JPH03210479A - Sensor for detecting displacement - Google Patents

Sensor for detecting displacement

Info

Publication number
JPH03210479A
JPH03210479A JP2003626A JP362690A JPH03210479A JP H03210479 A JPH03210479 A JP H03210479A JP 2003626 A JP2003626 A JP 2003626A JP 362690 A JP362690 A JP 362690A JP H03210479 A JPH03210479 A JP H03210479A
Authority
JP
Japan
Prior art keywords
displacement
electrode
displacement body
sensor
see
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003626A
Other languages
Japanese (ja)
Other versions
JPH0833410B2 (en
Inventor
Yoshihiro Yokota
横田 吉弘
Kiyomitsu Suzuki
清光 鈴木
Shotaro Naito
祥太郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP2003626A priority Critical patent/JPH0833410B2/en
Priority to US07/596,367 priority patent/US5228341A/en
Priority to DE4032828A priority patent/DE4032828C2/en
Priority to KR1019900016578A priority patent/KR910008414A/en
Publication of JPH03210479A publication Critical patent/JPH03210479A/en
Publication of JPH0833410B2 publication Critical patent/JPH0833410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To shorten an inspection time by using an electrode constituted so as to be able to see through the space between a displacement body and the electrodes through the electrodes. CONSTITUTION:Fixed electrodes 20, 22 are formed, for example, by the use of a material composed of indium oxide-tin. This indium oxide-tin is fixed to transparent substrates 12, 14 by high frequency ion plating. When indium oxide-tin is formed into a film by high frequency ion plating, the fixed electrodes 20, 22 themselves become transparent electrodes and a weight 16 can be seen through the transparent substrates 12, 14 and the transparent fixed electrodes 20, 22. By this constitution, when foreign matter penetrates, the presence thereof can be inspected from appearance and an inspection time can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変位体の変位を検出するセンサに係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a sensor that detects the displacement of a displacement body.

特に変位体に対向する電極部を備えたセンサに関するも
のである。
In particular, the present invention relates to a sensor equipped with an electrode portion facing a displacement body.

〔従来の技術〕[Conventional technology]

一般に変位体の変位を検出するセンサとしては。 Generally used as a sensor to detect the displacement of a displacement object.

加速度センサ等が知られている。Acceleration sensors and the like are known.

この加速度センサは例えば特開昭61−97572号公
報等にある半導体加速度センサが最近提案されて注目さ
れている。
As an example of this acceleration sensor, a semiconductor acceleration sensor disclosed in, for example, Japanese Patent Laid-Open No. 61-97572 has recently been proposed and is attracting attention.

この半導体加速度センサはエツチング等の薄膜技術を用
いて半導体基板上に形成されるものであり、半導体のピ
エゾ抵抗効果による抵抗変位や偏位による微少な容量変
化を検出することによって加速度を検出するようになっ
ている。
This semiconductor acceleration sensor is formed on a semiconductor substrate using thin film technology such as etching, and detects acceleration by detecting resistance displacement due to the piezoresistive effect of the semiconductor and minute capacitance changes due to deviation. It has become.

そして、これらの加速度センサは薄膜技術を用いて形成
されるため極めて小型に形成できるといった効果や、集
積回路と同一基板で形成できるといった効果があり、自
動車の走行状態を検出するセンサとして注目されている
Since these acceleration sensors are formed using thin film technology, they have the advantage of being extremely compact and can be formed on the same substrate as an integrated circuit, and are attracting attention as sensors for detecting the driving state of automobiles. There is.

〔発明が解決しようとする課題〕 ところで、このような加速度センサにおいては電極と変
位体の間の隙間は数ミクロンメータのオーダであり、異
物がこの隙間に侵入した場合にショートという問題が発
生する。
[Problem to be Solved by the Invention] Incidentally, in such an acceleration sensor, the gap between the electrode and the displacement body is on the order of several micrometers, and if a foreign object enters this gap, a short circuit problem will occur. .

そして、この場合の検査は電気的な出力を検査するとい
った間接的な方法で行っていたが、時間が多くかかると
いう製造上の問題があった。
In this case, inspection was performed indirectly by inspecting the electrical output, but there was a manufacturing problem in that it took a lot of time.

その理由としては、現在提案されている加速度センサで
は、電極材料としてアルミニウムを用いて蒸着あるいは
スパッタリングで電極を形成しているため不透明な電極
となって外観的に検査できないからである。
The reason for this is that in currently proposed acceleration sensors, the electrodes are formed by vapor deposition or sputtering using aluminum as the electrode material, resulting in opaque electrodes that cannot be visually inspected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴は電極を通して変位体との間が可視できる
ような電極を用いるようにしたものである。
A feature of the present invention is that an electrode is used so that the distance between the displacement body and the displacement body can be seen through the electrode.

〔作用〕[Effect]

このような構成によれば電極を通して電極と変位体の間
に異物が侵入しているかどうか可視でき。
With this configuration, it is possible to see through the electrode whether or not foreign matter has entered between the electrode and the displacement body.

検査時間を大幅に短縮することが可能となる。It becomes possible to significantly shorten inspection time.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づき詳細に説明する。 Embodiments of the present invention will be described in detail below based on the drawings.

第1図において、参照番号10はシリコンよりなる板(
以下シリコン板と言う)であり、このシリコン板10の
両側にはガラス等よりなる透視基台12.14が固着さ
れている。この透視基台12.14は電気的に絶縁作用
を有している。
In FIG. 1, reference number 10 is a plate made of silicon (
(hereinafter referred to as a silicon plate), and see-through bases 12 and 14 made of glass or the like are fixed to both sides of this silicon plate 10. This transparent base 12, 14 has an electrically insulating effect.

シリコン板10の一部には重垂16を有するカンチレバ
ー18が形成されており、このカンチレバー18の両側
には固定電極20.22が対向している。
A cantilever 18 having a vertical wall 16 is formed on a part of the silicon plate 10, and fixed electrodes 20, 22 are opposed to both sides of the cantilever 18.

固定電極20.22は透明基台12.14に固定され、
これらはスルーホール24を介して取り出し線26へ接
続されている。
A fixed electrode 20.22 is fixed to a transparent base 12.14,
These are connected to a lead wire 26 via a through hole 24.

そして、この加速度センサは第2図ないし第4図に示さ
れているように3部材からなるものである。第2図及び
第4図は透明基台12.14であり矩形の電極20.2
2が形成されている。一方、第3図はシリコン板10で
あり、内部に重垂16゜カンチレバー18が正画形成さ
れている。
This acceleration sensor is composed of three members as shown in FIGS. 2 to 4. 2 and 4 show a transparent base 12.14 and a rectangular electrode 20.2.
2 is formed. On the other hand, FIG. 3 shows a silicon plate 10, on the inside of which a vertical 16° cantilever 18 is formed.

そして、これら3部材を組み立てたものが第5図に示さ
れている。
FIG. 5 shows an assembly of these three members.

このような構成の加速度センサは次のような動作で加速
度を検出することができる。
The acceleration sensor having such a configuration can detect acceleration through the following operation.

今、重垂16と固定電極20.22の間の静電容量は等
しいものとする。次に加速度が加わると重垂16はどち
らか一方へ変位するので静電容量もこれに伴って変化す
る。したがってこの静電容量の変化を打ち消すべくフィ
ードバックをかけてやれば1重垂16は変位することな
く元の位置に留まる。この時のフィードバックされる電
気量を測定すれば加速度が測定できるものである。
Now, it is assumed that the capacitances between the stack 16 and the fixed electrodes 20 and 22 are equal. Next, when acceleration is applied, the weight 16 is displaced to either side, and the capacitance changes accordingly. Therefore, if feedback is applied to cancel this change in capacitance, the single layer 16 will remain at its original position without being displaced. Acceleration can be measured by measuring the amount of electricity fed back at this time.

さて、本発明はこのような加速度センサにおいて固定電
極20.22を通して重垂16が可視できるようにする
ものである。
Now, the present invention enables the vertical drop 16 to be visible through the fixed electrodes 20, 22 in such an acceleration sensor.

次にこの構成について説明する。Next, this configuration will be explained.

第1図において、固定電極20.22は酸化インジウム
−スズよりなる材料を用いている。
In FIG. 1, the fixed electrodes 20, 22 are made of indium-tin oxide.

この酸化インジウム−スズは透明基台12゜14に固着
される際高周波イオンブレーティングによって行なわれ
る。
This indium-tin oxide is fixed to the transparent base 12.degree. 14 by high frequency ion blasting.

そして、このように高周波イオンブレーティングによっ
て酸化インジウム−スズを成膜すると固定電極自身が透
明な電極となり、透明基台12゜18及び透明な固定型
[i20,22を介して重垂16まで可視することがで
きる。
Then, by forming a film of indium-tin oxide by high-frequency ion blasting in this way, the fixed electrode itself becomes a transparent electrode, and the transparent base 12°18 and the transparent fixed mold [i20, 22 are visible up to can do.

このように、重垂16まで可視できるような構造とする
こができるため、異物の侵入があった場合外観から検査
することができ検査時間を短縮することが可能となる。
In this way, since the structure can be made such that even the hanging 16 can be seen, if a foreign object has entered, it can be inspected from the outside, and the inspection time can be shortened.

尚、電極材料として酸化インジウム−スズを用いたが、
この他機化インジウムや酸化スズを用いても同様の透視
電極が形成される。
Although indium-tin oxide was used as the electrode material,
Similar transparent electrodes can also be formed using mechanized indium or tin oxide.

ここで、高周波イオンブレーティングを用いて電極を形
成する場合はスルーホール24を含めて取り出し部26
が形成することができるため、正確な電極20.22と
取り出し線26の導通が得られる効果も併せ有している
Here, when forming an electrode using high frequency ion blating, the extraction part 26 including the through hole 24
Since the electrodes 20, 22 and the lead wire 26 can be electrically connected to each other accurately, the electrodes 20, 22 and the lead wire 26 can be electrically connected to each other.

次に本発明の他の実施例を第6図、第7図に基づき説明
する。
Next, another embodiment of the present invention will be described based on FIGS. 6 and 7.

今までは酸化インジウム−スズを電極材料として高周波
イオンブレーティングで電極を形成して、電極自身を透
明とする実施例を説明したが、第6図、第7図は電極自
身を網目状にして可視できるようにしたものである。
Up to now, we have explained examples in which the electrodes are made transparent by using indium-tin oxide as the electrode material and formed by high-frequency ion blating, but in Figures 6 and 7, the electrodes themselves are made into a mesh shape. It is made visible.

第6図、第7図には網目の形状として丸穴あるいは矩形
穴を多数設けて網目状の電極を形成しである。
In FIGS. 6 and 7, a large number of round or rectangular holes are provided as a mesh shape to form a mesh electrode.

このような電極形状を採用すると、電極の間にガラス状
の透明基台がのぞくため、実質的に電極を通して重垂1
6まで可視できるようになる。
When such an electrode shape is adopted, a glass-like transparent base can be seen between the electrodes, so it is practically possible to see through the electrodes.
You can now see up to 6.

この場合、電極材料はアルミニウム等を用いることがで
き、しかも高周波イオンブレーティングで電極を形成す
れば前述したようにスルーホール24を介してと取り出
し線26と固定電極20゜22を形成できるため、正確
な導通が得られるようになる。
In this case, aluminum or the like can be used as the electrode material, and if the electrode is formed by high frequency ion blating, the lead wire 26 and the fixed electrode 20° 22 can be formed through the through hole 24 as described above. Accurate conduction can now be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明によれば固定電極を通して重
垂等の変位体まで可視できるような構成を得られるので
、異物の侵入等があっても外観検査で見つけることがで
き、製造上の検査時間を大幅に短縮できるものである。
As described above, according to the present invention, it is possible to obtain a configuration in which even a displaced object such as a heavy hanging can be seen through the fixed electrode, so even if foreign matter has entered, it can be detected by external inspection, and it is possible to avoid manufacturing problems. This can significantly shorten inspection time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる加速度センサの断面図
、第2図は第1図の■−■矢視図、第3図は第1図の■
−■矢視図、第4図は第1図の■−■矢視図、第5図は
加速度センサの組立斜視図。 第6図及び第7図は本発明の他の実施例になる電極形状
を示す正面図である。 10・・・シリコン板、12.14・・・透明基台、1
6・・・重垂、20,22・・・固定電極、24・・・
スルーホ第 図 第 図 第 図 第 図 第 図
FIG. 1 is a cross-sectional view of an acceleration sensor according to an embodiment of the present invention, FIG. 2 is a view taken along the arrow ■-■ in FIG. 1, and FIG.
FIG. 4 is a view taken from the ■-■ arrow in FIG. 1, and FIG. 5 is an assembled perspective view of the acceleration sensor. FIGS. 6 and 7 are front views showing electrode shapes according to other embodiments of the present invention. 10... Silicon plate, 12.14... Transparent base, 1
6... Judare, 20, 22... Fixed electrode, 24...
Thru-ho diagram diagram diagram diagram diagram diagram

Claims (1)

【特許請求の範囲】 1、(a)力が作用することによつて変位する変位体; (b)前記変位体の変位を検出し、しかも前記変位体ま
で透視できる透視電極 とを有してなる変位を検出するセンサ。 2、(a)力が作用することによつて変位する変位体; (b)前記変位体と予め定められた空隙を介して対向す
る一体の透視性絶縁基台; (c)前記透視性絶縁基台と前記変位体の間に配置され
、しかも前記透視性絶縁基台を介して前記変位体まで透
視できる透視電極 を有してなる変位を検出するセンサ。 3、(a)力が作用することによつて変位する重垂とこ
れを支持するカンチレバーで構成され、しかも前記重垂
とカンチレバーがシリコンからなる変位体; (b)前記変位体を両側から挟持し、しかも前記重垂と
の間に予め定めた空隙を形成する一体のガラス基台; (c)前記ガラス基台に固定され、前記変位体まで透視
できる透視電極 を有してなる変位を検出するセンサ。 4、請求項第3項において、前記透視電極は酸化インジ
ウム−スズよりなる材料で作られている変位を検出する
センサ。 5、請求項第4項において、前記酸化インジウム−スズ
は高周波イオンブレーティング法によつて前記ガラス基
台に固着される変位を検出するセンサ。 6、請求項第3項において、前記透視電極は網目状に形
成されている変位を検出するセンサ。
[Claims] 1. (a) A displacement body that is displaced by the action of a force; (b) A see-through electrode that detects the displacement of the displacement body and can also see through the displacement body. A sensor that detects displacement. 2. (a) A displacement body that is displaced by the action of force; (b) An integral transparent insulating base that faces the displacement body through a predetermined gap; (c) The transparent insulation A sensor for detecting displacement, comprising a see-through electrode that is disposed between a base and the displacement body and that can see through the transparent insulating base to the displacement body. 3. (a) A displacement body consisting of a heavy suspension that is displaced by the action of force and a cantilever that supports it, and the heavy suspension and the cantilever are made of silicon; (b) The displacement body is held from both sides. and an integrated glass base forming a predetermined gap between it and the vertical suspension; (c) detecting displacement by having a see-through electrode fixed to the glass base and capable of seeing through to the displacement body; sensor. 4. A sensor for detecting displacement according to claim 3, wherein the transparent electrode is made of a material consisting of indium-tin oxide. 5. The sensor according to claim 4, wherein the indium-tin oxide is fixed to the glass base by a high frequency ion blating method. 6. The sensor for detecting displacement according to claim 3, wherein the see-through electrode is formed in a mesh shape.
JP2003626A 1989-10-18 1990-01-12 Acceleration sensor Expired - Lifetime JPH0833410B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003626A JPH0833410B2 (en) 1990-01-12 1990-01-12 Acceleration sensor
US07/596,367 US5228341A (en) 1989-10-18 1990-10-12 Capacitive acceleration detector having reduced mass portion
DE4032828A DE4032828C2 (en) 1989-10-18 1990-10-16 Acceleration detector
KR1019900016578A KR910008414A (en) 1989-10-18 1990-10-18 Acceleration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003626A JPH0833410B2 (en) 1990-01-12 1990-01-12 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH03210479A true JPH03210479A (en) 1991-09-13
JPH0833410B2 JPH0833410B2 (en) 1996-03-29

Family

ID=11562707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003626A Expired - Lifetime JPH0833410B2 (en) 1989-10-18 1990-01-12 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0833410B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628083B2 (en) * 2004-12-15 2011-02-09 京セラ株式会社 Pressure detection device package, pressure detection device, pressure sensitive element, and pressure detection device package manufacturing method
CN105817953B (en) * 2016-05-20 2018-04-13 天津大学 The measuring device and measuring method of a kind of lathe space Thermal Error

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589076A (en) * 1978-11-14 1980-07-05 Ekloef Krister Impact indicator
JPS57142363U (en) * 1981-03-04 1982-09-07
JPH01152369A (en) * 1987-12-09 1989-06-14 Hitachi Ltd Capacity type acceleration sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589076A (en) * 1978-11-14 1980-07-05 Ekloef Krister Impact indicator
JPS57142363U (en) * 1981-03-04 1982-09-07
JPH01152369A (en) * 1987-12-09 1989-06-14 Hitachi Ltd Capacity type acceleration sensor

Also Published As

Publication number Publication date
JPH0833410B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
WO2017000501A1 (en) Mems pressure sensing element
US5801313A (en) Capacitive sensor
US5479827A (en) Capacitive pressure sensor isolating electrodes from external environment
JPH11344507A (en) Constituting element of micro machine
US9068835B2 (en) Functional element, sensor element, electronic apparatus, and method for producing a functional element
CA2610185A1 (en) Method of manufacturing a capacitive acceleration sensor, and a capacitive acceleration sensor
JP2012225920A (en) Micro-electromechanical system (mems) device
CN108516518A (en) Resonance type pressure sensor and preparation method thereof based on piezoresistive detection
US8240205B2 (en) Mechanical quantity sensor and method of manufacturing the same
US8250918B2 (en) Mechanical quantity sensor and method of manufacturing the same
US9052334B2 (en) Acceleration sensor
CN104819730B (en) A kind of MEMS inertial sensor and its manufacture method
JP2008032451A (en) Variable capacitance pressure sensor
CA2989441C (en) Multi-plate capacitive transducer
JP2000074768A (en) Capacitance type pressure sensor and manufacture thereof
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
JPH03210479A (en) Sensor for detecting displacement
JPH06347474A (en) Acceleration sensor
JPH10300609A (en) Electrostatic capacitance type pressure sensor
US7398694B2 (en) Pressure sensor and method for manufacturing pressure sensor
JP2013024765A (en) Capacitance type sensor
JPH06323939A (en) Capacitance-type sensor
JPH0954114A (en) Acceleration sensor
JPH07176768A (en) Acceleration sensor
JP2009270944A (en) Capacitance type acceleration sensor