JPH01152369A - Capacity type acceleration sensor - Google Patents

Capacity type acceleration sensor

Info

Publication number
JPH01152369A
JPH01152369A JP30968487A JP30968487A JPH01152369A JP H01152369 A JPH01152369 A JP H01152369A JP 30968487 A JP30968487 A JP 30968487A JP 30968487 A JP30968487 A JP 30968487A JP H01152369 A JPH01152369 A JP H01152369A
Authority
JP
Japan
Prior art keywords
movable electrode
plate
cantilever
electrode
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30968487A
Other languages
Japanese (ja)
Other versions
JPH0565109B2 (en
Inventor
Kiyomitsu Suzuki
清光 鈴木
Satoshi Shimada
智 嶋田
Shigeki Tsuchiya
茂樹 土谷
Shigeyuki Kobori
小堀 重幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30968487A priority Critical patent/JPH01152369A/en
Publication of JPH01152369A publication Critical patent/JPH01152369A/en
Publication of JPH0565109B2 publication Critical patent/JPH0565109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a highly sensitive and highly accurate sensor excellent in impact resistance with a simple construction, by etching an Si plate on both sides thereof to form a mobile electrode playing a role of a weight at the tip of a cantilever beam and a glass plate having a solid electrode is bonded on both the sides of the Si plate. CONSTITUTION:An Si plate 1 with a diameter of 3-4 inch, and a thickness of 0.2mm is etched on both sides thereof to form a mobile electrode 3 playing a role of a weight at the tip of a cantilever 2 with a thickness of several ten m. The mobile electrode 3 is etched so as to be 2-3mum in the depth from the surface of the Si plate. Glass plates 6 and 7 having solid electrodes 4 and 5 on the surface thereof are bonded on both sides of the Si plate 1. A distance changes between the solid electrodes 4 and 5 and the mobile electrode 3 depending on a Y-wise acceleration thereby detecting acceleration as change in the capacity between the electrodes. The cantilever 2 is so thick as to be excellent in the impact resistance. A resonance point gives about 1kHz to achieve a high accuracy at 0-10Hz as measuring range without damping. A small gap between the electrodes assures a high sensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加速度センサに係り、特に自動車の車体制御シ
ステムに好適な加速度センサに関するものである、なお
、加速度センサとしては0〜±IG、0〜1OHzの範
囲を高精度に検出できるものが要求される。ここで、I
G=9.8m/S2である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an acceleration sensor, and particularly to an acceleration sensor suitable for an automobile body control system. A device that can detect the range of ~1 OHz with high accuracy is required. Here, I
G=9.8m/S2.

〔従来の技術〕[Conventional technology]

加速度センサとしては圧電材料の圧電効果を利用した圧
電式、ピエゾ抵抗効果を利用した歪ゲージ式、力のフィ
ードバック機構を有するサーボ式。
Acceleration sensors include piezoelectric types that use the piezoelectric effect of piezoelectric materials, strain gauge types that use piezoresistive effects, and servo types that have a force feedback mechanism.

差動トランスを利用した磁気式、フォトインタラプタを
利用した先太、シリコンの微細加工技術を利用した容量
式など数多くの方式が知られている。
A number of methods are known, including a magnetic method using a differential transformer, a front-end method using a photointerrupter, and a capacitive method using silicon microfabrication technology.

これらの加速度センサに関しては、例えば、シリコン・
ダイヤフラム・キャパシティブ・センサ・フォア・プレ
ッシャ・フロー・アクセレーション・アンド・アチチュ
ード・メジャーメント(Transducers ’ 
87 、 The 4th Internationa
lConference on 5olid−5tat
e 5ensors andActuators、 1
987年6月)に記載の技術が公知である。
Regarding these acceleration sensors, for example, silicon
Diaphragm Capacitive Sensor for Pressure Flow Acceleration and Attitude Measurement (Transducers'
87, The 4th International
lConference on 5solid-5tat
e 5 sensors and actuators, 1
The technique described in June 1987) is publicly known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記各種の加速度センサの内、圧電式は端造簡単である
が低周波成分の加速度を検出できない。
Among the various acceleration sensors mentioned above, the piezoelectric type is easy to manufacture, but cannot detect acceleration of low frequency components.

歪ゲージ式は小型、高精度であるが耐W1!!性に劣る
。サーボ式は高精度であるが構造複雑、高価格である。
The strain gauge type is small and highly accurate, but it is resistant to W1! ! inferior to sex. The servo type has high precision, but has a complicated structure and is expensive.

磁気式は大型で構造複雑であり、先太は測定分解能が低
い。また、シリコンの微細加工技術を利用した容量式は
低感度で分解能が低く、他軸方向の加速度成分に影響さ
れる。このように、従来技術の加速度センサは車体制御
システムへの適用を考えると、上記の如く欠点を有する
The magnetic type is large and has a complicated structure, and the front type has low measurement resolution. Furthermore, the capacitive type using silicon microfabrication technology has low sensitivity and resolution, and is affected by acceleration components in other axis directions. As described above, the acceleration sensors of the prior art have the above-mentioned drawbacks when considering application to a vehicle body control system.

本発明の目的は構造が簡単(低価格)で耐wIqJ性に
優れ、高感度で高精度な加速度センサを提供することに
ある。
An object of the present invention is to provide an acceleration sensor that has a simple structure (low cost), excellent wIqJ resistance, high sensitivity, and high precision.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、シリコンの微細加工技術を利用した容量式
加速度センサにおいて検出部の構造を工夫することによ
り、達成される。即ち、シリコン板を両面からエツチン
グしてカンチレバーの先端に重りの役目をなす可動電極
を形成した後、固定電極を表面に形成したガラス板をシ
リコン板の両面に接着し、可動電極と固定電極間の容量
変化から加速度を検出する構造とすることにより、従来
技術の欠点を解消することができる。
The above object is achieved by devising the structure of the detection section in a capacitive acceleration sensor that utilizes silicon microfabrication technology. That is, after etching a silicon plate from both sides to form a movable electrode that acts as a weight at the tip of the cantilever, glass plates with fixed electrodes formed on the surface are adhered to both sides of the silicon plate, and the gap between the movable electrode and the fixed electrode is By adopting a structure in which acceleration is detected from a change in capacitance, the drawbacks of the prior art can be overcome.

上記のカンチレバーを2個設けて同心に配列すると両持
ち梁を形成することになる。このように構成しても同様
の作用、効果が得られる。
If two of the above cantilevers are provided and arranged concentrically, a double-supported beam will be formed. Even with this configuration, similar actions and effects can be obtained.

