,7,9−テトラニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物などを挙げることができる。前記電子供与性有機物にフタロシアニン系顔料を用いる場合は、2,4,7−トリニトロフルオレノンが好適である。   Moreover, as an electron-accepting compound used for the p-type semiconductor layer 4 in this embodiment, quinone compounds, such as p-benzoquinone, chloranil, anthraquinone, 2,4,7-trinitrofluorenone, 2,4,7,9 -Fluorenone compounds such as tetranitrofluorenone, xanthone compounds, benzophenone compounds, cyanovinyl compounds and the like can be mentioned. When a phthalocyanine pigment is used as the electron donating organic substance, 2,4,7-trinitrofluorenone is preferable.

また、p型半導体層4に用いるバインダー樹脂も、前記n型半導体層3における例と同様、ポリビニルブチラール樹脂,ポリビニルホルマール樹脂,ポリスチレン樹脂,ポリエステル樹脂,セルロース系樹脂等の広範囲な絶縁性樹脂から選択することができる。これらのバインダー樹脂は、単独または2種以上を混合して使用しても良い。なお、p型半導体層4においても、ポリビニルブチラール樹脂を好適に採用した。また、p型半導体4における電子供与性有機物とバインダー樹脂との好ましい配合比(重量)は10:1〜1:1、更に好ましくは6:1〜2:1の範囲である。   The binder resin used for the p-type semiconductor layer 4 is also selected from a wide range of insulating resins such as polyvinyl butyral resin, polyvinyl formal resin, polystyrene resin, polyester resin, and cellulose resin, as in the example of the n-type semiconductor layer 3. can do. These binder resins may be used alone or in combination of two or more. In addition, also in the p-type semiconductor layer 4, polyvinyl butyral resin was suitably adopted. Moreover, the preferable compounding ratio (weight) of the electron-donating organic substance and the binder resin in the p-type semiconductor 4 is in the range of 10: 1 to 1: 1, more preferably 6: 1 to 2: 1.

以上の構成により、本実施形態における光起電力素子は、従来の有機光起電力素子に比べ、その光電変換効率を大幅に向上させることができた。   With the above configuration, the photovoltaic device in the present embodiment can significantly improve the photoelectric conversion efficiency as compared with the conventional organic photovoltaic device.

なお、この光起電力素子が光起電力を有する理由は、n型半導体とp型半導体との界面で、両層のフェルミレベルの違いによって生じる界面近傍の内部電界に起因していると考えられる。すなわち、この内部電界が働く領域に光が吸収されることによりキャリアが発生し、内部電界によって電子と正孔に分離され、最終的に外部に電流として取り出されるものと思われる。   The reason why this photovoltaic element has photovoltaic power is considered to be due to an internal electric field in the vicinity of the interface caused by the difference in Fermi level between the two layers at the interface between the n-type semiconductor and the p-type semiconductor. . That is, it is considered that carriers are generated by absorbing light in the region where the internal electric field works, and are separated into electrons and holes by the internal electric field and finally taken out as current.

また、本発明の特徴であるn型半導体に塩基性染料を添加すること、および、p型半導体に電子受容性化合物を添加すること、による光電変換効率の向上(増感)のメカニズムは、各層での電子的相互作用による電子濃度や正孔濃度の増大、あるいは、キャリアの解離効率の促進または再結合が抑制されることにより、キャリアの生成・移動が有利に行なわれている、などが考えられる。   Moreover, the mechanism of the improvement (sensitization) of photoelectric conversion efficiency by adding a basic dye to an n-type semiconductor and adding an electron-accepting compound to a p-type semiconductor, which are the characteristics of the present invention, is as follows. The increase in the electron and hole concentrations due to the electronic interaction at the surface, or the promotion of the carrier dissociation efficiency or the suppression of recombination, which is advantageous for the generation and movement of carriers. It is done.

