JPH01152250A - Manufacture of beta-titanium alloy having high hardness value - Google Patents

Manufacture of beta-titanium alloy having high hardness value

Info

Publication number
JPH01152250A
JPH01152250A JP31103387A JP31103387A JPH01152250A JP H01152250 A JPH01152250 A JP H01152250A JP 31103387 A JP31103387 A JP 31103387A JP 31103387 A JP31103387 A JP 31103387A JP H01152250 A JPH01152250 A JP H01152250A
Authority
JP
Japan
Prior art keywords
temperature
titanium alloy
treatment
alloy
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31103387A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Hiroo Suzuki
洋夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31103387A priority Critical patent/JPH01152250A/en
Publication of JPH01152250A publication Critical patent/JPH01152250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a beta-type titanium alloy having high hardness value by a simplified process in a short time by subjecting a beta-type titanium alloy to heating, solution heat treatment, rapid cooling, and ageing treatment in succession under respectively specified conditions. CONSTITUTION:A beta-type titanium alloy is heated at a temp. in the range between (beta-transus of this alloy)+300 deg.C and the melting temp. of this alloy to undergo solution heat treatment and cooled rapidly down to room temp. at >=10 deg.C/sec cooling rate. Subsequently, ageing treatment is applied to the above alloy at 100-550 deg.C for <=about 150hr. By this method, the beta-type titanium alloy having high hardness value can be obtained by a simplified process in a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、β盤チタン合金の熱処理方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for heat treating a β-disc titanium alloy.

(従来の技術) β型チタン合金の1采的製造過程における熱処理は、β
−トランザス直上の低温β域で溶体化処理を行い、その
後450℃以上650℃以下の温度で時効処理を行うの
が一般的である。
(Prior art) Heat treatment in a single manufacturing process of β-type titanium alloy is
- It is common to perform solution treatment in the low temperature β region directly above the transus, and then perform aging treatment at a temperature of 450°C or higher and 650°C or lower.

β−トランザス直上の低温β域で溶体化処理を行うのは
、β粒の粗大化を防ぐため、および低温β域での溶体化
処理により十分な特性が得られると考えられてきたため
である。
The reason why the solution treatment is performed in the low temperature β region directly above the β-transus is to prevent the coarsening of β grains, and because it has been thought that sufficient properties can be obtained by solution treatment in the low temperature β region.

とくに高硬度値を有するβ型チタン合金を製造するため
には、1)溶体化処理後、300℃以上450℃以下の
低い温度域で時効処理を行い、微細なα相あるいはω相
を析出させる、2)溶体化処理後、5%以上の冷間力i
工を施し、刀υ工歪みを付与した後450℃以上650
℃以下の温度で時効処理を行う、3)l)と2)を組み
合わせ、溶体化処理後、5%以上の冷間加工を施し、そ
の後300℃以上450℃以下の温反モ時効処理を行う
などが提案されてきた。
In order to produce a β-type titanium alloy with a particularly high hardness value, 1) After solution treatment, aging treatment is performed in a low temperature range of 300°C or more and 450°C or less to precipitate fine α or ω phases. , 2) Cold force i of 5% or more after solution treatment
450°C or higher and 650°C after applying mechanical distortion.
Aging treatment is performed at a temperature of 300°C or lower, combining 3) l) and 2), and after solution treatment, cold working of 5% or more is performed, followed by warm aging treatment at a temperature of 300°C or higher and 450°C or lower. etc. have been proposed.

しかしながらこれらの方法では、次に述べるような問題
点がある。即ち従来法1)、3)では300℃以上45
0℃以下の低温で時効処理を行うため、商い硬度値(た
とえば500ビツ力−ス硬度以上)を有する材料を得る
ためには、1000時間以上の時間が必要であり、工業
上実際的でない。
However, these methods have the following problems. In other words, in conventional methods 1) and 3), temperatures of 300°C or higher45
Since the aging treatment is carried out at a low temperature of 0° C. or lower, it takes 1000 hours or more to obtain a material with a commercial hardness value (for example, 500 bits hardness or higher), which is industrially impractical.