シリコンカンチレバーの先端に可動電極を形成し、可動
電極と固定電極間のギャップが数μmになるように実装
することにより可動電極の小さな変位で、0〜±IG程
度の加速度を高感度に測定することができる。このとき
、シリコンカンチレバーを数十μmと厚くしても、加速
度に対する電極間の容量変化を大きくとれる故、耐衝撃
性を損うことなく高感度化を達成することができる。カ
ンチレバーの中心軸上に可動電極の重心を位置せしめる
と、可動電極の変位方向以外の加速度成分に対して、該
カンチレバーは曲げモーメントを受けない。それ故、可
動電極lこ直交する加速度成分のみを検出することがで
きる。
By forming a movable electrode at the tip of a silicon cantilever and mounting it so that the gap between the movable electrode and the fixed electrode is several μm, accelerations of about 0 to ±IG can be measured with high sensitivity with small displacements of the movable electrode. be able to. At this time, even if the silicon cantilever is made as thick as several tens of micrometers, the capacitance change between the electrodes with respect to acceleration can be large, so high sensitivity can be achieved without impairing impact resistance. When the center of gravity of the movable electrode is located on the central axis of the cantilever, the cantilever does not receive a bending moment with respect to acceleration components other than the direction of displacement of the movable electrode. Therefore, only the acceleration component perpendicular to the movable electrode can be detected.

シリコン板を両面からエツチングしてカンチレバーと可
動電極を形成するとき、半導体歪ゲージ式の加速度セン
サのような拡散抵抗体や電極がない故2両面エツチング
時の特別なパッシベーションは不要であり、製作時の歩
留りが向上し低コスト化を図れる。シリコンカンチレバ
ーを数十μmと厚くできる故、カンチレバーと可動電極
からなる変位部分の共振点は1kHzのオーダになる。
When etching a silicon plate from both sides to form a cantilever and a movable electrode, there is no need for special passivation during two-sided etching because there is no diffused resistor or electrode like in a semiconductor strain gauge type acceleration sensor. The yield is improved and costs can be reduced. Since the silicon cantilever can be made as thick as several tens of micrometers, the resonance point of the displaced portion consisting of the cantilever and the movable electrode will be on the order of 1 kHz.

この値は、測定範囲のO〜10Hzに対して十分大きく
、変位部分にシリコンオイルなどを封入して、特にこれ
をダンピングさせなくても、耐衝撃性と検出時の高精度
化を図ることができる。このぶん、検出部の構造と製法
が簡単になり、低コストになる。カンチレバーと可動電
極を有するシリコン板は、これと熱膨張係数のほぼ等し
い2枚のガラス板の間に接着される。それ故、接看部の
熱歪は小さく、使用状態での温度変化(−40〜+10
0℃)に対して、可動電極の温度に対する変位は極めて
小さくなる。それ故加速度センサの温度特性は良好で、
高精度な加速度センサを実現できる。なお、検出部はシ
リコンカンチレバーに対して対称積層体の構造になって
いる。それ故、接着部の熱歪は上部ガラス板部と下部ガ
ラス板部で等しく、温度変化に対して可動電極を上下に
変位させる要因は相殺し、その変位をさらに小さくする
ことができる。このように、検出部の対称積層体構造も
温度特性の向上に大きく咎与する。
This value is sufficiently large compared to the measurement range of 0 to 10 Hz, and it is possible to improve impact resistance and detection accuracy even without damping the displacement part by filling it with silicone oil or the like. can. This simplifies the structure and manufacturing method of the detection section, resulting in lower costs. A silicon plate with a cantilever and a movable electrode is bonded between it and two glass plates having approximately the same coefficient of thermal expansion. Therefore, the thermal distortion of the contact area is small, and the temperature change during use (-40 to +10
0° C.), the displacement of the movable electrode with respect to temperature is extremely small. Therefore, the temperature characteristics of the acceleration sensor are good,
A highly accurate acceleration sensor can be realized. Note that the detection section has a symmetrical stacked structure with respect to the silicon cantilever. Therefore, the thermal strain of the adhesive portion is equal in the upper glass plate portion and the lower glass plate portion, and the factors that cause the movable electrode to move up and down in response to temperature changes can be canceled out and the displacement can be further reduced. In this way, the symmetrical stacked structure of the detection section also greatly contributes to improving the temperature characteristics.

以下、本発明の一実施例を第1図により説明する。本実
施例に係る加速度センサの検出部は、シリコン板1を両
面から異方性エツチングして、カンチレバー2とその先
端に重錘の役目をなす可動電極3を形成した後、固定電
極4と同5とを蒸着その他の方法で形成したガラス板6
と同7とをシリコン板1の両面に接着したものよりなる
。可動電極3は溝状の貫通溝8によってシリコンFil
から分離されている故、それに垂直な加速度成分(図中
の矢印Y方向)に応じて上下に変位できるようになって
いる。なお、9は可動電極3の引出し電極であり、これ
を介して外部の電子回路と接続される。
An embodiment of the present invention will be described below with reference to FIG. The detection part of the acceleration sensor according to this embodiment is constructed by anisotropically etching a silicon plate 1 from both sides to form a cantilever 2 and a movable electrode 3 serving as a weight at its tip. 5 and a glass plate 6 formed by vapor deposition or other method.
and 7 are bonded to both sides of a silicon plate 1. The movable electrode 3 is made of silicon film by a groove-like through groove 8.
Since it is separated from the main body, it can be displaced up and down according to the acceleration component perpendicular to it (in the direction of the arrow Y in the figure). Note that 9 is an extraction electrode of the movable electrode 3, and is connected to an external electronic circuit via this.

加速度Gに応じて可動電極3が上下に変位すると、可動
電極3と固定電極4と同5との間の静電容量(キャパシ
タンス)が変化する。本発明によるセンサは、この容量
変化から加速度を検出するものである。車体制御用の加
速度センサとしては、特定の加速度成分(図においては
Y方向)を高精度に検出する必要があり、他軸方向の加
速度成分(図においてはY軸に垂直なX方向)に感じて
はならない。シリコンカンチレバー2の長手方向の中心
軸上に重錘の機能を有する可動電極3の重心が位置する
ように、シリコン板1を両面からエツチングする。この
ように構成すると、X軸方向の加速度を受けた場合、可
動電極3を上下(Y軸方向)に変位させる曲げモーメン
トはカンチレバー2に作用しない。この結果2本発明に
よる加速度センサはX軸方向の加速度成分には不感で、
Y軸方向の加速度成分のみを正確に検出することができ
る。
When the movable electrode 3 is displaced up and down according to the acceleration G, the capacitance between the movable electrode 3 and the fixed electrodes 4 and 5 changes. The sensor according to the present invention detects acceleration from this capacitance change. As an acceleration sensor for vehicle body control, it is necessary to detect a specific acceleration component (in the Y direction in the figure) with high precision, and it is necessary to detect acceleration components in other axis directions (in the X direction perpendicular to the Y axis in the figure). must not. The silicon plate 1 is etched from both sides so that the center of gravity of the movable electrode 3 having a weight function is located on the central axis of the silicon cantilever 2 in the longitudinal direction. With this configuration, when the cantilever 2 receives acceleration in the X-axis direction, a bending moment that displaces the movable electrode 3 up and down (in the Y-axis direction) does not act on the cantilever 2 . As a result, the acceleration sensor according to the present invention is insensitive to the acceleration component in the X-axis direction,
Only the acceleration component in the Y-axis direction can be accurately detected.