次に、本実施形態における光起電力素子を製造する方法について説明する。
この光起電力素子は、電子受容性無機物(酸化亜鉛顔料)に所定量の塩基性染料(ローダミンB)とバインダー樹脂(ポリビニルブチラール樹脂)と溶剤を添加したn型半導体塗布液と、電子供与性有機物(フタロシアニン系顔料)に所定量の電子受容性化合物(2,4,7−トリニトロフルオレノン)とバインダー樹脂(ポリビニルブチラール樹脂)と溶剤を添加したp型半導体塗布液とを、透明電極2の上に順次塗布して積層させた後、これら半導体層の上に、樹脂中に導電性物質を分散させた導電性ペーストを塗布し、前記透明電極2に対向する背面電極層5を形成する方法により形成されている。
Next, a method for manufacturing the photovoltaic element in the present embodiment will be described.
This photovoltaic device comprises an n-type semiconductor coating solution in which a predetermined amount of a basic dye (rhodamine B), a binder resin (polyvinyl butyral resin) and a solvent are added to an electron-accepting inorganic substance (zinc oxide pigment), and an electron-donating property. A p-type semiconductor coating solution in which a predetermined amount of an electron-accepting compound (2,4,7-trinitrofluorenone), a binder resin (polyvinyl butyral resin) and a solvent are added to an organic substance (phthalocyanine pigment) A method of forming a back electrode layer 5 facing the transparent electrode 2 by applying a conductive paste in which a conductive substance is dispersed in a resin after applying and laminating sequentially on the semiconductor layer. It is formed by.

半導体塗布液の作製は、これら所定の原料を溶媒(有機溶剤)により分散させることにより行なわれる。有機溶剤としては、メタノール,エタノール,n−プロパノール,i−プロパノール等のアルコール類、メチルエチルケトン,シクロヘキサノン等のケトン類、テトラヒドロフラン,ジオキサン,ジメチルセロソルブ等の環状または鎖状のエーテル類、ベンゼン,トルエン,キシレン等の芳香族炭化水素類などを、単独または2種以上混合して用いることができる。   The semiconductor coating liquid is produced by dispersing these predetermined raw materials with a solvent (organic solvent). Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol and i-propanol, ketones such as methyl ethyl ketone and cyclohexanone, cyclic or chain ethers such as tetrahydrofuran, dioxane and dimethyl cellosolve, benzene, toluene and xylene. Aromatic hydrocarbons and the like can be used alone or in admixture of two or more.

なお、半導体塗布液は、これらを構成ずる材料を分子レベルで全体に均一に分散・溶解させる必要がある。従って、材料を混合した後は、ホモジナイザー,超音波,ボールミル,サンドミル,アトライター等を用いた従来公知の方法により、微粒子状に分散させることが重要である。   The semiconductor coating solution needs to uniformly disperse and dissolve the materials constituting them at the molecular level. Therefore, after mixing the materials, it is important to disperse them into fine particles by a conventionally known method using a homogenizer, ultrasonic waves, a ball mill, a sand mill, an attritor or the like.

半導体層の作製は、透明絶縁性基板1の上に透明電極2を載置した後、前述の半導体塗布液を用いて、例えば、ディップコート法,エアナイフコート法,ローラーコート法,ワイヤーバーコート法,スピンコート法等により、n型半導体層3とp型半導体4とを順次積層した。膜厚は、それぞれ一般的には0.01〜3.0μm程度が好ましく、更に好ましくは0.1〜2.0μmである。   For example, the semiconductor layer is prepared by placing the transparent electrode 2 on the transparent insulating substrate 1 and then using, for example, the dip coating method, the air knife coating method, the roller coating method, the wire bar coating method using the semiconductor coating solution described above. The n-type semiconductor layer 3 and the p-type semiconductor 4 were sequentially stacked by spin coating or the like. In general, the thickness is preferably about 0.01 to 3.0 μm, more preferably 0.1 to 2.0 μm.

積層された半導体層を十分乾燥させた後、この半導体層の上に、背面電極層5を形成する。この背面電極層5を形成するのに用いられる導電性ペーストには、導電性のカーボンブラックを樹脂中に分散させたカーボンペーストや金属微粒子を樹脂中に分散させた金属ペースト等が用いられる。この背面電極層5の膜厚は、1〜50μm程度が好ましい。   After the laminated semiconductor layers are sufficiently dried, the back electrode layer 5 is formed on the semiconductor layers. As the conductive paste used to form the back electrode layer 5, a carbon paste in which conductive carbon black is dispersed in a resin, a metal paste in which metal fine particles are dispersed in a resin, or the like is used. The thickness of the back electrode layer 5 is preferably about 1 to 50 μm.