また、従来法2)、3)では冷間加工を施すことが必要
であり、工程が複雑である。さらに鋳造あるいは粉床冶
金により製造した材料に対しては2)、3)の工程を用
いることができない。
Furthermore, conventional methods 2) and 3) require cold working, and the process is complicated. Furthermore, the steps 2) and 3) cannot be used for materials manufactured by casting or powder bed metallurgy.

(発明が解決しようとする問題点) 本発明は、従来法よりも簡単な方法で、かつ短時間で、
従来法を施したものと同等あるいは従来法を施したもの
よりも高い硬度値を有するβ型チタン合金を製造するだ
めの方法を提供しようとするものである。
(Problems to be solved by the invention) The present invention solves the problem in a simpler way and in a shorter time than the conventional method.
It is an object of the present invention to provide an alternative method for producing a β-type titanium alloy having a hardness value equal to or higher than that produced by conventional methods.

(問題点を解決するための手段) 本発明は、βをチタン合金を、当該合金のβ−トランザ
ス+300℃の温度以上で、当該合金の融解温度以下の
温度に加熱し、溶体化処理を行った後、10℃毎秒以上
の冷却速度で冷却し、次に100℃以上550℃以下の
温度で時効処理を行うことにより、150時間以下の時
効時間で高?!Il!W値を有するβ型チタン合金を製
造することを特徴とする。
(Means for Solving the Problems) The present invention provides solution treatment for β by heating a titanium alloy to a temperature above the β-transus of the alloy +300°C and below the melting temperature of the alloy. After that, it is cooled at a cooling rate of 10°C per second or more, and then subjected to aging treatment at a temperature of 100°C or more and 550°C or less. ! Il! It is characterized by producing a β-type titanium alloy having a W value.

ここで、温体化後の冷却は室温まで行い、その後時効処
理温度に7JLl熱して時効処理を施してもよいし、静
体化処理後直接時効処理温度まで冷却し、その温度で時
効処理を行ってもよい。
Here, cooling after heating may be performed to room temperature, and then aging treatment may be performed by heating to the aging treatment temperature by 7 JLl, or cooling to the aging treatment temperature directly after the static treatment and aging treatment at that temperature. You may go.

史に本発明は、β型チタン合金を、当該合金のβ−トラ
ンザス+300℃の一、h1.度以上で、当該合金のl
li解温度以下の温度に加熱し、溶体化処理ン行った後
、10℃毎秒以上の冷却速度で冷却し、次に5%以上の
N 11J1加工を行い加工歪みを付与した慄、100
℃以上550℃以下の温度で時効処理を行うことにより
、150時間以下の時効時間で篩硬度値を有するβ型チ
タン合金を製造することな特徴とする。
Historically, the present invention provides a β-type titanium alloy with a temperature of β-transus +300°C, h1. l of the alloy
After heating to a temperature below the li melting temperature and performing solution treatment, cooling at a cooling rate of 10°C per second or more, and then processing with 5% or more N 11J1 to give processing distortion, 100
The present invention is characterized in that a β-type titanium alloy having a sieve hardness value is produced in an aging time of 150 hours or less by performing aging treatment at a temperature of 550°C or higher.

なお、β型チタン合金とはβ−トランザス以上の温度域
から水焼入れを行ったとき、マルテンサイト変態せず、
β相がすべて室温まで残留する種類のチタン合金である
Note that β-type titanium alloys do not undergo martensitic transformation when water quenched at temperatures above β-transus.
This is a type of titanium alloy in which all of the β phase remains up to room temperature.

また、β−トランザスとは、β−相が安定状態であるよ
うな最下限の温度である。また、溶体化処理後の冷却速
度はlO℃毎秒以上であるとしたが、これは材料の中で
も高硬度値であることが要求される部分で滴たされてお
ればよい。
Moreover, the β-transus is the lowest temperature at which the β-phase is in a stable state. Furthermore, although the cooling rate after the solution treatment is set to be 10° C. per second or more, it is sufficient that the cooling rate is applied to a portion of the material where a high hardness value is required.

たとえば、表面のみが高硬度値であるような厚板では、
表面付近のみが溶体化処理後の冷却速度が10℃以上で
あればよい。
For example, in a thick plate where only the surface has a high hardness value,
It is sufficient if only the cooling rate near the surface after solution treatment is 10° C. or higher.

(作用) 本発明(1)では、β型チタン合金の溶体化処理を、当
該合金のβ−トランザス+300℃の温度以上で、当該
合金の融解温度以下の高温のβ域で行うこととした。こ
れはβ型チタン合金中に含まれる空孔諷度を關くするた
めである。
(Function) In the present invention (1), the solution treatment of the β-type titanium alloy is carried out in the high temperature β range, which is higher than the β-transus of the alloy +300°C and lower than the melting temperature of the alloy. This is to take into account the degree of pores contained in the β-type titanium alloy.

この屈出は以下に述べるとおりである。This bending is as described below.

一般に温度T (K)における金属材料中の空孔濃度(
C)は、 C= A−exp (−E/kT ) という式によって与えられる。
In general, the vacancy concentration (
C) is given by the formula: C=A-exp (-E/kT).

ここでEはを孔を形成するのに必要なエネルギーであり
、大部分の金属材料では約1.6X10−12ergで
ある。
where E is the energy required to form the pore and is approximately 1.6×10 −12 erg for most metallic materials.

また、kはボルツマン定数で、1.38xlO−16e
 r g / Kである。
Also, k is Boltzmann's constant, 1.38xlO-16e
r g /K.

またAはエントロピー類で、ここでは正定数である。Also, A is an entropy class, and here it is a positive constant.

またKは絶対温度の単位で摂氏(U)との間にはT (
K) =’l’ (℃) + 273という関係がある
。コノ式からTの値が大きいitどCは大きい値となる
。すなわち溶体化処理温度が高いほど空孔濃度は高くな
る。
Also, K is the unit of absolute temperature, and there is a difference between it and Celsius (U).
There is a relationship: K) = 'l' (°C) + 273. According to the Kono formula, if it is a large value of T, C becomes a large value. That is, the higher the solution treatment temperature, the higher the vacancy concentration.

また溶体化処理−1度の下限をβ−トランザス+300
℃としたのは、これ以下の温度では空孔−度が低いため
に、本発明の効果が十分に得られないからである。また
浴体化処坤温度の上限を融解温度以下としたのは、これ
以上の温度だと材料が溶解し形状を失うためである。
Also, the lower limit of solution treatment -1 degree is β-transus +300
The reason why it is set at .degree. C. is because the effect of the present invention cannot be sufficiently obtained at temperatures below this temperature because the degree of porosity is low. The reason why the upper limit of the bath forming temperature is set below the melting temperature is that if the temperature is higher than this, the material will melt and lose its shape.

つぎに、10℃毎秒以上の冷却速度で急冷するとしたが
、これは高温溶体化処理により生成した高濃度の空孔を
、空孔のままあるいは空孔の集合体の形で、できるだけ
消滅させずに凍結するためである。
Next, we tried to rapidly cool the pores at a cooling rate of 10 degrees Celsius per second or more, but this was done so that the high concentration of pores generated by the high-temperature solution treatment could be kept as vacancies or in the form of aggregates of pores, without disappearing as much as possible. This is because it freezes.

冷却速度の最下限を10℃毎秒としたのは、これ以下の
冷却速度では冷却中に消滅する空孔の数が長く、十分な
数の空孔あるいは空孔の集合体が凍結されないために、
本発明の効果が十分に得られないためである。
The reason why the lower limit of the cooling rate was set at 10 degrees Celsius per second is because if the cooling rate is lower than this, the number of vacancies will disappear during cooling, and a sufficient number of vacancies or aggregates of vacancies will not be frozen.
This is because the effects of the present invention cannot be sufficiently obtained.

次にこの材料を100℃以上550℃以下の温度で時効
処理な行うこととした。これは時効処理を施すことによ
り、微細なα相あるいはω相を析出させることにより、
扁硬[1iKの材料を得るためである。
Next, this material was subjected to aging treatment at a temperature of 100° C. or more and 550° C. or less. This is achieved by precipitating fine α or ω phases through aging treatment.
This is to obtain a material with a hardness of 1iK.

ここで、時効処理温度を100℃以上としたのは、10
0℃未満の温度では合金元素(たとえば″Pi−15V
−3Cr−3Sn−3At合金ではvs At−Cr5
Sn )およびTiの拡散が遅いため、工莱上実用的な
時間内で十分な量のα相が析出せず、そのため本発明の
効果が十分に得られないためである。
Here, the aging treatment temperature was set to 100°C or higher because 10
At temperatures below 0°C, alloying elements (e.g. "Pi-15V
-3Cr-3Sn-3At alloy vs. At-Cr5
This is because, since the diffusion of Sn) and Ti is slow, a sufficient amount of α phase cannot be precipitated within a practical time, and therefore the effects of the present invention cannot be sufficiently obtained.

また時効処理温度を550℃以下としたのは、550℃
以上の温度で時効処理を施すと、<fK値および最高硬
度値に遅する時間ともに、従来法(β−トランザス直上
での溶体化処理)を適用した場合と同じ8度の値となり
、本発明の効果が十分に得られないためである。
In addition, the aging treatment temperature was set to 550℃ or less.
When aging treatment is performed at the above temperature, both the <fK value and the time required to reach the maximum hardness value are 8 degrees, the same as when applying the conventional method (solution treatment directly above the β-transus), and the present invention This is because the effect cannot be obtained sufficiently.

また、本発明を施すことにより、従来法な施すよりも時
効硬化が著しく速くなるのは次の二つの理由による。
Furthermore, the reason why age hardening is significantly faster when applied according to the present invention than when applied using the conventional method is due to the following two reasons.

一般に置換をの浴室元素(たとえば′rt−1sv−3
Cr−3Sn−3AL合金ではv、 ht、 Cr5S
n )および溶媒元g(たとえばβ型チタン合金ではT
i)は、空孔との位−反挾により材料中を移動すること
が知られている。したがって空孔温度が尚いほど元素の
移動、拡散は速くなる。
Generally, substitutions are made for bath elements (e.g. 'rt-1sv-3
In Cr-3Sn-3AL alloy, v, ht, Cr5S
n ) and the solvent element g (for example, T in β-type titanium alloys)
It is known that i) moves through the material due to the interaction with the pores. Therefore, the higher the pore temperature, the faster the movement and diffusion of elements.

本発明では高温で溶体化処理を施し急冷しているため、
高温で生成した高い濃度の空孔が凍結されており、この
材料に時効処理を施すと、従来法(β−トランザス直上
での解体化処理)を施した材料よりも、元素のV−、拡
散が速く、その結果α相、ω相の析出も速くなり、時効
硬化も速くなる。
In the present invention, solution treatment is performed at high temperature and then rapidly cooled, so
A high concentration of vacancies generated at high temperatures are frozen, and when this material is subjected to aging treatment, the elemental V-, diffusion As a result, the precipitation of α phase and ω phase also becomes faster, and age hardening also becomes faster.

一般に金属材料における相変態、析出は核になるもの(
たとえば転位、粒界、介在物、*1−欠陥、空孔の果合
体など)が存在するとその部分に波光的に、かつ速く析
出する。
In general, phase transformation and precipitation in metal materials are the core (
For example, if dislocations, grain boundaries, inclusions, *1-defects, aggregates of vacancies, etc.) are present, they will precipitate rapidly in the form of wave light in those areas.

本発明を施した材料では、溶体化処理温度から急冷中に
、空孔の一部が集合体を形成し、これが析出の核となっ
てこの部分にα相およびω相が速く析出する。
In the material subjected to the present invention, some of the pores form an aggregate during quenching from the solution treatment temperature, and this becomes a nucleus for precipitation, and the α phase and ω phase rapidly precipitate in this area.

また、本発明を施した材料では時効処理仮の硬バr−1
+区が従来法を施したものと同等あるいは従来法を施し
たものよりも詞くなっているのは次の理由による。
In addition, in the material to which the present invention has been applied, the aging treatment temporary hard bar r-1
The reason why +ku is equivalent to or longer than the conventional method is for the following reason.

本発明を施した材料では、溶体化処理中に材料に均一に
分布していた空孔の一部が、冷却中に集合体を形成する
が、この果合体も均一に分布しているため、時効処理を
施すことによりこの集合体を核として、析出するα相及
びω相も均一分布する。
In the material subjected to the present invention, some of the pores that were uniformly distributed in the material during solution treatment form aggregates during cooling, but since these aggregates are also uniformly distributed, By performing the aging treatment, the precipitated α phase and ω phase are also uniformly distributed using this aggregate as a core.

また本発明を施した材料では、温体化処理時にきわめて
多数の空孔が存在しており、冷却中に生成した果合体の
数も多いので、α相あるいはω相も微細なものが多数析
出する。したがって硬度値も扁くなる。
In addition, in the material according to the present invention, a large number of pores are present during the warming treatment, and a large number of coalescences are formed during cooling, so many fine α or ω phases are precipitated. do. Therefore, the hardness value also becomes flat.

本発明(2)は前述の本発明(1)とさきに説明した従
来法3)(1)方法を組み合わせることにより、その効
果l血豆させたものである。
The present invention (2) combines the above-mentioned present invention (1) with the previously explained conventional method 3) (1), thereby increasing its effectiveness.

ここで5%以上の冷1tfll 7J11工を行うこと
としたが、これは5%以下の冷間刀l工では加工補みが
小さく、さぎの本発明(1)よりも時効硬化が速くなら
ない、また硬度値が高くならない理由による。
Here, we decided to carry out cold 1tfull 7J11 machining at 5% or more, but this is because cold machining at 5% or less has a small machining compensation, and age hardening does not become faster than Sagi's invention (1). This is also due to the reason why the hardness value does not increase.

(実施例) Ti−15ψ−3Cr−3Sn−3At合金(β−トラ
ンザス:760℃、融解帽し1490℃)に対して本発
明を適用した場合な詞に、本発明の作用について説明す
る。
(Example) The effect of the present invention will be described in terms of the case where the present invention is applied to a Ti-15ψ-3Cr-3Sn-3At alloy (β-transus: 760°C, melting temperature: 1490°C).

本合金を850℃で151+−に圧延し、第1表に示し
た6梅の熱処理を施し、最高硬度イばおよび最陥吠匿値
に達するに要した時間の測定を行った。
This alloy was rolled at 850° C. to 151+-, subjected to the six heat treatments shown in Table 1, and the time required to reach the maximum hardness and maximum depression value was measured.

第1表で熱処理1−1および熱処理1−2は本発明(1
)の実施例であり、熱処理■−1および熱感3JJii
l−2は溶体化処理温度が、本発明の下限値であるβ−
トランザス+300℃以下の温度で溶体化処理を施した
場合の本発明(1)に対する比戦例である0 とくに熱感’Ql−2は、β−トランザス直上で溶体化
処理な施した場合であり、従来法1)に相当する熱処理
である。
In Table 1, heat treatment 1-1 and heat treatment 1-2 are according to the present invention (1
), and heat treatment ■-1 and heat sensation 3JJii
l-2 is the solution treatment temperature β- which is the lower limit of the present invention.
In particular, the heat sensation 'Ql-2, which is a comparative example of the present invention (1) when solution treatment is performed at a temperature of transus + 300°C or lower, is when solution treatment is performed directly above β-transus. , which is a heat treatment equivalent to conventional method 1).

熱感理延は本発明(2)の実施例であり、熱処理IVは
β−トランザス直上で溶体化処理を施した場合の比較例
であり、従来法3)に相当する熱処理である。
Heat-sensitized rolling is an example of the present invention (2), and heat treatment IV is a comparative example in which solution treatment is performed directly above the β-transus, and is a heat treatment equivalent to conventional method 3).

熱処理■は本発明における時効処理温度の下限値である
100℃に近い温度で時効処理を施した場合の本発明(
1)の実施例であり、熱処理Vlは本発明における時効
処′)iJAi度の下限値である100℃以下の温度で
時効処理を施した場合の本発明(1)の比較例である。
Heat treatment (2) is the case of the present invention (
This is an example of 1), and is a comparative example of the present invention (1) in which the heat treatment Vl is aged at a temperature of 100° C. or lower, which is the lower limit of the aging treatment in the present invention.

熱処理VIIおよび熱処理■は、本発明における時効処
理温度の上限値である550℃以上の温度で時効処理を
施した場合の本発明(1)の比較例である。
Heat treatment VII and heat treatment (1) are comparative examples of the present invention (1) in which the aging treatment was performed at a temperature of 550° C. or higher, which is the upper limit of the aging treatment temperature in the present invention.

熱感41Xは本発明における溶体化処理後の冷却速度の
下限値である10℃毎秒に近い冷却速度で冷却した場合
の本発明(1)の実施例である。熱処理Xは本発明にお
ける溶体化処理後の冷却速度の下限値である10℃毎秒
以下の冷却速度で冷却した場合の本発明(1)の比較例
である。
Thermal sensation 41X is an example of the present invention (1) when cooling is performed at a cooling rate close to 10° C./sec, which is the lower limit of the cooling rate after solution treatment in the present invention. Heat treatment

これらの熱処理を施した材料に対して、最高硬度値およ
び最高硬度値に達するに要した時間を測定した結果を第
2表に示す。
Table 2 shows the results of measuring the maximum hardness value and the time required to reach the maximum hardness value for these heat-treated materials.

M2表にみられるがごとく、本発明(1)を施した試料
(試験奇岩■、■、■、■、@、[相])は、比較例(
試ki W号■、■、■)に比べて最高硬度値は高くな
っており、また最高硬度値に達するに要した時間は着し
く短くなっている。
As seen in Table M2, the samples subjected to the present invention (1) (test strange rocks ■, ■, ■, ■, @, [phase]) were compared with the comparative example (
The maximum hardness value is higher than that of the test samples No. ki W (■, ■, ■), and the time required to reach the maximum hardness value is significantly shorter.

本発明(2)を14シた試料(試験番号■、■)は、比
較例(試験番号[相]、■)に比べて最i妬硬度値は高
くなっており、また最高硬度値に達するに要した時間は
著しく短くなっている。
The samples subjected to the present invention (2) for 14 times (test numbers ■, ■) have higher hardness values than the comparative examples (test numbers [phase], ■), and also reach the highest hardness values. The time required for this is significantly shorter.

熱処理■(試′cIjL:11号@)のように、β−ト
ランザス+300℃以上の温度で溶体化処理を行っても
100℃以下の温度で時効処理を行うと、最高硬度値に
達する時間は820時間と長くなり、本発明の効果はな
くなる。
As in heat treatment ■ (Test 'cIjL: No. 11 @), even if solution treatment is performed at a temperature of β-transus + 300°C or higher, if aging treatment is performed at a temperature of 100°C or lower, the time to reach the maximum hardness value is The time is 820 hours, which is a long time, and the effect of the present invention is lost.

熱処理■(試験番号0)のように、β−トランザス+3
00℃以上の温度で溶体化処理を行っても550℃以上
の温度で時効処理を行うと、β、−トランザス直上で溶
体化処理を行った試料(pIA処理■(試験番号[相]
))のように本発明の効果はなくなる。
As in heat treatment ■ (test number 0), β-transus +3
Even if solution treatment is performed at a temperature of 00°C or higher, if aging treatment is performed at a temperature of 550°C or higher, the sample treated with solution treatment directly above the β,-transus (pIA treatment ■ (test number [phase]
)), the effect of the present invention disappears.

熱処理X(試麩香号@)のように溶体化処理後の冷却速
度が10℃以下の場合、冷却途中で空孔が消滅し、本発
明(1)を施した試料(試験番号■、[相])と比べて
、最高硬度値は低くなり、最高硬度値に達するに要した
時間は短くなり、本発明の効果は不十分なものとなる。
When the cooling rate after solution treatment is 10°C or less, as in heat treatment phase]), the maximum hardness value is lower and the time required to reach the maximum hardness value is shorter, making the effect of the present invention insufficient.

(発明の効果) 本発明により、従来法よりも「、11単な工程で、かつ
短時間で、従来法と同等あるいは従来法で得られたより
も、高硬y[値を有するβ型チタン合金を製造すること
ができる。
(Effects of the Invention) The present invention can produce a β-type titanium alloy having a hardness y[value equivalent to or higher than that obtained by the conventional method, in 11 simpler steps and in a shorter time than the conventional method. can be manufactured.

代理人 弁理士 茶野木 立 夫 手糸売ネ巾正書 (自発) 1層相63年1月22日Agent: Patent Attorney Tatsuo Chanoki Hand-printed handbook (spontaneous) 1st layer phase January 22, 1963

Claims (2)

【特許請求の範囲】[Claims] (1)β型チタン合金を、当該合金のβ−トランザス+
300℃の温度以上で、当該合金の融解温度以下の温度
に加熱し、溶体化処理を行つた後、10℃毎秒以上の冷
却速度で急冷し、次に100℃以上550℃以下の温度
で時効処理を施すことを特徴とする高硬度値を有するβ
型チタン合金の製造方法。
(1) Add β-type titanium alloy to β-transus +
After solution treatment by heating at a temperature of 300°C or more and below the melting temperature of the alloy, quenching at a cooling rate of 10°C per second or more, and then aging at a temperature of 100°C or more and 550°C or less. β with a high hardness value characterized by the treatment
Method of manufacturing type titanium alloy.
(2)β型チタン合金を、当該合金のβ−トランザス+
300℃の温度以上で、当該合金の融解温度以下の温度
に加熱し、溶体化処理を行つた後、10℃毎秒以上の冷
却速度で急冷し、次に5%以上の冷間加工を行い、次に
100℃以上550℃以下の温度で時効処理を行うこと
を特徴とする高硬度値を有するβ型チタン合金の製造方
法。
(2) β-type titanium alloy with β-transus +
After heating at a temperature of 300 ° C. or higher and a temperature lower than the melting temperature of the alloy, performing solution treatment, quenching at a cooling rate of 10 ° C. per second or higher, and then performing cold working of 5% or higher, A method for producing a β-type titanium alloy having a high hardness value, characterized by performing an aging treatment at a temperature of 100° C. or higher and 550° C. or lower.
JP31103387A 1987-12-10 1987-12-10 Manufacture of beta-titanium alloy having high hardness value Pending JPH01152250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31103387A JPH01152250A (en) 1987-12-10 1987-12-10 Manufacture of beta-titanium alloy having high hardness value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31103387A JPH01152250A (en) 1987-12-10 1987-12-10 Manufacture of beta-titanium alloy having high hardness value

Publications (1)

Publication Number Publication Date
JPH01152250A true JPH01152250A (en) 1989-06-14

Family

ID=18012306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31103387A Pending JPH01152250A (en) 1987-12-10 1987-12-10 Manufacture of beta-titanium alloy having high hardness value

Country Status (1)

Country Link
JP (1) JPH01152250A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258960A (en) * 1988-12-26 1990-10-19 Seiko Instr Inc Heat treatment for titanium alloy
JP2011174120A (en) * 2010-02-23 2011-09-08 Thk Co Ltd Titanium material, rolling device including component composed of titanium material, and method for producing the titanium material
JP2012177196A (en) * 2012-03-30 2012-09-13 Thk Co Ltd Rolling device
JP2013133511A (en) * 2011-12-27 2013-07-08 Thk Co Ltd Titanium material and rolling device including the titanium material in its member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258960A (en) * 1988-12-26 1990-10-19 Seiko Instr Inc Heat treatment for titanium alloy
JP2011174120A (en) * 2010-02-23 2011-09-08 Thk Co Ltd Titanium material, rolling device including component composed of titanium material, and method for producing the titanium material
JP2013133511A (en) * 2011-12-27 2013-07-08 Thk Co Ltd Titanium material and rolling device including the titanium material in its member
JP2012177196A (en) * 2012-03-30 2012-09-13 Thk Co Ltd Rolling device

Similar Documents

Publication Publication Date Title
US5108520A (en) Heat treatment of precipitation hardening alloys
JPH06212377A (en) Method of improving aging characteristic of beta titanium alloy
JPH01152250A (en) Manufacture of beta-titanium alloy having high hardness value
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JPH0588302B2 (en)
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPH11509634A (en) Fuel box and method of manufacturing fuel box
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPS63293148A (en) Manufacture of near beta-titanium alloy having high strength and satisfactory ductility
US3484307A (en) Copper base alloy
JPS61110756A (en) Rolling method of titanium alloy plate
JPS634907B2 (en)
JPS622027B2 (en)
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPS63241150A (en) Heat treatment for titanium alloy
RU1835432C (en) Method of treatment of aluminium alloys
JP2001131723A (en) Method for improving ductility of cast material of titanium alloy
JPS62174357A (en) Manufacture of titanium alloy material
JPH01168832A (en) Corson alloy and its manufacture
CN116970884A (en) Method for directly aging heat treatment of deposited magnesium alloy
JPS61210164A (en) Production of hot rolled material consisting of alpha+beta type titanium alloy
JPS62133051A (en) Manufacture of alpha+beta (alpha+beta)-type titanium alloy