加速度以外の要因(例えば、周囲温度の変化など)によ
って、可動電極3と固定電極4,5間のギャップが変化
すると検出誤差を発生することになる。加速度センサは
車体に装着後、−40〜+100℃の広い温度範囲内で
使用されるので、温度影響の少ないことが要求される。
If the gap between the movable electrode 3 and the fixed electrodes 4 and 5 changes due to factors other than acceleration (for example, changes in ambient temperature), a detection error will occur. Since the acceleration sensor is used within a wide temperature range of -40 to +100° C. after being attached to the vehicle body, it is required to be less affected by temperature.

周囲温度の変化に対して、シリコン板1とガラス板6,
7との接着部の熱歪の温度影響が大きな問題となるので
、この部分の熱歪を極力小さくしなれればならない。固
定電極4,5を表面に蒸着その他の方法で形成したガラ
ス板6,7の材質をホウケイ酸系のガラスとし、その熱
膨張係数がシリコン板1と等しいものを選定する。シリ
コン板1とガラス板4.5とを良く知られた陽極接合法
(3oO℃以上の高温で、高電圧を印加して接合する方
法)によって接着することにより、接着部の熱歪を極力
、小さくできる。図により明らかなように、シリコン板
1.カンチレバー2.可動電極3よりなる検出部の構造
は上下に対称な積層体になっている。
The silicon plate 1 and the glass plate 6,
Since the temperature effect of thermal strain on the adhesive portion with 7 becomes a major problem, it is necessary to minimize the thermal strain on this portion. The glass plates 6 and 7 on which the fixed electrodes 4 and 5 are formed by vapor deposition or other methods are made of borosilicate glass whose thermal expansion coefficient is equal to that of the silicon plate 1. By bonding the silicon plate 1 and the glass plate 4.5 using the well-known anodic bonding method (a method of bonding by applying a high voltage at a high temperature of 300°C or higher), thermal strain at the bonded portion is minimized. Can be made smaller. As is clear from the figure, silicon plate 1. Cantilever 2. The structure of the detection section made of the movable electrode 3 is a vertically symmetrical stacked body.

ガラス板6と同7との接着部の熱歪が可動電極3を上下
に変位させる素因は、対称積層体のため互いに相殺され
る。このように本実施例は、検出部の構造自体も、加速
度センサの温度特性を向上させるようになっている。
The predisposition for vertically displacing the movable electrode 3 due to thermal strain at the bonded portion between the glass plates 6 and 7 is canceled out by each other due to the symmetrical laminated structure. In this way, in this embodiment, the structure of the detection section itself also improves the temperature characteristics of the acceleration sensor.

容量式加速度センサの基本原理を第2図に示す。Figure 2 shows the basic principle of a capacitive acceleration sensor.

可動電極3と固定電極4との間め静電容量C1及び可動
電極3と固定電極5との間の静電容量C2は電極取出用
リード10,11,12を介して電子回路(図示せず)
に接続されて検出される。可動電極3と固定電極4との
間の初期ギャップdOは数μmに作られる。今、可動電
極3が加速度による力を受けて、固定電極5の方へWだ
け変位すると、容量C1は減少し、容量C2は増加する
The capacitance C1 between the movable electrode 3 and the fixed electrode 4 and the capacitance C2 between the movable electrode 3 and the fixed electrode 5 are connected to an electronic circuit (not shown) via electrode lead leads 10, 11, 12. )
connected to and detected. The initial gap dO between the movable electrode 3 and the fixed electrode 4 is made to be several μm. Now, when the movable electrode 3 receives a force due to acceleration and is displaced by W toward the fixed electrode 5, the capacitance C1 decreases and the capacitance C2 increases.

この容量の差分値ΔC(Δc=cz−Ct)から、車体
に作用する加速度Gを検出するものである。
The acceleration G acting on the vehicle body is detected from this capacitance difference value ΔC (Δc=cz−Ct).

検出部の展崩図を第3図に示す。検出部は上部ガラス板
部、中部シリコン板部、下部ガラス板部よりなる。ガラ
ス板6には孔15.16がサンドブラストその他の方法
であけられており、片方の面に固定電極4が、反対の面
に引出しM1極13が、蒸着、スパッタなどの方法で形
成される。
Figure 3 shows an exploded view of the detection unit. The detection part consists of an upper glass plate part, a middle silicon plate part, and a lower glass plate part. Holes 15 and 16 are made in the glass plate 6 by sandblasting or other methods, and the fixed electrode 4 is formed on one side and the lead-out M1 pole 13 is formed on the opposite side by a method such as vapor deposition or sputtering.

固定電極4は引出し電極13と、孔15の内面にメツキ
によって形成したメツキ接続リード部分14とによって
接続され、リード取り出し電極18からワイヤボンディ
ングによって外部の容量検出回路(図示せず)と結線さ
れる。
The fixed electrode 4 is connected to the extraction electrode 13 and a plating connection lead portion 14 formed by plating on the inner surface of the hole 15, and is connected to an external capacitance detection circuit (not shown) from the lead extraction electrode 18 by wire bonding. .

シリコン板1には、カンチレバー2と可動電極3とがエ
ツチングによって加工された後、リード引出し電極17
が蒸着その他の方法で形成される。
After the cantilever 2 and the movable electrode 3 are etched on the silicon plate 1, a lead extraction electrode 17 is formed on the silicon plate 1.
is formed by vapor deposition or other methods.

ガラス板7には固定電極5が蒸着、スパッタその他の方
法で形成され、リード取出し電極19により外部の容量
検出回路(図示せず)へ結線される。
A fixed electrode 5 is formed on the glass plate 7 by vapor deposition, sputtering or other methods, and is connected to an external capacitance detection circuit (not shown) through a lead extraction electrode 19.