以上の製造方法により、本実施形態における光起電力素子は、従来の製造方法で必須であった蒸着等の真空プロセスや高温プロセス、あるいは安全上問題のあるガスや脱酸素環境を用いることなく、透明絶縁性基板1および透明電極2を除く半導体層および他方側の電極(背面電極層5)を、通常の大気圧(常温)環境下で形成することが可能となる。また、この製造方法は、従来の光起電力素子で用いられているようなバッチ式生産設備だけではなく、長尺・大面積の光起電力素子を製造することのできる連続生産設備の構築も容易となる。   By the above manufacturing method, the photovoltaic device in the present embodiment can be used without using a vacuum process or a high temperature process such as vapor deposition, which is essential in the conventional manufacturing method, or a gas or deoxygenated environment with safety problems. The semiconductor layer excluding the transparent insulating substrate 1 and the transparent electrode 2 and the electrode on the other side (back electrode layer 5) can be formed in a normal atmospheric pressure (normal temperature) environment. In addition, this manufacturing method is not limited to batch-type production equipment used in conventional photovoltaic devices, but can also be used to construct continuous production equipment that can produce photovoltaic devices with long and large areas. It becomes easy.

なお、本発明における背面(裏面)電極の構成は本実施形態における例に限られるものではなく、半導体層とオーミックに接合させることのできるその他の導電性膜でも良い。例えば、蒸着法あるいはスパッタリング法により、Au,Ag等の仕事関数の小さい金属による被膜を形成しても良い。   The configuration of the back (back) electrode in the present invention is not limited to the example in the present embodiment, and may be other conductive film that can be ohmic-bonded to the semiconductor layer. For example, a film made of a metal having a small work function such as Au or Ag may be formed by vapor deposition or sputtering.

また、光起電力素子の構成も、前述の実施形態における例に限られるものではなく、素子の必要特性や設置環境に合わせ、適宜変更することができる。また、例えば図2のように、n型半導体層3とp型半導体層4とを更に多層に積層させ、デュアルヘテロpn接合としても良い。   Further, the configuration of the photovoltaic element is not limited to the example in the above-described embodiment, and can be appropriately changed according to the required characteristics of the element and the installation environment. Further, for example, as shown in FIG. 2, the n-type semiconductor layer 3 and the p-type semiconductor layer 4 may be further laminated in multiple layers to form a dual hetero pn junction.

次に、以上の実施形態における光起電力素子の効果を確認すべく、本発明の構成を採用した実施例と、塩基性染料を添加しないn型半導体層および電子受容性化合物を添加しないp型半導体層を有する比較例を用いて、実際に光電変換特性を測定した実験結果について述べる。   Next, in order to confirm the effect of the photovoltaic device in the above embodiment, an example employing the configuration of the present invention, an n-type semiconductor layer to which no basic dye is added, and a p-type to which no electron accepting compound is added An experimental result obtained by actually measuring photoelectric conversion characteristics using a comparative example having a semiconductor layer will be described.

[実施例1]
試験に用いた素子は、前記実施形態で説明したシングル構成のヘテロpn接合型半導体層を有する光起電力素子である。先ず、素子の作製に先立ち、半導体塗布液の調整を行なった。
[Example 1]
The element used for the test is the photovoltaic element having the single-structure hetero pn junction type semiconductor layer described in the above embodiment. First, the semiconductor coating solution was adjusted prior to device fabrication.

n型半導体塗布液は、バインダー樹脂としてのポリビニルブチラール樹脂(積水化学社製:エスレックBM−1)1重量部に対して、酸化亜鉛粉末(テイカ社製:MZ−500,平均粒径20〜30nm)を12重量部、ローダミンB(東京化成工業社製)を0.3重量部と、溶剤としてのイソプロピルアルコールを20重量部とを、1mmφのジルコニウムボールとともに容器に入れ、遊星型ボールミルを用いて1時間かく拌し、スラリー状のn型半導体分散液を得た。   The n-type semiconductor coating liquid is zinc oxide powder (manufactured by Teika: MZ-500, average particle size 20-30 nm) with respect to 1 part by weight of polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd .: ESREC BM-1) as a binder resin. ) 12 parts by weight, Rhodamine B (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.3 parts by weight, and 20 parts by weight of isopropyl alcohol as a solvent are placed in a container together with a 1 mmφ zirconium ball, and a planetary ball mill is used. The mixture was stirred for 1 hour to obtain a slurry n-type semiconductor dispersion.

また、p型半導体塗布液は、バインダー樹脂としてのポリビニルブチラール樹脂(積水化学社製:エスレックBX−1)1重量部に対して、無金属フタロシアニン粉末(東京化成工業社製,平均粒径2〜10μm)を4重量部、2,4,7−トリニトロフルオレノン(東京化成工業社製)を1重量部と、溶剤としてのジメチルセロソルブを20重量部とを、1mmφのジルコニウムボールとともに容器に入れ、遊星型ボールミルを用いて2時間かく拌し、スラリー状のp型半導体分散液を得た。   In addition, the p-type semiconductor coating liquid is a metal-free phthalocyanine powder (manufactured by Tokyo Chemical Industry Co., Ltd., average particle size 2 to 1 part by weight of polyvinyl butyral resin (Sekisui Chemical Co., Ltd .: ESREC BX-1) as a binder resin. 10 parts by weight, 1 part by weight of 2,4,7-trinitrofluorenone (manufactured by Tokyo Chemical Industry Co., Ltd.) and 20 parts by weight of dimethyl cellosolve as a solvent together with 1 mmφ zirconium balls, The mixture was stirred for 2 hours using a planetary ball mill to obtain a slurry-like p-type semiconductor dispersion.

供試体の作製は、先ず、ガラスからなる透明絶縁性基板の上にインジウム・スズの酸化物からなる透明電極を設けたITOガラスを水平に載置し、このITOガラス上に、前記n型半導体塗布液をローラーコート法により塗布して、膜厚1.0μmのn型半導体層を形成した。このn型半導体層を室温下で十分に乾燥させた後、このn型半導体層の上に、前記p型半導体塗布液を同じくローラーコート法により塗布して、膜厚1.0μmのp型半導体層を形成した。   First, an ITO glass provided with a transparent electrode made of an oxide of indium and tin is placed horizontally on a transparent insulating substrate made of glass, and the n-type semiconductor is placed on the ITO glass. The coating liquid was applied by a roller coating method to form an n-type semiconductor layer having a thickness of 1.0 μm. The n-type semiconductor layer is sufficiently dried at room temperature, and then the p-type semiconductor coating solution is applied onto the n-type semiconductor layer by the same roller coating method to form a p-type semiconductor having a thickness of 1.0 μm. A layer was formed.

得られたpn接合半導体層を十分乾燥させた後、この半導体層の上に、導電性カーボンペースト(ライオン株式会社製:W−310A)6重量部と、ポリビニルアセタール樹脂(積水化学社製:エスレックKW−1)4重量部とを混合かく拌した導電性ペースト液をローラーコート法により塗布し、膜厚10μmの背面電極層を形成することにより、供試体となる実施例1の光起電力素子を得た。   After sufficiently drying the obtained pn junction semiconductor layer, on this semiconductor layer, 6 parts by weight of conductive carbon paste (manufactured by Lion Corporation: W-310A) and polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd .: ESREC) KW-1) The photovoltaic element of Example 1 which becomes a specimen by applying a conductive paste liquid mixed with 4 parts by weight by a roller coating method to form a back electrode layer having a thickness of 10 μm. Got.

[実施例2]
無金属フタロシアニン粉末に代わり、p型半導体層を構成する電子供与性有機物としてオキシチタニウムフタロシアニン結晶(山陽色素社製)を用いた他は、実施例1と同様にして、実施例2の光起電力素子を作製した。
[Example 2]
The photovoltaic power of Example 2 was the same as Example 1 except that oxytitanium phthalocyanine crystal (manufactured by Sanyo Dye Co., Ltd.) was used as the electron-donating organic substance constituting the p-type semiconductor layer instead of the metal-free phthalocyanine powder. An element was produced.

[実施例3]
無金属フタロシアニン粉末に代わり、p型半導体層を構成する電子供与性有機物として銅フタロシアニン結晶(アクロス社製)を用いた他は、実施例1と同様にして、実施例3の光起電力素子を作製した。
[Example 3]
The photovoltaic device of Example 3 was obtained in the same manner as in Example 1 except that a copper phthalocyanine crystal (manufactured by Across) was used as the electron-donating organic substance constituting the p-type semiconductor layer instead of the metal-free phthalocyanine powder. Produced.

[比較例1]
ローダミンBを含有しないn型半導体塗布液および2,4,7−トリニトロフルオレノンを含有しないp型半導体塗布液を作製し、その他の条件を実施例1と同様にして、比較例1の光起電力素子を作製した。
[Comparative Example 1]
An n-type semiconductor coating solution containing no rhodamine B and a p-type semiconductor coating solution containing no 2,4,7-trinitrofluorenone were prepared, and the other conditions were the same as in Example 1; A power element was produced.

これら得られた光起電力素子の光電変換特性の測定は、供試体の各電極にリード線を取り付け、ソーラーシミュレータ(山下電装株式会社製:YSS−E40)を用いて、素子の透明電極側から100mW/cm(AM−1.5)の擬似太陽光を照射しながら、太陽電池評価装置(英弘精機株式会社製:MP−160)により光起電力素子の特性の測定を行なった。
以下の「表1」に、実験より得られた各光起電力素子の光電変換特性を示す。
The photoelectric conversion characteristics of the obtained photovoltaic elements were measured by attaching lead wires to each electrode of the specimen and using a solar simulator (YSS-E40 manufactured by Yamashita Denso Co., Ltd.) from the transparent electrode side of the element. While irradiating 100 mW / cm 2 (AM-1.5) pseudo-sunlight, the characteristics of the photovoltaic element were measured by a solar cell evaluation apparatus (manufactured by Eihiro Seiki Co., Ltd .: MP-160).
The following “Table 1” shows the photoelectric conversion characteristics of the photovoltaic elements obtained from the experiment.

Figure 0004977358
Figure 0004977358

この表から、増感剤となるローダミンB(塩基性染料)および2,4,7−トリニトロフルオレノン(電子供与性化合物)を添加した実施例1〜3は、これらを添加しない従来構成の比較例1に比べ、光電変換特性が大幅に向上していることが見てとれる。   From this table, Examples 1 to 3 to which rhodamine B (basic dye) and 2,4,7-trinitrofluorenone (electron-donating compound) as sensitizers were added were compared with the conventional structure in which these were not added. Compared to Example 1, it can be seen that the photoelectric conversion characteristics are greatly improved.

また特に、実施例1の光起電力素子は、Voc=0.64V,Isc=0.25mA/cm,FF(フィルファクター)=0.34となり、変換効率0.05%が得られた。これらの値は、従来の有機起電力素子に比べ大きなものである。 In particular, the photovoltaic element of Example 1 had Voc = 0.64 V, Isc = 0.25 mA / cm 2 , FF (fill factor) = 0.34, and a conversion efficiency of 0.05% was obtained. These values are larger than those of conventional organic photovoltaic elements.

本発明の実施形態における光起電力素子の概略構成図である。It is a schematic block diagram of the photovoltaic element in embodiment of this invention. 本発明の実施形態におけるデュアル構成の光起電力素子の概略構成図である。It is a schematic block diagram of the photovoltaic element of the dual structure in embodiment of this invention.

符号の説明Explanation of symbols

1 透明絶縁性基板
2 透明電極
3 n型半導体層
4 p型半導体層
5 背面電極層
DESCRIPTION OF SYMBOLS 1 Transparent insulating substrate 2 Transparent electrode 3 N-type semiconductor layer 4 P-type semiconductor layer 5 Back electrode layer

Claims (4)

少なくとも一方が透光性を有する2つの電極の間に、互いに隣接するn型半導体層とp型半導体層とが配置された光起電力素子であって、
前記n型半導体層が、電子受容性無機物を主成分とし、塩基性染料を含有する材料から構成されているとともに、前記p型半導体層が、電子供与性有機物を主成分とし、電子受容性化合物を含有する材料から構成されており、
前記n型半導体層を構成する電子受容性無機物および塩基性染料が、それぞれ酸化亜鉛化合物およびローダミン化合物であり、前記p型半導体層を構成する電子供与性有機物および電子受容性化合物が、それぞれフタロシアニン化合物およびフルオレノン系化合物であることを特徴とする光起電力素子。
A photovoltaic element in which an n-type semiconductor layer and a p-type semiconductor layer adjacent to each other are disposed between two electrodes, at least one of which has translucency,
The n-type semiconductor layer is composed of a material containing an electron-accepting inorganic substance as a main component and a basic dye, and the p-type semiconductor layer is mainly composed of an electron-donating organic substance, and an electron-accepting compound. It is composed of a material containing,
The electron-accepting inorganic substance and the basic dye constituting the n-type semiconductor layer are respectively a zinc oxide compound and a rhodamine compound, and the electron-donating organic substance and the electron-accepting compound constituting the p-type semiconductor layer are each a phthalocyanine compound. And a photovoltaic device characterized by being a fluorenone-based compound .
前記透光性を有する一方側電極に対向する他方側電極が、樹脂中に導電性物質を分散させた材料を用いて形成されていることを特徴とする請求項1に記載の光起電力素子。 2. The photovoltaic element according to claim 1, wherein the other electrode facing the one electrode having translucency is formed using a material in which a conductive substance is dispersed in a resin. . 少なくとも一方が透光性を有する2つの電極の間に、互いに隣接するn型半導体層とp型半導体層とが形成された光起電力素子の製造方法であって、
電子受容性無機物としての酸化亜鉛化合物に塩基性染料としてのローダミン化合物とバインダー樹脂と溶剤を添加したn型半導体塗布液と、電子供与性有機物としてのフタロシアニン化合物に電子受容性化合物としてのフルオレノン系化合物とバインダー樹脂と溶剤を添加したp型半導体塗布液とを、前記透光性を有する一方側電極の上に順次塗布して積層させて電子受容性無機物を主成分とする前記n型半導体層と電子供与性有機物を主成分とする前記p型半導体層を形成した後、これら半導体層の上に前記一方側電極に対向する他方側電極を形成することを特徴とする光起電力素子の製造方法。
A method of manufacturing a photovoltaic device in which an n-type semiconductor layer and a p-type semiconductor layer adjacent to each other are formed between two electrodes, at least one of which has translucency,
An n-type semiconductor coating solution in which a rhodamine compound as a basic dye , a binder resin, and a solvent are added to a zinc oxide compound as an electron-accepting inorganic substance , and a fluorenone compound as an electron-accepting compound to a phthalocyanine compound as an electron-donating organic substance And a p-type semiconductor coating solution to which a binder resin and a solvent are added are sequentially applied and laminated on the translucent one-side electrode, and the n-type semiconductor layer mainly composed of an electron-accepting inorganic material after forming the p-type semiconductor layer composed mainly of an electron-donating organic substances, the manufacture of photovoltaic element characterized over these semiconductor layers, to form the other side electrode opposed to the one side electrode Method.
前記他方側電極を、前記n型半導体層及び前記p型半導体層の上に、樹脂中に導電性物質を分散させた導電性ペーストを塗布することにより形成することを特徴とする請求項3に記載の光起電力素子の製造方法。The said other side electrode is formed by apply | coating the electrically conductive paste which disperse | distributed the electrically conductive substance in resin on the said n-type semiconductor layer and the said p-type semiconductor layer. The manufacturing method of the photovoltaic element of description.
JP2005350764A 2005-12-05 2005-12-05 Photovoltaic element and manufacturing method thereof Expired - Fee Related JP4977358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350764A JP4977358B2 (en) 2005-12-05 2005-12-05 Photovoltaic element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350764A JP4977358B2 (en) 2005-12-05 2005-12-05 Photovoltaic element and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009249866A Division JP2010028138A (en) 2009-10-30 2009-10-30 Method of manufacturing photovoltaic element

Publications (2)

Publication Number Publication Date
JP2007157999A JP2007157999A (en) 2007-06-21
JP4977358B2 true JP4977358B2 (en) 2012-07-18

Family

ID=38241970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350764A Expired - Fee Related JP4977358B2 (en) 2005-12-05 2005-12-05 Photovoltaic element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4977358B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941834B2 (en) * 2007-09-27 2012-05-30 ユーテック株式会社 Photovoltaic element
JP2012191194A (en) * 2011-02-23 2012-10-04 Mitsubishi Chemicals Corp Photoelectric conversion element, solar cell, solar cell module, and method for manufacturing the same
JP2017059655A (en) 2015-09-16 2017-03-23 ソニー株式会社 Solid-state imaging device and method of manufacturing solid-state imaging device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269247B2 (en) * 1994-02-25 2002-03-25 富士ゼロックス株式会社 Organic solar cell and method of manufacturing the same
JP2955646B2 (en) * 1996-09-12 1999-10-04 工業技術院長 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
JP2000106223A (en) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd Photoelectric conversion element
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method
JP2004055686A (en) * 2002-07-17 2004-02-19 Sharp Corp Solar cell and its manufacturing method
JP4934770B2 (en) * 2003-04-15 2012-05-16 国立大学法人金沢大学 Organic solar cells
JP4291609B2 (en) * 2003-04-18 2009-07-08 Tdk株式会社 Dye-sensitized photoelectric conversion element
JP2004356281A (en) * 2003-05-28 2004-12-16 Tri Chemical Laboratory Inc Dye-sensitized optoelectric transducer
JP4619660B2 (en) * 2004-02-04 2011-01-26 信越ポリマー株式会社 Photoelectric conversion element and manufacturing method thereof
JP4636802B2 (en) * 2004-01-09 2011-02-23 株式会社巴川製紙所 Photoelectric conversion element
JP2005294303A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Organic photoelectric converter and its manufacturing method
JP5227497B2 (en) * 2004-12-06 2013-07-03 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JP2007157999A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
Ouyang et al. ZnO film UV photodetector with enhanced performance: heterojunction with CdMoO4 microplates and the hot electron injection effect of Au nanoparticles
CN103650187B (en) Comprise the organic photovoltaic battery of electronics conduction exciton barrier-layer
US6153824A (en) Photo-semiconductive electrode and photo-electic cell using the same
CN102282694B (en) Inverted organic photosensitive devices
CN102217111B (en) Organic photosensitive devices comprising a squaraine-containing organoheterojunction and methods of making the same
US20090235971A1 (en) Photoactive device with organic layers
Ghosekar et al. Review on performance analysis of P3HT: PCBM-based bulk heterojunction organic solar cells
JP5583809B2 (en) Organic solar cell
JP2009252768A (en) Organic solar cell and method of manufacturing the same
CN104854720A (en) Organic optoelectronics with electrode buffer layers
CN108922968B (en) Perovskite solar cell based on inorganic quantum dot copper indium selenium and preparation method thereof
CN104937736A (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
JP4977358B2 (en) Photovoltaic element and manufacturing method thereof
TW201342678A (en) Method of preparing the surface of metal substrates for organic photosensitive devices
Lin et al. Improved Crystallization of Lead Halide Perovskite in Two‐Step Growth Method by Polymer‐Assisted “Slow‐Release Effect”
JP2006093284A (en) Photoelectric conversion element
JP4941834B2 (en) Photovoltaic element
JP5076743B2 (en) Method for manufacturing photoelectric conversion element
Zhang et al. In-depth exploration of the charge dynamics in surface-passivated ZnO nanowires
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JP2010028138A (en) Method of manufacturing photovoltaic element
CN213546357U (en) Laminated photovoltaic cell
JP5463551B2 (en) Organic thin film manufacturing method, organic thin film using the manufacturing method, and organic photoelectric conversion element using the thin film
JP2014077042A (en) Organic thin film solar cell material including dibenzopyrromethene compound
JP2000243464A (en) Semiconductor electrode and photoelectric cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111221

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees