JPH01165177A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH01165177A
JPH01165177A JP62322736A JP32273687A JPH01165177A JP H01165177 A JPH01165177 A JP H01165177A JP 62322736 A JP62322736 A JP 62322736A JP 32273687 A JP32273687 A JP 32273687A JP H01165177 A JPH01165177 A JP H01165177A
Authority
JP
Japan
Prior art keywords
pyrazoline
photoactive layer
organic semiconductor
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322736A
Other languages
Japanese (ja)
Inventor
Masao Yoshikawa
吉川 雅夫
Tetsuo Suzuki
哲郎 鈴木
Akio Kojima
小島 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62322736A priority Critical patent/JPH01165177A/en
Publication of JPH01165177A publication Critical patent/JPH01165177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To obtain a high photocurrent and improve a photoelectric conversion efficiency by a method wherein photoconductive organic semiconductor which has light absorption in a visible light range and specific pyrazoline compound are contained in a photoactive layer. CONSTITUTION:A photoactive layer is a layer containing pyrazoline compound expressed by the formula and photoconductive organic compound which has light absorption in a visible light range and the ratio of the organic semiconductor to the compound is between 1/1.5 and 8/1. In the formula, R1-R3 denote hydrogen, low grade alkyl group, low grade alkoxyl group, dialkylamino group or halogen atom and (n) denotes 0 or 1. As examples of the pyrazoline compound, 1-phenyl-3-(4-diethylaminostyryl)-5--(4-diethylaminopbenyl) pyrazoline, 1-(4-chlorophenyl)-3-(4-dlethylaminostyryl)-5-(4-diethylaminophenyl) pyrazoline and the like are employed. With the photoactive layer formed like this, an open voltage can be increased a little, a short circuit current can be increased significantly and a conversion efficiency can be improved.

Description

【発明の詳細な説明】 [技術分野] 本発明は有機光導電体を用いた光電変換素子(有機太陽
電池)に関するものであり、光センサ−、イメージセン
サ−等に応用される。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photoelectric conversion element (organic solar cell) using an organic photoconductor, and is applied to optical sensors, image sensors, etc.

[従来技術] 無機半導体を用いた光電変換素子を作製する試みは多く
なされてきている。その目標はa)変換率が高く、゛ b)安値な光電変換素子である。
[Prior Art] Many attempts have been made to produce photoelectric conversion elements using inorganic semiconductors. The goal is to create a photoelectric conversion element that a) has a high conversion rate and b) is inexpensive.

単結晶Si、多結晶S i、CdS、CdTe。Single crystal Si, polycrystalline Si, CdS, CdTe.

GaAs、アモルファスSi等の実用化が試みられてい
るが、これらは全てb)の目標を満足しているとは言い
難い。
Attempts have been made to put GaAs, amorphous Si, etc. into practical use, but it is difficult to say that all of these satisfy the goal b).

この欠点を改善するために有機半導体を用いて光電変換
素子を作製する試みが近年なされている。使用された有
機半導体層としては以下の例がある。
In order to improve this drawback, attempts have been made in recent years to fabricate photoelectric conversion elements using organic semiconductors. Examples of the organic semiconductor layers used are as follows.

(イ)スピナー塗布されたメロシアニン染料層(特開昭
51−122389 、特開昭53−131782及び
ニー、ケー、ゴウシュ(A、に、Chosh)著の[ジ
ャーナル、オフ。アプライド。
(a) Merocyanine dye layer coated with a spinner (JP-A-51-122389, JP-A-53-131782 and Ni, K., Chosh (A., Ni, Chosh) [Journal, Off. Applied.

フィジックス(J、^pp1.Phys、)j 49.
5982、+978) (ロ)フタロシアニン蒸着層またはオバレン等の電子供
与体層とピリリウム系染料等の電子受容体層を積層した
もの(特開昭54−27787、特開昭60−201[
]72及びアール。
Physics (J, ^pp1.Phys,)j 49.
5982, +978) (b) A laminate of an electron donor layer such as a phthalocyanine vapor-deposited layer or obalene and an electron acceptor layer such as pyrylium dye (JP-A-54-27787, JP-A-60-201 [
] 72 and Earl.

オー、ラウトフィ(R,0,Loutl’y)著の「ジ
ャーナル、オフ。アプライド、フィジ ックス(J、Appl、  Phys、) J 52.
5218.(ハ)ピリリウム系染料とポリカーボネート
から生成する共晶錯体層(特開昭54−27387)(
ニ)無金属フタロシアニンをバインダーに分散させた層
(特開昭55−9497) (ホ)n型シリコンとp型ドープされたポリアセチレン
薄膜を積層したもの(特開昭 55−130182、特開昭55−138879及びビ
ー、アール、ワインバーガー(B、r?。
"Journal of Applied Physics (J, Appl, Phys,) J 52." by R,0, Loutl'y.
5218. (c) Eutectic complex layer formed from pyrylium dye and polycarbonate (Japanese Patent Application Laid-Open No. 54-27387) (
d) Layer in which metal-free phthalocyanine is dispersed in a binder (JP-A-55-9497) (e) Laminated layer of n-type silicon and p-type doped polyacetylene thin film (JP-A-55-130182, JP-A-55-1999) -138879 and B, R. Weinberger (B, r?.

νejnnberger)著のアプライド、フィジック
ス、レター(Appl、Phys、Lett、)38.
555.1981) (へ)真空蒸むされたメロシアニン染料層(特開昭5O
−35477) これらは、これらの有機半導体を単独または適当なバイ
ンダーと共に媒体中に溶解または分散した溶液を基板上
に塗布 したり、あるいは低温度で真空蒸着し、更にその上に別
の導電層を設けること で安価に大面積のものが得られるが、 変換効率が低すぎ、実用には供され なかった。
Applied Physics, Letters (Appl, Phys, Lett, 38.
555.1981) (to) Vacuum steamed merocyanine dye layer
-35477) These organic semiconductors can be prepared by applying a solution of these organic semiconductors alone or together with a suitable binder dissolved or dispersed in a medium onto a substrate, or by vacuum depositing at low temperature, and then forming another conductive layer on top of the solution. Although it is possible to obtain a large area at low cost, the conversion efficiency was too low and it was not put to practical use.

[H的] 本発明は以上のような従来の欠点を解決するためになさ
れたものであって、安価で大面積が容易に作製でき、可
撓性もあって有機材料を用いたものとしては、高い変換
効率を有する光電変換素子を提供することを目的として
いる。
[H] The present invention was made to solve the above-mentioned conventional drawbacks, and is inexpensive, easy to manufacture in a large area, flexible, and using organic materials. The purpose of the present invention is to provide a photoelectric conversion element with high conversion efficiency.

[構 成〕 本発明は上記目的を達成するために、可視光領域で光キ
ヤリア生成能力のある有機半導体がそれ単独または適当
なバインダーとともに用いられた場合[前記(イ)〜(
へ)]の欠点を改良すべく鋭意研究した結果、 透光性フロント電極、光活性層および背旧電極を有する
光電変換素子において、前記光活性層が可視光領域に光
吸収を有する光導電性有機半導体を含み、更に、下記一
般式で示されるピラゾリン化合物を含をすることによっ
て、光電流が大幅に上野し、その結果、光電変換効率が
上昇するという発見に基づくものである。
[Configuration] In order to achieve the above object, the present invention provides the above-mentioned (a) to (a) when an organic semiconductor capable of generating optical carriers in the visible light region is used alone or with an appropriate binder.
As a result of intensive research to improve the shortcomings of This is based on the discovery that by containing an organic semiconductor and further containing a pyrazoline compound represented by the following general formula, the photocurrent is significantly increased and, as a result, the photoelectric conversion efficiency is increased.

一般式 ただし、上記一般式において、 RI、R2およびR3は水素、低級アルキル基、低級ア
ルコキシ基、ジアルキルアミノ素、またはハロゲン原子
を表わし、 nは0またはlを表わす。
General Formula However, in the above general formula, RI, R2 and R3 represent hydrogen, a lower alkyl group, a lower alkoxy group, a dialkylamino group, or a halogen atom, and n represents 0 or 1.

本発明の光電変換素子は、光導電性有機半導体と上記化
合物を含む光活性層(1)が2つの電極(フロント電極
、背面電極)にサンドイッチされた構成から成る。
The photoelectric conversion element of the present invention has a structure in which a photoactive layer (1) containing a photoconductive organic semiconductor and the above compound is sandwiched between two electrodes (a front electrode and a back electrode).

フロント電極側から光が入射するため、フロント電極は
光透過性となっている。
Since light enters from the front electrode side, the front electrode is transparent.

フロント、背面電極とも単独で使用されてもよいし、支
持体あるいは保護層が設けられていてもよい。第1〜第
3図にはこれらの例が示されている。
Both the front and back electrodes may be used alone, or may be provided with a support or a protective layer. Examples of these are shown in FIGS. 1-3.

フロント電極、背面電極からはリード線等により、外部
回路と接続され、実際の使用に供される。
The front electrode and the back electrode are connected to an external circuit through lead wires, etc., and used for actual use.

光活性層は単層である必要はなく、2層の例が第1〜第
3図の(b)図にそれぞれ示されている。この光活性層
(II)は光活性層(1)と同様に光により電荷を発生
させる層でもよいし、光活性層(1)で発生した電荷を
効率よく移動させる層でもよい。第1(b)図の例では
光活性層(1)はフロント電極側に描かれているが光活
性層(n)はフロント電極側にあっても勿論良い。また
、光活性層(1)は異なる光導電性有機材料から成る複
層であってもよい。
The photoactive layer need not be a single layer; examples of two layers are shown in FIGS. 1-3(b), respectively. This photoactive layer (II) may be a layer that generates charges by light like the photoactive layer (1), or may be a layer that efficiently transfers the charges generated in the photoactive layer (1). In the example of FIG. 1(b), the photoactive layer (1) is drawn on the front electrode side, but it goes without saying that the photoactive layer (n) may be on the front electrode side. The photoactive layer (1) may also be a multilayer consisting of different photoconductive organic materials.

本発明は上記光活性層(I)にかかわるものである。The present invention relates to the photoactive layer (I).

光活性層(1)は光照射で正孔と電子を発生させる層で
ある。このためには、層内に電界が存在することが必要
で、これはフロント電極と背面電極の間に外部から電圧
を印加するか、または異なる仕事関数を有する金属をフ
ロント電極と背面電極に使用するか、または光活性層(
1)がフロントまたは背面電極もしくは光活性層(II
)と接合した時に、お互いのフェルミレベル(または仕
事関数)の違いにより、熱キャリアが移動し、接合障壁
が形成されることで外部電圧なしでも達成される。
The photoactive layer (1) is a layer that generates holes and electrons when irradiated with light. This requires the presence of an electric field within the layer, either by applying an external voltage between the front and back electrodes or by using metals with different work functions for the front and back electrodes. or a photoactive layer (
1) is the front or back electrode or photoactive layer (II
), thermal carriers move due to the difference in their Fermi levels (or work functions), and a junction barrier is formed, which can be achieved without an external voltage.

光活性層(1)は層中に一般式で示されるピラゾリン化
合物とnJ視光に吸収を有する光導電性有機半導体を含
み、また、必要ならば適当なバインダーを主成分として
含む層である。
The photoactive layer (1) is a layer containing a pyrazoline compound represented by the general formula and a photoconductive organic semiconductor having absorption in nJ visible light, and if necessary, a suitable binder as a main component.

我々はかかるピラゾリン化合物が存在すると、存在しな
い場合にくらべ、光活性層(1)で光照射時に生成する
光電流量が飛躍的に増大し、それにより変換効率が増大
することを見出した。
We have found that the presence of such a pyrazoline compound dramatically increases the amount of photocurrent generated in the photoactive layer (1) upon irradiation with light, thereby increasing the conversion efficiency, compared to the case where such a pyrazoline compound is absent.

ここで光変換素子とは、第1図のフロントおよび背面電
極間に外部電圧を印加しないで光照射した場合に起電力
または電流もくしはその両方を生じ、また外部電圧の印
加の状態では大きな光電流がとり出せる素子のことであ
る。
Here, a photoconversion element is one that generates an electromotive force or current, or both, when light is irradiated without applying an external voltage between the front and back electrodes in Figure 1, and that generates a large amount of electromotive force or current when an external voltage is applied. This is an element from which photocurrent can be extracted.

光活性層(I)は前述のごとく、一般式で示されるピラ
ゾリン化合物と可視光に吸収を有する光導電性有機半導
体を含む層であり、該有機半導体と該化合物の比率が1
/1.5から8/1の間にあるものとである。
As mentioned above, the photoactive layer (I) is a layer containing a pyrazoline compound represented by the general formula and a photoconductive organic semiconductor that absorbs visible light, and the ratio of the organic semiconductor to the compound is 1.
/1.5 to 8/1.

一般式で表わされるピラゾリン化合物は層中で他の有機
半導体やバインダーと結晶化せずに均一に相溶する能力
が高く、また、有機化合物の中では正孔移動度が高く、
イオン化ポテンシャルも小さな化合物である。
The pyrazoline compound represented by the general formula has a high ability to uniformly dissolve with other organic semiconductors and binders in the layer without crystallizing, and also has high hole mobility among organic compounds.
It is also a compound with a small ionization potential.

ここで、光活性層(I)の好ましい組成は、可現光領域
に光吸収を有する光導電性有機半導体と一般式のピラゾ
リン化合物の比率が1/1から4/1の間にあり、両者
の合計が層中で50〜90wL%でありバインダーが1
0〜50wt%を占めるものである。
Here, the preferable composition of the photoactive layer (I) is such that the ratio of the photoconductive organic semiconductor having light absorption in the developable light region and the pyrazoline compound of the general formula is between 1/1 and 4/1, and both total of 50 to 90 wL% in the layer and the binder
It accounts for 0 to 50 wt%.

ピラゾリン化合物の組成が低くなると、ピラゾリン化合
物添加の効果が弱くなり、また、ピラゾリン化合物の組
成が高くなると相対的に光吸収光導電性有機半導体の濃
度が低くなり、それにより光吸収量が小さくなる。光導
電性有機半導体の組成が低くなると、光吸収量が小さく
なり、また、組成が高くなると、ピラゾリン化合物の濃
度が相対的に低くなり、添加効果が弱くなる。バインダ
ーの量が低いと、ピラゾリン化合物が結晶化する確立が
高まり、また、高いと、光電荷の発生、移動にかかわる
部分の量が低くなり、効率が低下する。
As the composition of the pyrazoline compound becomes lower, the effect of adding the pyrazoline compound becomes weaker, and as the composition of the pyrazoline compound becomes higher, the concentration of the light-absorbing photoconductive organic semiconductor becomes relatively lower, thereby reducing the amount of light absorption. . When the composition of the photoconductive organic semiconductor becomes low, the amount of light absorbed becomes small, and when the composition becomes high, the concentration of the pyrazoline compound becomes relatively low, and the effect of addition becomes weak. If the amount of the binder is low, the probability that the pyrazoline compound will crystallize increases, and if the amount is high, the amount of the moiety involved in the generation and transfer of photocharges will be low, resulting in a decrease in efficiency.

光活性層の膜厚は0.01−10μlで適当である。The appropriate thickness of the photoactive layer is 0.01-10 μl.

最適膜厚は用いる光導電性有機半導体の種類や樹脂によ
っても異なるが0,05〜3μmが好ましい。薄いと光
吸収量が小さくなり、またフロント/背面電極間でピン
ホールの確率が高くなる。
The optimum film thickness varies depending on the type of photoconductive organic semiconductor and resin used, but is preferably 0.05 to 3 μm. If it is thin, the amount of light absorbed will be small, and the probability of pinholes occurring between the front and back electrodes will increase.

厚くなると発生した正孔および電子の一方が電極に到達
するまでの距離が長くなり、途中で失活する確率が高ま
り、効率が低下する。
When the thickness becomes thicker, the distance for one of the generated holes and electrons to reach the electrode becomes longer, increasing the probability that they will be deactivated on the way, and reducing efficiency.

尚、水層は上記有機半導体を必要ならば樹脂とともに適
当な溶媒中に混°合し、上記有機半導体が顔料の場合は
ボールミル等の方法で顔料を粉砕し、均一なスラリーを
作製するか、有機アミン等の溶剤中に顔料を溶解するか
した後、ピラゾリン化合物を添加し、これらを背面電極
あるいは支持体上の背面電極あるいは支持体上のフロン
ト電極上に塗布して形成される。
The aqueous layer may be prepared by mixing the above organic semiconductor with a resin if necessary in an appropriate solvent, and if the above organic semiconductor is a pigment, grinding the pigment using a method such as a ball mill to create a uniform slurry; It is formed by dissolving a pigment in a solvent such as an organic amine, adding a pyrazoline compound, and coating these on a back electrode or a back electrode on a support, or a front electrode on a support.

この様に形成された光活性層は、ピラゾリン化合物がな
い場合とくらべて、開放電圧(Voc)が若干増大し、
また、短絡電流(Jsc)が大幅に上昇する。
The photoactive layer formed in this way has a slightly increased open circuit voltage (Voc) compared to the case without the pyrazoline compound,
Furthermore, the short circuit current (Jsc) increases significantly.

変換効率(η)は次式、 77s+t  l、)oxVocXJscXf f1n (P i n :入射光エネルギー、ff:フィルフ 
、アクタ−)で決定される。
The conversion efficiency (η) is expressed by the following formula, 77s+t l, )oxVocXJscXf f1n (P i n : incident light energy, ff : filter
, actor).

本発明の素子はピラゾリン化合物を添加していないもの
とくらべ、高い変換効率をもたらす。
The device of the present invention provides higher conversion efficiency than a device without the addition of a pyrazoline compound.

この理由としてピラゾリン化合物は有機物としては低い
イオン化ポテンシャルを有するため、光吸収により光導
電性有機半導体中に生成した光電荷のうち、正孔が容易
にピラゾリン化合物に注入される。また、該化合物は正
孔移動度も高い。このため、未添加の系とくらべ、正孔
と電子の再結合の確率の低下がもたらされ、また正孔の
移動効率の上昇も図られたことが考えられる。
The reason for this is that since the pyrazoline compound has a low ionization potential as an organic substance, holes among the photocharges generated in the photoconductive organic semiconductor due to light absorption are easily injected into the pyrazoline compound. Furthermore, the compound also has high hole mobility. For this reason, it is considered that the probability of recombination of holes and electrons is lowered and the efficiency of hole transfer is increased compared to the system without addition.

また、勿論、外部から電圧を印加した場合にも、大きな
光電流が取り出せ、従って感度に優れた光電変換素子と
して用いられる。
Moreover, of course, even when a voltage is applied from the outside, a large photocurrent can be extracted, and therefore it is used as a photoelectric conversion element with excellent sensitivity.

本発明で用いられるピラゾリン化合物の具体例としては
下記の化合物が挙げられる。
Specific examples of the pyrazoline compound used in the present invention include the following compounds.

1−フェニル−3−(4−ジエチルアミノスチリル) 
−5−(4−ジエチルアミノフェニル)ピラゾリン、 1−フェニル−3−(4−ジメチルアミノスチリル) 
−5−(4−ジメチルアミノフェニル)ピラゾリン、 1−(4−クロロフェニル)−3−(4−ジエチルアミ
ノスチリル)−5−(4−ジエチルアミノフェニル)ピ
ラゾリン、 1−(4−メチルフェニル)−3−(4−ジエチルアミ
ノスチリル)−5−(4−ジエチルアミノフェニル)ピ
ラゾリン、 1−(4−ニトロフェニル)−3−(4−ジエチルアミ
ノスチリル)−5−(4−ジエチルアミノフェニル)ピ
ラゾリン、 1−(4−メトキシフェニル)−3−(4−ジエチルア
ミノスチリル)−5−(4−ジエチルアミノフェニル)
ピラゾリン、 1−(4−クロロフェニル)−3−(4−ジメチルアミ
ノスチリル’) −5−(4−ジメチルアミノフェニル
)ピラゾリン、 1−(4−メチルフェニル)−3−(4−ジメチルアミ
ノスチリル)−5−(4−ジメチルアミノフェニル)ピ
ラゾリン、 1−フェニル−3−フェニル−5−(4−ジメチルアミ
ノフェニル)ピラゾリン、 1−フェニル−3−フェニル−5−(4−ジエチルアミ
ノフェニル)ピラゾリン、 1−フェニル−3−(4−ジメチルアミノフェニル)−
5−(4−ジメチルアミノフェニル)ピラゾリン、 1−フェニル−3−(4−ジメチルアミノフェニル)−
5−(4−ジエチルアミノフェニル)ピラゾリン である。
1-phenyl-3-(4-diethylaminostyryl)
-5-(4-diethylaminophenyl)pyrazoline, 1-phenyl-3-(4-dimethylaminostyryl)
-5-(4-dimethylaminophenyl)pyrazoline, 1-(4-chlorophenyl)-3-(4-diethylaminostyryl)-5-(4-diethylaminophenyl)pyrazoline, 1-(4-methylphenyl)-3- (4-diethylaminostyryl)-5-(4-diethylaminophenyl)pyrazoline, 1-(4-nitrophenyl)-3-(4-diethylaminostyryl)-5-(4-diethylaminophenyl)pyrazoline, 1-(4- methoxyphenyl)-3-(4-diethylaminostyryl)-5-(4-diethylaminophenyl)
Pyrazoline, 1-(4-chlorophenyl)-3-(4-dimethylaminostyryl') -5-(4-dimethylaminophenyl)pyrazoline, 1-(4-methylphenyl)-3-(4-dimethylaminostyryl) -5-(4-dimethylaminophenyl)pyrazoline, 1-phenyl-3-phenyl-5-(4-dimethylaminophenyl)pyrazoline, 1-phenyl-3-phenyl-5-(4-diethylaminophenyl)pyrazoline, 1 -Phenyl-3-(4-dimethylaminophenyl)-
5-(4-dimethylaminophenyl)pyrazoline, 1-phenyl-3-(4-dimethylaminophenyl)-
5-(4-diethylaminophenyl)pyrazoline.

フロント電極層及びその支持体についてニアルミニウム
、鉛、亜鉛、タンタル、ニッケル、チタン、コバルト、
ニオブ、銅、ハステロイC1金、白金、銀、パラジウム
等の半透明の金属や酸化スズ、ITO等の金属酸化物等
がフロン!・電極として使用でき、支持体としては、ガ
ラス、透明プラスチックフィルムが用いられる。
For the front electrode layer and its support: Nialuminum, lead, zinc, tantalum, nickel, titanium, cobalt,
Translucent metals such as niobium, copper, Hastelloy C1 gold, platinum, silver, and palladium, and metal oxides such as tin oxide and ITO are Freon! - Can be used as an electrode, and glass or transparent plastic film can be used as the support.

背iIj電極及びその支持体について:はとんどの金属
が背面電極として使用できる。
Regarding the back electrode and its support: Most metals can be used as the back electrode.

支持体としてはガラス、透明プラスチックフィルムが用
いられる。
Glass or transparent plastic film is used as the support.

光活性層(■)について: どの層はa)光活性層(1)に使用の顔料の感光波長の
低い領域をおぎなうために、他の電荷発生有機半導体を
含むか、b)光活性層(I)との間で接合障壁を形成す
る層か、C)光活性層(I)で発生した正孔と電子のど
ちらかを有効に移動させる層である。
Concerning the photoactive layer (■): which layer a) contains another charge-generating organic semiconductor to cover the low sensitivity wavelength range of the pigment used in the photoactive layer (1); b) the photoactive layer ( (I) A layer that forms a junction barrier between the photoactive layer (I) or C) a layer that effectively moves holes and electrons generated in the photoactive layer (I).

このうちa)の層は後述の光活性層(I)の例示化合物
のうち(1)と補正の色調を有する化合物が効果が高く
、これは光活性層(1)と同様に塗/+i して形成さ
れる。
Among these, for layer a), a compound having a color tone correcting that of (1) among the exemplified compounds of photoactive layer (I) described later is highly effective, and this is used in the same way as photoactive layer (1). It is formed by

b)の層は酸化亜鉛、酸化チタン、硫化カドミウム、セ
レン結晶、酸化鉛等の微粒子を接着剤樹脂に分散して形
成される。
The layer b) is formed by dispersing fine particles of zinc oxide, titanium oxide, cadmium sulfide, selenium crystals, lead oxide, etc. in an adhesive resin.

C)の層として光活性層(I)の添加剤か、それより更
にIp値の低い電子供与体を適当な樹脂に混合して形成
される。
The layer C) is formed by mixing the additive of the photoactive layer (I) or an electron donor with an even lower Ip value with a suitable resin.

本発明の必須成分として用いられる光吸収性有機半導体
はジスアゾ顔料、トリスアゾ顔料等のアゾ顔料、フタロ
シアニン系顔料、キナクリドン系顔料、ペリレン系顔料
、芳谷族多環牛ノン系顔料、インジゴ系顔料、チオイン
ジゴ系顔料等の顔料やトリフェニルメタン染料、シアニ
ン染料、メロシアニン染料等の染料が挙げられる。
The light-absorbing organic semiconductors used as essential components of the present invention include azo pigments such as disazo pigments and trisazo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, aromatic polycyclic bovine pigments, indigo pigments, and thioindigo pigments. Examples include pigments such as pigments such as pigments, and dyes such as triphenylmethane dyes, cyanine dyes, and merocyanine dyes.

バインダとして用いられる樹脂の例としては、ポリエス
テル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポ
リウレタン樹脂、エポキシ樹脂、アルキッド樹脂、フェ
ノール樹脂、メラミン樹脂、アクリル樹脂、セルロース
樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデ
ン樹脂、フッ化ビニリデン樹脂、ブチラール樹脂、ポリ
ビニルカルバゾール樹脂、ポリスチレン樹脂、ポリイミ
ド樹脂、ポリアクリロニトリル樹脂、塩ビー酢と共重合
体、塩化ビニリデン−アクリロニトリル共重合体、スチ
レン−無水マレイン酸共重合体、スチレン−ブタジェン
共重合体、エチルセルロース等が挙げられる。
Examples of resins used as binders include polyester resins, polycarbonate resins, polyamide resins, polyurethane resins, epoxy resins, alkyd resins, phenolic resins, melamine resins, acrylic resins, cellulose resins, vinyl acetate resins, vinyl chloride resins, and vinylidene chloride. Resin, vinylidene fluoride resin, butyral resin, polyvinyl carbazole resin, polystyrene resin, polyimide resin, polyacrylonitrile resin, vinyl chloride vinegar and copolymer, vinylidene chloride-acrylonitrile copolymer, styrene-maleic anhydride copolymer, styrene -butadiene copolymer, ethyl cellulose, etc.

次に本発明の光電変換素子の構造例を第1〜3図に示し
た概略図で説明する。b図はa図で示した光活性層を補
足するために第2の光活性層を追加した例を示す。
Next, structural examples of the photoelectric conversion element of the present invention will be explained with reference to the schematic diagrams shown in FIGS. 1 to 3. Figure b shows an example in which a second photoactive layer is added to supplement the photoactive layer shown in figure a.

図中、lは透光性フロント電極、2は光活性層(I)、
3は光活性層(II)、4は背面電極、5はフロント電
極支持体、6は背面電極支持体を示す。なお、これらの
構造は用途に応じているいろと応用変化させることがで
きることを理解すべきである。
In the figure, l is a translucent front electrode, 2 is a photoactive layer (I),
3 is a photoactive layer (II), 4 is a back electrode, 5 is a front electrode support, and 6 is a back electrode support. It should be understood that these structures can be varied in various ways depending on the application.

本発明をさらに具体的に説明するために以下に実施例を
示すが、本発明はこれに限定されるものではない。
Examples are shown below to further specifically explain the present invention, but the present invention is not limited thereto.

実施例1 下記の構造のアゾ顔料0.8gとブチラール樹脂(UC
C社製XYHL)の5%テトラヒドロフラン溶液8gと
を3日間ボールミリングした後にテトラヒドロフランで
更に希釈し 1.5wL%の溶液を作製した。
Example 1 0.8g of azo pigment with the following structure and butyral resin (UC
8 g of a 5% tetrahydrofuran solution (XYHL manufactured by Company C) was ball milled for 3 days and further diluted with tetrahydrofuran to prepare a 1.5 wL% solution.

この溶液にアゾ顔料と同重量の下記構造式で示される添
加物を加え、撹拌した後に塗布液を作製した。
To this solution was added an additive represented by the following structural formula in the same weight as the azo pigment, and after stirring, a coating solution was prepared.

この塗布液にインジウムをドープした酸化スズ膜(以下
ITOと称する)を設けたガラス基板を浸漬し、2關/
秒の速度で基板をひきあげ、ITO基板上に塗膜を設け
た。
A glass substrate provided with an indium-doped tin oxide film (hereinafter referred to as ITO) was immersed in this coating solution, and two
The substrate was pulled up at a speed of seconds to form a coating film on the ITO substrate.

この上に、580nmにおける透過率が4 、596と
なる様に半透明のアルミニウムを真空蒸着した後、IT
Oとアルミニウムに銀ペーストにて銅の細線を接続した
On top of this, semitransparent aluminum was vacuum-deposited so that the transmittance at 580 nm was 4.596, and then IT
A thin copper wire was connected to O and aluminum using silver paste.

この試料に対し、AI電極側から580nmの単色光を
照射(顔料分散膜に到達した光量P1n’を1.54μ
w/c♂に設定)しながら、画電極に6 mv/秒で掃
引されるランプ波を印加して電流−電圧特性を測定した
。その結果 Voc −0,95V Jsc −94,OnA/ cシ 1’r−0,19 であった。
This sample was irradiated with 580 nm monochromatic light from the AI electrode side (the amount of light P1n' that reached the pigment dispersion film was 1.54μ
w/c♂), a ramp wave swept at 6 mv/sec was applied to the picture electrode, and the current-voltage characteristics were measured. The results were Voc -0.95V Jsc -94, OnA/c 1'r-0.19.

電極の透過率を補正した580nmにおける光電変換効
率(η′)は1゜10%であった。
The photoelectric conversion efficiency (η') at 580 nm after correcting the transmittance of the electrode was 1°10%.

実施例2 実施例1の添加剤を下記の物質に変えた以外は実施例1
と同様に添加物を含有する試料を作製した。
Example 2 Example 1 except that the additive in Example 1 was changed to the following substance.
Samples containing additives were prepared in the same manner as above.

この試料に580niの単色光をAl電極側から入射(
Pin’ −1,58μv/cd) ’L、、実施例1
と同様に光電変換効率を測定したところ下記の様な結果
が得られた。
580ni monochromatic light is incident on this sample from the Al electrode side (
Pin' -1,58μv/cd) 'L,, Example 1
When the photoelectric conversion efficiency was measured in the same manner as above, the following results were obtained.

Voc −1,OV Jsc −90,9nA/ cd 1’f −0,20 η−−1,15% 比較例1 添加物を加えないこと以外は実施例1と同様に試料を作
製し、580nmの単色光をITC)電極から入射(P
In’= 1.6μw/cj)して、同様に光電変換効
率を測定したところ下記の様な結果が得られた。
Voc -1,OV Jsc -90,9nA/ cd 1'f -0,20 η-1,15% Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that no additives were added, and Monochromatic light is incident from the ITC electrode (P
In' = 1.6 μw/cj), and the photoelectric conversion efficiency was similarly measured, and the following results were obtained.

Voc −0,74V Jsc = 2.50nA/ cd IT  −0,22 η−−0.028% 実施例3 実施例1の添加剤を下記の物質に変えた以外は実施例1
と同様に添加物を含有する試料を作製した。
Voc -0,74V Jsc = 2.50nA/cd IT -0,22 η--0.028% Example 3 Example 1 except that the additive in Example 1 was changed to the following substance.
Samples containing additives were prepared in the same manner as above.

この試料に580tvの単色光をA1電極側から入射(
PIn’=1.55μw/cd) L、、、実施例1と
同様に光電変換効率を測定したところ下記の様な結果が
得られた。
Monochromatic light of 580 tv is incident on this sample from the A1 electrode side (
PIn'=1.55 μw/cd) L... When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voe −0,94V Jsc −77,5nA/ at fr謡0.20 η−−0,94% しI 実施例4 実施例1の添加剤を下記の物質に変えた以外は実施例1
と同様に添加物を含有する試料を作製した。
Voe -0,94V Jsc -77,5nA/at fr 0.20 η--0,94% Example 4 Example 1 except that the additive in Example 1 was changed to the following substance.
Samples containing additives were prepared in the same manner as above.

この試料に580nmの単色光をAl電極側から入射(
Pin’ −1,55μw/cd) L、実施例1と同
様に光電変換効率をl1l11定したところ下記の様な
結果が得られた。
Monochromatic light of 580 nm is incident on this sample from the Al electrode side (
Pin' -1, 55 μw/cd) L. When the photoelectric conversion efficiency was determined as l1l11 in the same manner as in Example 1, the following results were obtained.

Voc −0,99V Jsc −72,5nA/ cJ f’f’ −0,19 η−−0,88% 実施例5 実施例1の添加剤を下記の物質に変えた以外は実施例1
と同様に添加物を含有する試料を作製した。
Voc -0,99V Jsc -72,5nA/cJ f'f' -0,19 η--0,88% Example 5 Example 1 except that the additive in Example 1 was changed to the following substance.
Samples containing additives were prepared in the same manner as above.

この試料に580nIIlの単色光をAl電極側から入
射(Pin’ −1,55μw/c+#) L、、、実
施例1と同様に光電変換効率を測定したところ下記の様
な結果が得られた。
Monochromatic light of 580 nIIl was incident on this sample from the Al electrode side (Pin' -1, 55 μw/c + #) L... When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained. .

Voc =0.95V Jsc −5,71nA/ cd 1’f’ −0,24 実施例6 実施例1の添加剤を下記の物質に変えた以外は実施例1
と同様に添加物を含有する試料を作製した。
Voc =0.95V Jsc -5,71nA/cd 1'f' -0,24 Example 6 Example 1 except that the additive in Example 1 was changed to the following substance.
Samples containing additives were prepared in the same manner as above.

この試料に580nmの単色光をAl電極側から入射(
Pin’−1,55μv/cIIY) L、実施例1と
同様に光電変換効率を測定したところ下記の様な結果が
得られた。
Monochromatic light of 580 nm is incident on this sample from the Al electrode side (
Pin'-1, 55 μv/cIIY) L. When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc = 0.99V Jsc −16,4nA/ cd rr −0,22 実施例7 実施例1のアゾ顔料を下記のアゾ顔料に変えた以外は実
施例1と同様に添加物を含有する試料を作製した。
Voc = 0.99V Jsc -16,4nA/cd rr -0,22 Example 7 A sample containing additives was prepared in the same manner as in Example 1, except that the azo pigment in Example 1 was changed to the following azo pigment. did.

この試料に600r+mの単色光をAI電極側から入射
(Pin’ −1,50μw/cIiY) L、実施例
1と同様に光電変換効率を測定したところ下記の様な結
果が得られた。
When monochromatic light of 600 r+m was incident on this sample from the AI electrode side (Pin' -1, 50 μw/cIiY) L, the photoelectric conversion efficiency was measured in the same manner as in Example 1, and the following results were obtained.

Voc −0,90V Jsc = 5f3.1nA/ cd [r−0,22 η−−0,73% 比較例2 添加物を加えないこと以外は実施例7と同様に試料を作
製し、600nmの単色光をA1電極から入射(Pin
’= 1.45μw/cj) I、て、同様に光電変換
効率を測定したところ下記の様な結果が得られた。
Voc -0,90V Jsc = 5f3.1nA/cd [r-0,22 η-0,73% Comparative Example 2 A sample was prepared in the same manner as in Example 7 except that no additives were added, and a monochromatic sample of 600 nm was used. Light enters from the A1 electrode (Pin
' = 1.45 μw/cj) I. When the photoelectric conversion efficiency was similarly measured, the following results were obtained.

Voc −0,77V Jsc −1,35nA/ cd rr虐0.25 η′謹0.018%   ゛ 実施例8 実施例1のアゾ顔料をβ型銅フタロシアニンに変えた以
外は実施例1と同様に添加物を含有する試料を作製した
Voc -0,77V Jsc -1,35nA/ cd rr 0.25 η' 0.018% ゛Example 8 Same as Example 1 except that the azo pigment in Example 1 was changed to β-type copper phthalocyanine. Samples containing additives were prepared.

この試料に820nmの単色光をAI?lIS極側から
入射(Pin’ −1,5μν/cJ)L、実施例1と
同様に光電変換効率を測定したところ下記の様な結果が
得られた。
AI? When the photoelectric conversion efficiency was measured in the same manner as in Example 1 with incidence (Pin' -1, 5 .mu.v/cJ) L from the IS pole side, the following results were obtained.

Voc −0,94V Jsc −30,5nA/ c4 「r−0,22 グー−0,42% 比較例3 添加物を加えないこと以外は実施例8と同様に試料を作
製し、620nI11の単色光をAI電極から入射(P
in’ −1,5μν/cシ)して、同様に光電変換効
率を測定したところ下記の様な結果が得られた。
Voc -0,94V Jsc -30,5nA/c4 "r-0,22 Goo-0,42% Comparative Example 3 A sample was prepared in the same manner as in Example 8 except that no additives were added, and a monochromatic light of 620nI11 was used. is incident from the AI electrode (P
When the photoelectric conversion efficiency was measured in the same manner using the in'-1,5μν/c ratio, the following results were obtained.

Voc 70.72V Jsc −10,4nA/ Cd rr−0,2[i η ”−0,13% [効 果] 以上述べた碌に、本発明によれば、ピラゾリン化合物と
nJ視光領域に吸収を有する光導電性有機半導体を含む
光活性層により、高い光電流を示し、かつ安価で大面積
の光電変換素子が達成できる。
Voc 70.72V Jsc -10,4nA/Cd rr-0,2[i η''-0,13% [Effect] In addition to the above, according to the present invention, the pyrazoline compound and the absorption in the nJ viewing region By using a photoactive layer containing a photoconductive organic semiconductor having a photoconductive organic semiconductor, a photoelectric conversion element that exhibits a high photocurrent, is inexpensive, and has a large area can be achieved.

このため、従来、単独またはバインダーとの混合系で、
低い光電流のため使用不可であった光導電性台゛機半導
体もH効に利用できる様になり、材料の選択範囲を広げ
ることができる。
For this reason, conventionally, alone or in combination with a binder,
Photoconductive platform semiconductors, which were previously unusable due to their low photocurrent, can now be used for H effects, expanding the range of materials available.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の光電変換素子の断面を示す概
略図である。 1・・・透光性フロント電極、2・・・光活性層(1)
、3・・・光活性層(II)   、4・・・背面電極
、5・・・フロント電極支持体、 6・・・背面電極支持体。 オ 1 図ユ 第2 図a 、t 1 図b p2  図b
1 to 3 are schematic diagrams showing cross sections of the photoelectric conversion element of the present invention. 1... Transparent front electrode, 2... Photoactive layer (1)
, 3... Photoactive layer (II), 4... Back electrode, 5... Front electrode support, 6... Back electrode support. O 1 Figure 2 Figure a, t 1 Figure b p2 Figure b

Claims (1)

【特許請求の範囲】  透光性フロント電極、光活性層および背面電極を有す
る光電変換素子において、前期光活性層が可視光領域に
光吸収をを有する光導電性有機半導体と、下記一般式で
示されるピラゾリン化合物を含有し、かつ、該光吸収性
有機半導体とピラゾリン化合物の比率が、1/1.5か
ら8/1の間にあることを特徴とする光電変換素子。 一般式 ▲数式、化学式、表等があります▼ ただし、上記一般式において、 R_1、R_2およびR_3は水素、低級アルキル基、
低級アルコキシ基、ジアルキルアミノ素、またはハロゲ
ン原子を表わし、 nは0または1を表わす。
[Scope of Claims] A photoelectric conversion element having a light-transmitting front electrode, a photoactive layer, and a back electrode, wherein the photoactive layer comprises a photoconductive organic semiconductor having light absorption in the visible light region, and a photoconductive organic semiconductor having the following general formula. 1. A photoelectric conversion element comprising the pyrazoline compound shown above, and wherein the ratio of the light-absorbing organic semiconductor to the pyrazoline compound is between 1/1.5 and 8/1. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, in the above general formula, R_1, R_2 and R_3 are hydrogen, lower alkyl group,
It represents a lower alkoxy group, a dialkylamino group, or a halogen atom, and n represents 0 or 1.
JP62322736A 1987-12-22 1987-12-22 Photoelectric converter Pending JPH01165177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322736A JPH01165177A (en) 1987-12-22 1987-12-22 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322736A JPH01165177A (en) 1987-12-22 1987-12-22 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH01165177A true JPH01165177A (en) 1989-06-29

Family

ID=18147053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322736A Pending JPH01165177A (en) 1987-12-22 1987-12-22 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH01165177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122675A (en) * 2010-01-08 2011-07-13 台湾积体电路制造股份有限公司 Photonic device and manufacturing method thereof
CN104130189A (en) * 2014-07-11 2014-11-05 四川理工学院 Application of pyrazoline derivatives as metal pickling corrosion inhibitor
CN113155770A (en) * 2021-04-30 2021-07-23 中国人民解放军91977部队 Photoelectric environment grading system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122675A (en) * 2010-01-08 2011-07-13 台湾积体电路制造股份有限公司 Photonic device and manufacturing method thereof
CN104130189A (en) * 2014-07-11 2014-11-05 四川理工学院 Application of pyrazoline derivatives as metal pickling corrosion inhibitor
CN113155770A (en) * 2021-04-30 2021-07-23 中国人民解放军91977部队 Photoelectric environment grading system and method

Similar Documents

Publication Publication Date Title
US4175982A (en) Photovoltaic cell
US4281053A (en) Multilayer organic photovoltaic elements
CA1096022A (en) Photovoltaic cell
US4992109A (en) Photoelectric conversion element
JPH01154571A (en) Photoelectric converter
JPH01208873A (en) Photoelectric converter
JPH01165177A (en) Photoelectric converter
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JP4977358B2 (en) Photovoltaic element and manufacturing method thereof
JP2002222970A (en) Photoelectric converter and its manufacturing method
JPH01215070A (en) Organic solar battery
JPH01168070A (en) Photoelectric conversion device
JPH01215069A (en) Photoelectric conversion element
JPH01154573A (en) Photoelectric converter
JPH03120763A (en) Photo-electric transducer
JP2516750B2 (en) Photoelectric conversion element
JPH01154572A (en) Photoelectric converter
JP2756711B2 (en) Photoelectric conversion power generation element
JPH01166575A (en) Photoelectric converter
JPH05275728A (en) Organic photovoltaic element
JPH02162775A (en) Photoelectric conversion element
JPH0198266A (en) Photoelectric converter element
JP2947593B2 (en) Stacked organic solar cells
JPH02121372A (en) Photoelectric conversion element
JPS63120474A (en) Photoelectric convergion element