なお、上部ガラス板部、中部シリコン板部及び下部ガラ
ス板部をウェハ状態で接合した後、各検出チップにダイ
シングする。ダイシング時の切粉や洗浄水が可動電極3
と固定電極4.5との間に侵入しないように、ダイシン
グ前に孔15と同16とに軟かい接着剤(例えば、シリ
コンゴムなど)を注入する。
Note that after the upper glass plate part, the middle silicon plate part, and the lower glass plate part are bonded in a wafer state, they are diced into each detection chip. Chips and cleaning water during dicing are removed from the movable electrode 3.
Before dicing, a soft adhesive (for example, silicone rubber, etc.) is injected into the holes 15 and 16 to prevent it from entering between the electrode 4.5 and the fixed electrode 4.5.

第4図にシリコン板1の詳細を示す。シリコン板1は(
100)ウェハよりなり、良く知られたアルカリ溶液中
での異方性エツチングによって両面から加工される。カ
ンチレバー2と可動電極3との周囲には、溝孔状の貫通
溝8が形成され、可動電極3はカンチレバー2の固定端
を支点として、加速度に対し上下に変位できるようにな
っている。
FIG. 4 shows details of the silicon plate 1. Silicon plate 1 is (
100) consists of a wafer processed from both sides by well-known anisotropic etching in an alkaline solution. A slot-like through groove 8 is formed around the cantilever 2 and the movable electrode 3, and the movable electrode 3 can be displaced up and down in response to acceleration using the fixed end of the cantilever 2 as a fulcrum.

なお、21は貫通溝8を加工したときに発生する斜めエ
チツング部を示している。
Note that 21 indicates a diagonally etched portion that occurs when the through groove 8 is processed.

切断代マーク20.リード取出し通路22゜23 (2
3はシリコン板1の裏面に形成される)は数μmの深さ
にエツチング加工される。リード取出し通路22.23
を固定電極4,5の電極引出し部分が通り、固定電極4
,5がシリコン板1と接触しないようにする。貫通孔2
4はガラス板6に形成した孔16(第3図参照)から軟
かい接着剤をリード取出し通路部23へ注入するために
設けられている。25はリード取出し電極19からワイ
ヤボンディングによって、固定電極5を外部の容量検出
回路と結線するために、エツチング加工されたワイヤボ
ンディング用のリード取出し空所である。
Cutting allowance mark 20. Lead extraction passage 22゜23 (2
3 formed on the back surface of the silicon plate 1) is etched to a depth of several μm. Lead extraction passage 22.23
The electrode extraction parts of the fixed electrodes 4 and 5 pass through, and the fixed electrode 4
, 5 should not come into contact with the silicon plate 1. Through hole 2
Reference numeral 4 is provided for injecting a soft adhesive into the lead extraction passage 23 through a hole 16 (see FIG. 3) formed in the glass plate 6. Reference numeral 25 denotes a lead extraction space for wire bonding which is etched to connect the fixed electrode 5 to an external capacitance detection circuit from the lead extraction electrode 19 by wire bonding.

v−■断面を第5図に示す。本図に示すように、シリコ
ン板1を両面からエツチングすることによってカンチレ
バー2と可動電極3とが形成され、重錘の機能も有する
可動電極3の重心がカンチレバー2の長手方向の中心軸
上にくるように、シリコンウェハ1の厚さ方向に関して
対称となるように加工する。本例においては、歪ゲージ
式加速度センサにおけるが如き拡散抵抗を設けていない
ので、前記カンチレバーのエツチング加工に際して格別
のパッシベーション対策を必要とせず、歩留り良く製作
できる。
A v-■ cross section is shown in FIG. As shown in this figure, a cantilever 2 and a movable electrode 3 are formed by etching a silicon plate 1 from both sides, and the center of gravity of the movable electrode 3, which also functions as a weight, is aligned on the central axis of the cantilever 2 in the longitudinal direction. The silicon wafer 1 is processed so as to be symmetrical with respect to the thickness direction thereof. In this example, since a diffusion resistor as in a strain gauge type acceleration sensor is not provided, no special passivation measures are required when etching the cantilever, and the cantilever can be manufactured at a high yield.

本発明に係る加速度センサの製造プロセスの一例を第6
図に示す6本実施例における上部ガラスウェハ、中部シ
リコンウェハ及び下部ガラスウェハには、直径3〜4イ
ンチ、その厚さがそれぞれ0 、3 +m 、 0 、
2 na 、 0 、3 mのものを用い、検出部の試
作を行なった。上部ガラスウェハにサイドブラストで孔
15.16を加工後、15の内面に導電性の金属を無電
解メツキによって形成した。
An example of the manufacturing process of the acceleration sensor according to the present invention is shown in the sixth example.
The six illustrated upper glass wafers, middle silicon wafers, and lower glass wafers in this example have a diameter of 3 to 4 inches and a thickness of 0, 3 + m, 0,
A detection section was prototyped using 2 na, 0, and 3 m. After forming holes 15 and 16 in the upper glass wafer by side blasting, a conductive metal was formed on the inner surface of the holes 15 by electroless plating.

このメツキ接続リード14と電気的に接続するように、
一方の面に引出し電極13.リード取出し電極18.他
方の面に固定電極4を蒸着によって形成した。
In order to electrically connect with this plating connection lead 14,
Extracting electrode 13 on one side. Lead extraction electrode 18. A fixed electrode 4 was formed on the other surface by vapor deposition.

中部シリコンウェハは熱酸化膜をアルカリエツチング時
の保護マスクとして、貫通溝8となるスリット部、可動
電極3.カンチレバー2の順で加工を行なった。なお、
リード取出し通路22゜23は可動電極3と同時に、貫
通孔24とリード取出し空所25はスリット部の貫通溝
8と同時に加工を行なった。可動電極3.リード取出し
通路22.23はシリコン板1の表面から、その深さが
数μm(望ましくは2〜3μm)になるようにエツチン
グされる。
The middle silicon wafer has a thermal oxide film used as a protective mask during alkali etching, and a slit portion that becomes a through groove 8, a movable electrode 3. Processing was performed in the order of cantilever 2. In addition,
The lead extraction passages 22 and 23 were machined at the same time as the movable electrode 3, and the through hole 24 and the lead extraction space 25 were machined at the same time as the through groove 8 of the slit portion. Movable electrode 3. The lead extraction passages 22 and 23 are etched from the surface of the silicon plate 1 to a depth of several micrometers (preferably 2 to 3 micrometers).

下部ガラスウェハへ、蒸着によって固定電極5とリード
引出し電極19とを同時に形成した。なお、電極材料に
はAQあるいはAuなどの金属を用いた。
Fixed electrode 5 and lead extraction electrode 19 were simultaneously formed on the lower glass wafer by vapor deposition. Note that a metal such as AQ or Au was used as the electrode material.

上部ガラスウェハ、中部シリコンウェハ及び下部ガラス
ウェハを積層後、適当な位置合せ治具で3枚の位置合せ
を行う。これらの積層ウェハを300℃以上の高温度に
加熱後、高電圧を印加し、いわゆる陽極接合法によって
接合した。このとき。
After stacking the upper glass wafer, middle silicon wafer, and lower glass wafer, the three wafers are aligned using an appropriate alignment jig. After heating these laminated wafers to a high temperature of 300° C. or higher, a high voltage was applied to bond them by a so-called anodic bonding method. At this time.

可動電極3は固定電極4と同5との中央にくるように接
着される。ガラス板にほうけい酸系のガラス材を用いる
と、ガラス板とシリコン板との熱膨張係数はほぼ等しく
なり、両者の接合面の熱歪みは極めて小さくなる。それ
故、検出部の周囲温度が変化しても、接着部の熱歪みを
原因としてカンチレバー2の固定端を支点とした可動電
極3の上下動変位は微小である。この結果9周囲温度の
変化に対する可動電極3と固定電極4,5との間の容量
変化が僅小であり、温度影響の少ない高精度な加速度セ
ンサを得ることができる。また、シリコンカンチレバー
2の中心軸上に重錘の機能も含む可動電極3の重心がく
るようにエツチング加工されているため、検出部は可動
電極3の変位方向に対して、上下対称構造になっている
。それ故、上部ガラス板とシリコン板との界面の接着歪
及び下部ガラス板とシリコン板との界面の接着歪が。
The movable electrode 3 is bonded to the fixed electrodes 4 and 5 so as to be located in the center thereof. When a borosilicate glass material is used for the glass plate, the coefficients of thermal expansion of the glass plate and the silicon plate are approximately equal, and the thermal distortion of the bonded surface between the two becomes extremely small. Therefore, even if the ambient temperature of the detection part changes, the vertical displacement of the movable electrode 3 about the fixed end of the cantilever 2 as a fulcrum is minute due to thermal distortion of the adhesive part. As a result, the change in capacitance between the movable electrode 3 and the fixed electrodes 4 and 5 due to changes in ambient temperature is very small, making it possible to obtain a highly accurate acceleration sensor with little temperature influence. In addition, since the etching process is performed so that the center of gravity of the movable electrode 3, which also functions as a weight, is on the central axis of the silicon cantilever 2, the detection part has a vertically symmetrical structure with respect to the displacement direction of the movable electrode 3. ing. Therefore, there is an adhesive strain at the interface between the upper glass plate and the silicon plate, and an adhesive strain at the interface between the lower glass plate and the silicon plate.

可動電極3を上下に変位させる要因は互い&丹相殺され
、周囲温度の変化に対する可動電極3と固定電極4,5
との間の静電容量の変化を一層小さくさせ、加速度セン
サの高性能化に寄与している。
The factors that cause the movable electrode 3 to move up and down cancel each other out, and the movable electrode 3 and fixed electrodes 4, 5 in response to changes in ambient temperature
This further reduces the change in capacitance between the two and contributes to higher performance acceleration sensors.

次に、シリコン板1上に可動電極3のワイヤボンディン
グ用のリード取出し電極26(後述の第7図参照)を蒸
着によって形成した。
Next, a lead extraction electrode 26 (see FIG. 7, which will be described later) for wire bonding of the movable electrode 3 was formed on the silicon plate 1 by vapor deposition.

孔15と16に軟かい接着剤を注入し、ダイシング時に
切粉や水などが可動電極3付近へ侵入するのを防止した
。次に、目視観察による接合界面の接合状況のチエツク
や容量テスタによる可動電極3と固定電極4,5と間の
電気容量の計測を行い、不良検出部を抽出してマーキン
グを行い、ダイシング後に選別、#去できるようにした
A soft adhesive was injected into the holes 15 and 16 to prevent chips, water, etc. from entering the vicinity of the movable electrode 3 during dicing. Next, check the bonding status of the bonding interface by visual observation, measure the capacitance between the movable electrode 3 and the fixed electrodes 4 and 5 using a capacitance tester, extract and mark defective areas, and sort after dicing. , # allowed to leave.

次に、積層ウェハを同時にダイシングして、−度に数百
側の検出チップを製作した。このように、検出部の接着
2選別、ダイシングをウェハ状態で実行することにより
、製造コストを低下させることができる。
Next, the stacked wafers were simultaneously diced to produce several hundred detection chips at a time. In this way, by performing adhesion 2 sorting and dicing of the detection portions in the wafer state, manufacturing costs can be reduced.

良品の検出チップを第7図に示す如く、有機接着剤34
でステム31へ接合した後、ワイヤボンディングとキャ
ブ接合作業を行い、加速度センサとしての総合的な特性
評価を行なった。
As shown in FIG. 7, a good detection chip is coated with an organic adhesive 34.
After bonding to the stem 31, wire bonding and cab bonding work were performed, and comprehensive characteristics evaluation as an acceleration sensor was performed.

本発明による加速度センサの検出部の部組構造を第7図
に示す。ガラス板6.シリコン板1及びガラス板7を積
層した検出チップを縦弾性係数の小さい(軟かい)有機
接着剤34(例え瞑、シリコンゴム)でステム31上へ
固定している。金属性のステム31には孔27がおいて
おり、ガラス材28でリード29をハニメチツクシーノ
ヒ的に装着している。ステム31とボラ、ろ板7との熱
膨張係数は等しくないので、この部分の接着歪みが上部
の検出チップに伝達しないように、接着剤34には軟か
い接着剤であるシリコンゴムなどを用いた。
FIG. 7 shows the subassembly structure of the detection section of the acceleration sensor according to the present invention. Glass plate 6. A detection chip in which a silicon plate 1 and a glass plate 7 are laminated is fixed onto a stem 31 using a soft organic adhesive 34 (for example, silicone rubber) having a small longitudinal elastic modulus. A hole 27 is provided in the metal stem 31, and a lead 29 is mounted in a honeycomb manner using a glass material 28. Since the thermal expansion coefficients of the stem 31, the bola, and the filter plate 7 are not equal, a soft adhesive such as silicone rubber is used for the adhesive 34 to prevent the adhesive strain in this part from being transmitted to the upper detection chip. there was.

次に、リード取出し電極26とリード29とに導線30
をワイヤボンディングして電気的に結線したsNzある
いは乾燥大気中でキャップ33をステム31に接合し、
部屋32中にNzあるいは乾燥大気を封入した。
Next, a conducting wire 30 is connected to the lead extraction electrode 26 and the lead 29.
The cap 33 is joined to the stem 31 in sNz electrically connected by wire bonding or in a dry atmosphere,
Nz or dry atmosphere was sealed in the room 32.

第7図の■−■視図、即ち平面図を第8図に示す、リー
ド取出し電極18.17.19はそれぞれ孔27−a、
27−b、27−c内にハーメチック的にシールされた
リード29−a、29−b。
The view from ■-■ in FIG. 7, that is, the plan view is shown in FIG.
Leads 29-a, 29-b hermetically sealed within 27-b, 27-c.

29−Cに導線によって外部の容量検出回路と電算的に
結線搭塾る。。
29-C is electrically connected to an external capacitance detection circuit by a conductor. .

可動電極の変位と容量変化との関係を第9図により説明
する。可動電極3はY軸方向の加速度成分に応答として
、カンチレバー2の固定端36を支点としてY軸方向に
上下動する。可動電極3と固定電極4,5との間の初期
ギャップをdOとする。doは高感度化の点から数μm
が望ましく、do=3μmのものを試作し評価を行なっ
た。可動電極3の重心を35として、点線で示すように
その重心位置が加速度によってWだけ変位したとする0
図に示すように、可動電極3の重心35部の変位Wが大
きくなるにつれて、可動電極3と固定電極4,5との平
行度のズレは大きくなる。
The relationship between displacement of the movable electrode and capacitance change will be explained with reference to FIG. 9. The movable electrode 3 moves up and down in the Y-axis direction using the fixed end 36 of the cantilever 2 as a fulcrum in response to the acceleration component in the Y-axis direction. Let dO be the initial gap between the movable electrode 3 and the fixed electrodes 4 and 5. do is several μm from the point of view of high sensitivity.
is desirable, and a prototype with do=3 μm was manufactured and evaluated. Assume that the center of gravity of the movable electrode 3 is 35 and that the center of gravity is displaced by W due to acceleration as shown by the dotted line.
As shown in the figure, as the displacement W of the center of gravity 35 of the movable electrode 3 increases, the deviation in parallelism between the movable electrode 3 and the fixed electrodes 4 and 5 increases.

この平行度のズレを考慮して、可動電極3と固定電極4
,5との間の容量を解析した。この結果を第10図に示
す、可動電極3の重心35の変位Wに対する可動電極3
と固定電極4,5との間の容量CI、 C2+及び容量
の差分値ΔC(ΔC=C2Cs)  の関係を示したも
のである。可動電極3の表面電極部が長さ1 、26 
mm 、幅1 、76 mn+ 。
Considering this discrepancy in parallelism, the movable electrode 3 and the fixed electrode 4
, 5 was analyzed. The results are shown in FIG. 10, where the movable electrode 3 is
The relationship between the capacitance CI, C2+, and the capacitance difference value ΔC (ΔC=C2Cs) between the fixed electrodes 4 and 5 is shown. The surface electrode portion of the movable electrode 3 has a length of 1 and 26
mm, width 1, 76 mn+.

カンチレバー2の長さが0.8mmのときの解析結果を
示した。可動電極3の変位Wが大きくなるにつれて、変
位Wに対する容量CI、C2及びその差分値ΔCの非線
形性が大きくなる。
The analysis results are shown when the length of the cantilever 2 is 0.8 mm. As the displacement W of the movable electrode 3 increases, the nonlinearity of the capacitances CI and C2 and their difference value ΔC with respect to the displacement W increases.

本発明による加速度センサの加速度に対する非直線誤差
の解析結果を第11図に示す。±IGの加速度に対して
、カンチレバー2の変位W±0.6μmになるように、
カンチレバー2の幅を0.2mm。
FIG. 11 shows an analysis result of non-linear error with respect to acceleration of the acceleration sensor according to the present invention. With respect to the acceleration of ±IG, the displacement W of the cantilever 2 is ±0.6 μm.
The width of cantilever 2 is 0.2 mm.

その厚さを0.02mn にエツチング加工したときの
解析結果を示した。0〜±IGの測定範囲に対して、約
±3%の非直線誤差を有する。それ故、後述するような
非直線誤差補償回路によって、直線性の改善を行なった
。なお、可動電極3と固定電極4,5との間の容量CI
、C2の変化ΔCt/C1及びΔC2/Czは約0.2
0で、歪ゲージ式加速度センサの感度ΔR/R(Rは拡
散抵抗の抵抗値)の約10倍の値になり、高感度化を達
成することができる。しかも、±IGの加速度が作用し
たときに、カンチレバー2の固定端36に発生する最大
応力は約IMPa程度と小さく、歪ゲージ式の加速度セ
ンサの場合の約数十分の−に抑えることができ、高感度
化を達成しつつ耐衝撃性を向上させることができる。よ
って、約1mの高さからコンクリート上へ落下(このと
き、可動電極3には瞬間的に約100G程度の衝撃加速
度が作用する)させても、カンチレバー2は破損するこ
とはなく、高い信頼性を示した。また、カンチレバー2
の厚さを20μm(歪ゲージ式加速度センサの場合は約
10μm)と厚くできるので、カンチレバー2と可動電
極3よりなる検出部の固有振動数は約1.5kHzにな
る。従って、固有振動数は車体制御用加速度センサの検
出すべき周波数成分のO〜10Hzに対して十分に大き
く、変位部分にシリコンオイルなどの液体を封入して、
特にこれをダンピングさせなくても、耐衝撃性を検出時
の高精度化を両立させることができる。この分、検出部
の部分組立構造と組立作業とが簡単になり。
The analysis results when the thickness was etched to 0.02 mm are shown. It has a nonlinear error of approximately ±3% for the measurement range of 0 to ±IG. Therefore, linearity was improved by using a nonlinear error compensation circuit as described below. In addition, the capacitance CI between the movable electrode 3 and the fixed electrodes 4 and 5
, C2 changes ΔCt/C1 and ΔC2/Cz are approximately 0.2
0, the value is about 10 times the sensitivity ΔR/R (R is the resistance value of the diffused resistor) of the strain gauge type acceleration sensor, and high sensitivity can be achieved. Moreover, when an acceleration of ±IG is applied, the maximum stress generated at the fixed end 36 of the cantilever 2 is as small as about IMPa, which can be suppressed to about several tenths of the stress in the case of a strain gauge type acceleration sensor. , it is possible to improve impact resistance while achieving high sensitivity. Therefore, even if the cantilever 2 is dropped from a height of approximately 1 m onto concrete (at this time, an impact acceleration of approximately 100 G is instantaneously applied to the movable electrode 3), the cantilever 2 will not be damaged and is highly reliable. showed that. Also, cantilever 2
The thickness of the sensor can be increased to 20 μm (approximately 10 μm in the case of a strain gauge type acceleration sensor), so the natural frequency of the detection section consisting of the cantilever 2 and the movable electrode 3 is approximately 1.5 kHz. Therefore, the natural frequency is sufficiently large compared to the frequency component of 0 to 10 Hz that should be detected by the acceleration sensor for vehicle body control, and the displacement part is filled with liquid such as silicone oil.
In particular, even without damping, it is possible to achieve both impact resistance and high accuracy during detection. This simplifies the partial assembly structure and assembly work of the detection unit.

低価格化に適している。Suitable for lowering prices.

本発明に係る加速センサの、前記と異なる実施例を第1
2図に示す。
A first embodiment of the acceleration sensor according to the present invention is different from the above.
Shown in Figure 2.

検出部の基本構造は、下記の点を除いて第1図の実施例
と同様である。
The basic structure of the detection section is the same as the embodiment shown in FIG. 1 except for the following points.

即ち、可動電極3が、図の左右に配置した1対のシリコ
ンのビーム40.41によって支持されている。
That is, the movable electrode 3 is supported by a pair of silicon beams 40, 41 placed on the left and right sides of the figure.

第1図の片持ち梁構造に比して第12図は両持ち梁構造
であり、これにより感度は約1/1oになるが、大きく
Gに酎え得る。その他の点については前記実施例と同様
の効果が得られる。
Compared to the cantilever structure shown in FIG. 1, the one shown in FIG. 12 has a double-end structure, which reduces the sensitivity to about 1/1o, but can greatly influence G. In other respects, the same effects as in the previous embodiment can be obtained.

本実施例の加速度センサの検出回路の構成を第13図に
示す。検出部53は固定端36によって支持されたカン
チレバー2の先端に形成された可動電極3及び固定電極
4,5よりなる。加速度に対応して変化する可動電極3
と固定電極4,5間の静電容量を容量検出回路50で測
定し、増幅回路51で、増幅後、非線形補償回路52に
より、加速度に対する出力電圧Voの値線性を改善した
FIG. 13 shows the configuration of the detection circuit of the acceleration sensor of this embodiment. The detection unit 53 includes a movable electrode 3 and fixed electrodes 4 and 5 formed at the tip of the cantilever 2 supported by the fixed end 36. Movable electrode 3 that changes in response to acceleration
The capacitance between the fixed electrodes 4 and 5 was measured by a capacitance detection circuit 50, and after amplification by an amplifier circuit 51, a nonlinear compensation circuit 52 improved the linearity of the output voltage Vo with respect to acceleration.

試作センサの出力特性の一例を第14図に示す。An example of the output characteristics of the prototype sensor is shown in FIG.

図に示すように、0〜±IGの加速度を高精度に検出で
き、車体制御用加速度センサとして好適であることを確
認した。
As shown in the figure, it was confirmed that acceleration of 0 to ±IG can be detected with high accuracy, and that it is suitable as an acceleration sensor for vehicle body control.

〔発明の効果〕〔Effect of the invention〕

本発明に係る容量式加速度センサは、構造が簡単である
。構造が簡単であるため価格が安く、小型軽量に構成で
き。信頼性が高い。しかも耐衝撃性に優れ、かつ高感度
である。
The capacitive acceleration sensor according to the present invention has a simple structure. Since the structure is simple, the price is low and it can be configured to be small and lightweight. Highly reliable. Moreover, it has excellent impact resistance and high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による加速度センサ検出部の基本構造を
示す模式図、第2図は容量式加速度センサの基本構造図
、第3図は検出部の展開図、第4図は検出部シリコン板
の詳細図、第5図はその断面図、第6図は検出部の製造
プロセスの説明図、第7図は検出部の部分組立構造を示
す断面図、第8図はその平面図、第9図は可動電極の変
位と容量変化の関係の説明図、第10図はその解析結果
を示す図表、第11図は非直線誤差の解析結果を示す図
表、第12図は本発明による加速度センサ検出部の他の
実施例、第13図は検出回路の構成説明図、第14図は
試作センサの出力特性を示す図表である。 1・・・シリコン板、2・・・カンチレバー、3・・・
可動電極、4,5・・・固定電極、6,7・・・ガラス
板、40゜41・・・ビーム。
Fig. 1 is a schematic diagram showing the basic structure of the detection section of an acceleration sensor according to the present invention, Fig. 2 is a basic structure diagram of a capacitive acceleration sensor, Fig. 3 is a developed view of the detection section, and Fig. 4 is a silicon plate of the detection section. 5 is a sectional view thereof, FIG. 6 is an explanatory diagram of the manufacturing process of the detection section, FIG. 7 is a sectional view showing a partially assembled structure of the detection section, FIG. 8 is a plan view thereof, and FIG. 9 The figure is an explanatory diagram of the relationship between the displacement of the movable electrode and the capacitance change, Figure 10 is a diagram showing the analysis results, Figure 11 is a diagram showing the analysis results of non-linear error, and Figure 12 is the acceleration sensor detection according to the present invention. FIG. 13 is an explanatory diagram of the configuration of the detection circuit, and FIG. 14 is a chart showing the output characteristics of a prototype sensor. 1... Silicon plate, 2... Cantilever, 3...
Movable electrode, 4, 5... Fixed electrode, 6, 7... Glass plate, 40° 41... Beam.

Claims (1)

【特許請求の範囲】 1、(a)シリコン板を両面からエッチングして形成し
た可動電極と、シリコン板を両面から エッチングして形成したカンチレバーとを 一体に連設して、上記カンチレバーによつ て可動電極を弾性的に支承し、 (b)上記の可動電極及びカンチレバーを形成したシリ
コン板を1対のガラス板で挟持し、(c)上記1対のガ
ラス板のそれぞれが前記の可動電板に対向している部分
に板状の固定 電極を固着し、 (d)前記のガラス板に固着された固定電極と、前記カ
ンチレバーによつて弾性的に支承さ れた可動電極との間に空隙を形成したこと を特徴とする容量式加速度センサ。 2、前記可動電極の重心を、前記カンチレバーの中心線
上に位置せしめたことを特徴とする特許請求の範囲第1
項に記載の容量式加速度センサ。 3、(a)シリコン板を両面からエッチングして形成し
た可動電極と、上記シリコン板を両面 からエッチングして形成され、上記可動電 極と一体に連設された両持ち形の梁とを設 け、 (b)上記の可動電極及び両持ち梁とを形成したシリコ
ン板を1対のガラス板で挟持し、 (c)上記1対のガラス板のそれぞれが前記の可動電板
に対向している部分に板状の固定 電極を固着し、 (d)前記のガラス板に固着された固定電極と、前記の
カンチレバーによつて弾性的に支承 された可動電極との間に空隙を形成したこ とを特徴とする容量式加速度センサ。
[Scope of Claims] 1. (a) A movable electrode formed by etching a silicon plate from both sides and a cantilever formed by etching a silicon plate from both sides are integrally connected, and the movable electrode is formed by etching a silicon plate from both sides. a movable electrode is elastically supported; (b) the silicon plate on which the movable electrode and the cantilever are formed is sandwiched between a pair of glass plates; and (c) each of the pair of glass plates is connected to the movable electric plate. (d) A gap is created between the fixed electrode fixed to the glass plate and the movable electrode elastically supported by the cantilever. A capacitive acceleration sensor characterized by the following: 2. Claim 1, characterized in that the center of gravity of the movable electrode is located on the center line of the cantilever.
The capacitive acceleration sensor described in section. 3. (a) A movable electrode formed by etching a silicon plate from both sides, and a double-sided beam formed by etching the silicon plate from both sides and integrally connected to the movable electrode, (b) A silicon plate forming the movable electrode and the double-supported beam is sandwiched between a pair of glass plates, and (c) A portion where each of the pair of glass plates faces the movable electric plate. A plate-shaped fixed electrode is fixed to the glass plate, and (d) a gap is formed between the fixed electrode fixed to the glass plate and the movable electrode elastically supported by the cantilever. Capacitive acceleration sensor.
JP30968487A 1987-12-09 1987-12-09 Capacity type acceleration sensor Granted JPH01152369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30968487A JPH01152369A (en) 1987-12-09 1987-12-09 Capacity type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30968487A JPH01152369A (en) 1987-12-09 1987-12-09 Capacity type acceleration sensor

Publications (2)

Publication Number Publication Date
JPH01152369A true JPH01152369A (en) 1989-06-14
JPH0565109B2 JPH0565109B2 (en) 1993-09-17

Family

ID=17996033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30968487A Granted JPH01152369A (en) 1987-12-09 1987-12-09 Capacity type acceleration sensor

Country Status (1)

Country Link
JP (1) JPH01152369A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131767A (en) * 1989-10-18 1991-06-05 Hitachi Ltd Acceleration detector
JPH03210479A (en) * 1990-01-12 1991-09-13 Hitachi Ltd Sensor for detecting displacement
JPH0447271A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Acceleration sensor and method for controlling output voltage thereof
JPH0447272A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Semiconductor acceleration sensor
DE4132105A1 (en) * 1990-09-26 1992-04-09 Hitachi Ltd Prodn. of curved structure for e.g. semiconductor accelerometer - comprises two=stage anisotropic etching of wafer using different masks
JPH04130277A (en) * 1990-09-21 1992-05-01 Nissan Motor Co Ltd Semiconductor acceleration sensor
US5504356A (en) * 1992-11-16 1996-04-02 Nippondenso Co., Ltd. Semiconductor accelerometer
US5503017A (en) * 1993-05-21 1996-04-02 Nippondenso Co., Ltd. Semiconductor acceleration sensor
JP2010066231A (en) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp Acceleration sensor
JP2010145212A (en) * 2008-12-18 2010-07-01 Denso Corp Semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512171B2 (en) * 1989-10-18 1996-07-03 株式会社日立製作所 Acceleration detector
JPH03131767A (en) * 1989-10-18 1991-06-05 Hitachi Ltd Acceleration detector
JPH03210479A (en) * 1990-01-12 1991-09-13 Hitachi Ltd Sensor for detecting displacement
JPH0833410B2 (en) * 1990-01-12 1996-03-29 株式会社日立製作所 Acceleration sensor
JPH0833411B2 (en) * 1990-06-15 1996-03-29 株式会社日立製作所 Semiconductor acceleration sensor
JPH0447271A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Acceleration sensor and method for controlling output voltage thereof
JPH0447272A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Semiconductor acceleration sensor
JPH04130277A (en) * 1990-09-21 1992-05-01 Nissan Motor Co Ltd Semiconductor acceleration sensor
US5389198A (en) * 1990-09-26 1995-02-14 Hitachi, Ltd. Structure and method of manufacturing the same
DE4132105A1 (en) * 1990-09-26 1992-04-09 Hitachi Ltd Prodn. of curved structure for e.g. semiconductor accelerometer - comprises two=stage anisotropic etching of wafer using different masks
US5504356A (en) * 1992-11-16 1996-04-02 Nippondenso Co., Ltd. Semiconductor accelerometer
US5503017A (en) * 1993-05-21 1996-04-02 Nippondenso Co., Ltd. Semiconductor acceleration sensor
JP2010066231A (en) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp Acceleration sensor
JP2010145212A (en) * 2008-12-18 2010-07-01 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0565109B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
CN101858929B (en) Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof
US20080034867A1 (en) Multi-range three-axis acceleration sensor device
EP0369352B2 (en) Capacitance type accelerometer and method of manufacturing the same
US8347720B2 (en) MEMS tunneling accelerometer
CN109786422B (en) Piezoelectric excitation tension type silicon micro-resonance pressure sensor chip and preparation method thereof
CN100552453C (en) Symmetry straight beam structure condenser type micro-acceleration sensor and preparation method thereof
CN105021846B (en) A kind of six axis one type micro acceleration sensors and preparation method thereof
WO2003044539A1 (en) Acceleration sensor
US6584864B2 (en) Sensor
US5335544A (en) Apparatus for measuring mechanical forces and force actions
CN101216498A (en) Dual spindle differential capacitance type micromechanical accelerameter
JPH01152369A (en) Capacity type acceleration sensor
US9476906B2 (en) Capacitive acceleration sensor with an H-shaped beam and preparation method thereof
US20050140356A1 (en) Multiaxial micromachined differential accelerometer
CN100334453C (en) Acceleration transducer
CN114061797B (en) MEMS piezoresistive pressure sensor with double-bridge structure and preparation method thereof
Bae et al. High-shock silicon accelerometer with suspended piezoresistive sensing bridges
Zavracky et al. Design and process considerations for a tunneling tip accelerometer
CN100422697C (en) Acceleration transducer
Peeters et al. A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer
CN109238523B (en) Device and method for measuring residual stress of wafer
JPH04204339A (en) Electrostatic capacity type pressure detector
JP3366733B2 (en) Capacitive acceleration sensor
RU2247342C1 (en) Multiplicative microelectronic pressure transducer
CN114088257B (en) MEMS piezoresistive pressure sensor and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees