JPH02258960A - Heat treatment for titanium alloy - Google Patents

Heat treatment for titanium alloy

Info

Publication number
JPH02258960A
JPH02258960A JP23392289A JP23392289A JPH02258960A JP H02258960 A JPH02258960 A JP H02258960A JP 23392289 A JP23392289 A JP 23392289A JP 23392289 A JP23392289 A JP 23392289A JP H02258960 A JPH02258960 A JP H02258960A
Authority
JP
Japan
Prior art keywords
phase
titanium alloy
treatment
beta
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23392289A
Other languages
Japanese (ja)
Other versions
JPH07100846B2 (en
Inventor
Yutaka Wakabayashi
豊 若林
Kenzo Kato
健三 加藤
Shigeru Miyama
茂 深山
Akihiko Abe
阿部 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1233922A priority Critical patent/JPH07100846B2/en
Priority to US07/579,467 priority patent/US5171375A/en
Priority to DE69014501T priority patent/DE69014501T2/en
Priority to EP90309793A priority patent/EP0416929B1/en
Publication of JPH02258960A publication Critical patent/JPH02258960A/en
Publication of JPH07100846B2 publication Critical patent/JPH07100846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce a titanium alloy capable of being formed into superior mirror-finished state by successively subjecting an alpha plus beta titanium alloy or a beta titanium alloy to beta solution treatment, rapid cooling, and ageing treatment successively under respectively specified conditions. CONSTITUTION:An alpha plus beta titanium alloy or a beta titanium alloy is formed into the desired shape, subjected to beta solution treatment at a temp. of the beta transformation temp. or above, and cooled rapidly down to room temp., so as to be formed into martensitic single phase or beta single phase. Subsequently, the above alloy is subjected to ageing treatment at a temp. of the beta transformation temp. or below and cooled slowly down to room temp., by which alpha precipitates on the martensitic phase or beta phase are finely precipitated. By this method, the titanium alloy whose surface can be uniformly polished by means of polishing treatment and formed into mirror- finished state can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン合金の熱処理方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for heat treating titanium alloys.

〔発明の概要〕[Summary of the invention]

本発明は、α+β型チタン合金およびβ型合金を成形後
、β変態点以上の温度でβ溶体化処理した後、室温まで
急冷しマルテンサイト単相、あるいはβ単相にし、次い
でβ変態点以下の温度で時効処理を施しマルテンサイト
相、あるいはβ相上のα析出物を微細に析出させ、更に
、該成形体の鏡面仕上げ処理を施すことによって鏡面状
態が得られるようにしたものである。
In the present invention, after forming an α+β type titanium alloy and a β type alloy, they are subjected to β solution treatment at a temperature above the β transformation point, and then rapidly cooled to room temperature to form a martensite single phase or β single phase, and then below the β transformation point. The molded body is aged at a temperature of 100 mL to finely precipitate α precipitates on the martensitic phase or β phase, and the molded body is then subjected to mirror finishing treatment to obtain a mirror finish.

〔従来の技術〕[Conventional technology]

一般に、α+β型チタン合金の成形体は、硬質相と軟質
相との2和合金であり、α相とβ相との硬さの差および
加工性の差があることから、鏡面仕上げを施しても、鏡
面状態が得られない。また、β型チタン合金の成形体に
おいても、α相が量は少ないが存在するため、α相とβ
相との硬さの差および加工性の差により、鏡面仕上げを
施しても、鏡面状態が得られない。
In general, α+β type titanium alloy compacts are a binary alloy of a hard phase and a soft phase, and because of the difference in hardness and workability between the α and β phases, they are mirror-finished. Also, a mirror state cannot be obtained. In addition, even in the compact of β-type titanium alloy, α phase is present, although the amount is small, so α phase and β
Due to the difference in hardness and workability with the phase, a mirror finish cannot be obtained even if a mirror finish is applied.

従来、チタン合金の成形体の熱処理方法は、成形体の強
度あるいは靭性を高めることを目的として、特公昭58
−48025号公報や、特開昭61−281860号公
報に示されるように、β変態点温度以下で溶体化処理し
た後、急冷し、次に溶体化処理温度以下で時効処理を行
っている。このような処理においては、初析のα相が残
存しており、初析α相と時効処理によりβ相より析出し
た相には硬さの差および加工性の差が生じ、鏡面仕上げ
を施しても鏡面状態は得られない。
Conventionally, heat treatment methods for titanium alloy molded bodies were developed in accordance with the Japanese Patent Publication No. 58 in order to increase the strength or toughness of the molded bodies.
As shown in JP-A-48025 and JP-A-61-281860, after solution treatment is performed at a temperature below the β-transform temperature, the material is rapidly cooled, and then an aging treatment is performed at a temperature below the solution treatment temperature. In this type of treatment, the pro-eutectoid α phase remains, and there is a difference in hardness and workability between the pro-eutectoid α phase and the phase precipitated from the β phase due to aging treatment. However, a mirror state cannot be obtained.

したがって、チタン合金の成形体は、なし地模様の状態
やオーバーコート等の表面処理を施して使用されていた
Therefore, titanium alloy molded bodies have been used with surface treatments such as plain patterns or overcoats.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

チタン合金は、比強度が高い、高温強度が高い、また耐
食性が良い等の多くの利点を備えていることから、構造
用あるいは機械部品に多(使用されている。これらの製
品では強度、靭性、耐食性、防振性の機能面からの熱処
理が施されているが、外観面の要望がなく鏡面状態が必
要とされない。
Titanium alloys have many advantages such as high specific strength, high temperature strength, and good corrosion resistance, so they are widely used in structural and mechanical parts. Although heat treatment is performed for functional reasons such as corrosion resistance and vibration isolation, there is no requirement for appearance and a mirror finish is not required.

しかし、近年、比重が小さく耐食性が良く硬度が高く高
級感があるというチタン合金の特徴から、装飾品に使用
されているが、この場合、オーバーコート等の表面処理
を施すか、又はなし地の模様での使用であって、鏡面で
の使用が出来なかった。
However, in recent years, titanium alloys have been used for decorative items due to their characteristics of low specific gravity, good corrosion resistance, high hardness, and a luxurious feel. It was used for patterns and could not be used for mirror surfaces.

このことはチタン合金が、硬質相と軟質相が存在する(
第1図(A+)ことから、鏡面仕上げ処理において、軟
質相が選択的に研磨されたり(第1図D)、軟質相が折
損・脱落したり(第1図0)することにより、仕上げ表
面に凹凸が形成され、なし地模様となり、鏡面状態が得
られないことによるものである。
This means that titanium alloys have a hard phase and a soft phase (
Fig. 1 (A+) Therefore, in the mirror finishing process, the soft phase is selectively polished (Fig. 1 D) or the soft phase is broken or fallen off (Fig. 1 0), resulting in the finished surface This is because unevenness is formed on the surface, resulting in a blank pattern, and a mirror surface cannot be obtained.

〔5題を解決するための手段〕 そこで本発明は、これらの問題点を解決するため、α+
β型チタン合金あるいはβ型チタン合金を、β変態点以
上の温度でβ溶体化処理した後、室温まで急冷し、β変
態点以下の温度で時効処理し、表面全体をマルテンサイ
ト相およびβ相の組織から析出物を微細に析出させるも
のである。
[Means for solving the five problems] Therefore, in order to solve these problems, the present invention
After β-type titanium alloy or β-type titanium alloy is subjected to β-solution treatment at a temperature above the β-transformation point, it is rapidly cooled to room temperature and aged at a temperature below the β-transformation point, so that the entire surface becomes a martensitic phase and a β-phase. Precipitates are finely precipitated from the microstructure.

〔作用〕[Effect]

α+β型チタン合金は、β変態点以上の温度に加熱保持
した(β溶体化処理)後に急冷を行うことにより、マル
テンサイト単相の組織となる。−方、β型チタン合金は
、β変態点以上の温度に加熱保持した後に急冷を行うこ
とにより、β単相の組織となる。さらに、β変態点以下
の温度で時効処理することにより、マルテンサイト相あ
るいはβ絹地にα相あるいはω相が微細に析出する。マ
ルテンサイト地にα相あるいはω相が析出した組織の状
態あるいはβ絹地にα相あるいはω相が析出した組織の
状態で鏡面仕上げの研磨処理することにより、チタン合
金表面が均一に研磨され、鏡面状態が得られる。
The α+β type titanium alloy becomes a martensitic single-phase structure by heating and holding it at a temperature equal to or higher than the β transformation point (β solution treatment) and then rapidly cooling it. - On the other hand, a β-type titanium alloy becomes a β single-phase structure by heating and holding it at a temperature equal to or higher than the β transformation point and then rapidly cooling it. Furthermore, by aging at a temperature below the β transformation point, α or ω phases are finely precipitated on the martensitic phase or β silk. The titanium alloy surface is uniformly polished by polishing to a mirror finish on a structure in which the α phase or ω phase is precipitated on a martensite substrate or in a structure in which an α phase or ω phase is precipitated on a β silk fabric. The state is obtained.

〔実施例〕〔Example〕

次に本発明の実施例を、図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

実施例−1 本実施例では、第1表に示すα+β型(Nearβ型)
チタン合金を用いた。
Example-1 In this example, α+β type (Near β type) shown in Table 1 was used.
Titanium alloy was used.

各種熱処理を施したチタン合金の組織を第2図に示す。Figure 2 shows the structure of titanium alloys subjected to various heat treatments.

第2図囚は、熱処理前のチタン合金の組織であり、α+
β2相の組織を示している。
Figure 2 shows the structure of the titanium alloy before heat treatment, α+
It shows the structure of β2 phase.

第2図Bは、750℃・0.5hの溶体化処理後油冷を
行った組織であり、α+β2相の組織を示している。
FIG. 2B shows a structure obtained by oil cooling after solution treatment at 750° C. for 0.5 h, and shows an α+β two-phase structure.

表 β変態点 780℃ 第2図0は、750℃・0.5hの溶体化処理後油冷し
、更に500℃・5hの時効処理後空冷した組織であり
、β相から微細なα相が析出し、かつ、初析のα相がそ
のまま残存している。
Table β transformation point 780°C Figure 2 0 shows a structure obtained by oil cooling after solution treatment at 750°C for 0.5 hours, and then air cooling after aging treatment at 500°C for 5 hours. The precipitated and pro-eutectoid α phase remains as it is.

第2図0は、850℃・0.5hの溶体化処理後油冷を
行った組織であり、マルテンサイト組織を示している。
FIG. 2 0 shows a structure obtained by oil cooling after solution treatment at 850° C. for 0.5 hours, and shows a martensitic structure.

第2図■は、850℃・0.5hの溶体化処理後油冷し
、更に400℃・0.5hの時効処理後空冷した組織で
あり、マルテンサイト地からω相が微細を析出している
Figure 2 (■) shows a structure obtained by oil cooling after solution treatment at 850°C for 0.5 hours, and then air cooling after aging treatment at 400°C for 0.5 hours. There is.

第2図[F]は、850℃・0.5hの溶体化処理後油
冷し、更に400℃・16hの時効処理後空冷した組織
であり、マルテンサイト地から微細なα相あるいはω相
が析出している。
Figure 2 [F] shows a structure obtained by oil cooling after solution treatment at 850°C for 0.5 hours, and then air cooling after aging treatment at 400°C for 16 hours. It is precipitated.

第2図0は、850℃・0.5hの溶体化処理後油冷し
、更に500°C・16hの時効処理後空冷した組織で
あり、マルテンサイト地から微細なα相が針状に析出し
ている。
Figure 2 0 shows a structure obtained by oil cooling after solution treatment at 850°C for 0.5 hours, and then air cooling after aging treatment at 500°C for 16 hours, in which fine α phase precipitates in the form of needles from the martensite base. are doing.

このように、該チタン合金は、β変態点(780℃)以
上の温度で溶体化処理を行い油冷することにより、α相
が残存しないマルテンサイト単相の組織が得られ、溶体
化時間は5分以上が必要であった。
In this way, by solution-treating the titanium alloy at a temperature above the β-transformation point (780°C) and cooling it with oil, a martensitic single-phase structure with no remaining α-phase can be obtained, and the solution treatment time is More than 5 minutes were required.

この状態から更にβ変態点以下の温度で時効処理するこ
とにより、450℃以下ではマルテンサイト地から微細
なω相が析出し、450℃以上ではマルテンサイト地か
ら微細なα相が析出した&lI!tIiが得られる。一
方、β変態点以下で溶体化処理油冷すると、α+β2相
の&11織となり、更にβ変態点以下で時効処理すると
、β相から微細なα相が析出し、かつ、初析のα相が残
存する組織となっている。次に、各種熱処理を施したチ
タン合金の硬さを第3図、第4図に示す。
From this state, by further aging treatment at a temperature below the β transformation point, a fine ω phase precipitated from the martensite at temperatures below 450°C, and a fine α phase precipitated from the martensite at temperatures above 450°C &lI! tIi is obtained. On the other hand, when solution treatment is oil-cooled at a temperature below the β transformation point, a &11 weave with α+β2 phases is formed.When further aging treatment is performed at a temperature below the β transformation point, a fine α phase precipitates from the β phase, and the pro-eutectoid α phase is It is a surviving organization. Next, the hardness of titanium alloys subjected to various heat treatments is shown in FIGS. 3 and 4.

第3図は、850℃・0.5hの溶体化処理後急冷し、
更に時効処理したチタン合金の硬さを示す図である。
Figure 3 shows quenching after solution treatment at 850°C for 0.5h.
FIG. 3 is a diagram showing the hardness of a titanium alloy that has been further subjected to aging treatment.

溶体化処理のみ行ったチタン合金は、ピンカース硬度H
ν260を示し、各時効処理温度においても、時効処理
時間2hで11ν350以上を示し、時効処理効果が発
生している。
Titanium alloys that have only been subjected to solution treatment have a Pinkers hardness of H.
ν260, and 11ν350 or more at each aging treatment temperature of 2 hours, indicating that the aging treatment effect has occurred.

このことは、マルテンサイト地から微細なα相あるいは
ω相の析出が寄与するものである。
This is due to the precipitation of fine α phase or ω phase from the martensite ground.

第4図は、750℃・0.5hの溶体化処理後急冷し、
更に時効処理したチタン合金の硬さを示す図である。溶
体化処理のみ行ったチタン合金は、ピンカース硬度11
v 240を示すが、時効処理によって400’C・5
hでHv 420. 500℃、5hでHv 370と
硬化しており、α+β相から微細なα相あるいはω相の
析出による硬化の効果が得られている。
Figure 4 shows quenching after solution treatment at 750°C for 0.5h.
FIG. 3 is a diagram showing the hardness of a titanium alloy that has been further subjected to aging treatment. Titanium alloys that have only been subjected to solution treatment have a Pinkers hardness of 11.
v 240, but due to aging process it becomes 400'C・5
Hv 420. It was hardened to Hv 370 in 5 hours at 500°C, and the hardening effect was obtained by precipitation of fine α phase or ω phase from the α+β phase.

次に、各種熱処理を施したチタン合金に、鏡面仕上げ処
理を施した結果を第3表に示す。
Next, Table 3 shows the results of mirror finishing treatment applied to titanium alloys that had been subjected to various heat treatments.

X 鏡面仕上げは、サンドペーパによる研磨、研磨剤に
よる研磨、更にパフ研磨の処理を行った。
X Mirror finishing was achieved by polishing with sandpaper, polishing with an abrasive, and further polishing with puff polishing.

第3表は、研磨後の非粗さと表面状態を示す表であり、
表面粗さは、各サンプルに対して2T1m間隔で7ケ所
測定における最大表面粗さRmaxの最大・最l]い平
均で表している。
Table 3 is a table showing the non-roughness and surface condition after polishing,
The surface roughness is expressed as the maximum/best average of the maximum surface roughness Rmax measured at seven locations at intervals of 2T1 m for each sample.

750℃・0.5hの溶体化処理後油冷し、更に500
℃・5hの時効処理を行ったチタン合金は、Hv370
と硬化しており、波うち、表面粗さが小さいものの、α
相とβ相との硬度の違いから研磨のむらが発生し、なし
地模様となってしまっている。
After solution treatment at 750°C for 0.5h, oil cooling and further 500°C
Titanium alloy subjected to aging treatment for 5 hours at ℃ has a Hv370
Although it is hardened and has little waviness and surface roughness, α
The difference in hardness between the phase and the β phase causes uneven polishing, resulting in a blank pattern.

一方、850℃・0.5hの溶体化処理油冷し、更に4
50℃・5hあるいは500℃・5hの時効処理を行っ
たチタン合金は、ビッカース硬度が高く、表面粗さも小
さく、マルテンサイト地に均一にα相もしくはω相が微
細に析出しており、研磨のむらがなく、鏡面状態が得ら
れている。又、400℃・5hの特効処理を行ったチタ
ン合金は、完全にα相もしくはω相が析出しておらず、
研磨によるむらが若干発生している。
On the other hand, solution treatment was performed at 850°C for 0.5h, cooled in oil, and further 4
Titanium alloys that have been aged at 50°C for 5 hours or at 500°C for 5 hours have high Vickers hardness, low surface roughness, and fine α or ω phase precipitates uniformly on the martensite surface, resulting in uneven polishing. A mirror-like state is obtained. In addition, titanium alloys subjected to special treatment at 400°C for 5 hours have no α phase or ω phase precipitated,
There are some unevenness due to polishing.

以上のことから、α+β型チタン合金は、β変態点以上
の温度で溶体化処理を施し、室温まで急冷した後、β変
態点以下の温度で時効処理を施す熱処理によって、マル
テンサイト地から微細なα相もしくはω相を析出した組
織とし、鏡面仕上げ処理によって良好な鏡面状態が達成
されるものである。
Based on the above, α + β type titanium alloys can be made from martensite by a heat treatment process in which solution treatment is performed at a temperature above the β transformation point, rapidly cooled to room temperature, and then aged at a temperature below the β transformation point. It has a structure in which α phase or ω phase is precipitated, and a good mirror state is achieved by mirror finishing treatment.

実施例−2 本実施例で、第4表に示す典型的なα+β型チタン合金
を用い、第5表に示す各種熱処理を施した。
Example 2 In this example, a typical α+β type titanium alloy shown in Table 4 was used and various heat treatments shown in Table 5 were performed.

各種熱処理を施したチタン合金の組織を第5図に示す。Figure 5 shows the structure of titanium alloys subjected to various heat treatments.

第5図囚は、熱処理前のチタン合金の&g織であり、α
+β2相の&ll織を示している。
Figure 5 shows the &g weave of titanium alloy before heat treatment, α
+β2 phase &ll weave is shown.

第5図Bは、900℃・0.5hの溶体化処理後油冷を
行ったm織であり、α+β2相の組織を示している。
FIG. 5B shows an m-weave that was subjected to oil cooling after solution treatment at 900° C. for 0.5 h, and shows a structure of α+β two phases.

第5表 第5図0は、1050℃・0,5hの溶体化処理後油冷
を行った組織であり、マルテンサイト組織を示している
FIG. 5 0 of Table 5 shows a structure obtained by oil cooling after solution treatment at 1050° C. for 0.5 hours, and shows a martensitic structure.

第5図0は、1050℃・0.5hの溶体化処理後油冷
し、更に400℃・16hの時効処理後空冷した組織で
アリ、マルテンサイト地にω相が微細に析出している状
、帳を示している。
Figure 5 0 shows a structure obtained by oil cooling after solution treatment at 1050°C for 0.5 hours, and air cooling after aging treatment at 400°C for 16 hours. , shows the book.

第5図(D〜()Dは、それぞれ1050℃・0.5h
の溶体化処理後油冷し、更に500℃弓6h、  60
0℃・16h、  700℃・16hの時効処理後空冷
したMi織であり、マルテンサイト地からα相が微細に
析出した状態を示している。
Fig. 5 (D to ()D are each 1050℃・0.5h
After solution treatment, cooled in oil and further heated at 500℃ for 6 hours.
This is a Mi weave that has been air-cooled after aging treatment at 0°C for 16 hours and 700°C for 16 hours, and shows a state in which α phase has been finely precipitated from the martensite base.

このように、該チタン合金は、β変態点(995℃)以
上の温度で溶体化処理を行い油冷以上の速度で室温まで
冷却することにより、マルテンサイト単相の組織となる
。更に、この状態からβ変態点以下の温度で時効処理す
ることにより、マルテンサイト地からω相が微細に析出
する(時効処理温度:400℃)&ll織となり、ある
いはマルテンサイト地からα相が微細に析出する(時効
処理温度〉400℃)&[l織となる。又、β変態点以
下の温度で溶体化処理を行い油冷すると、α+β2相M
i織が得られ、更に、β変態点以下の温度で時効処理す
ると、β相からα相あるいはω相が微細に析出し、初析
のα相は残存した組織が得られる。
In this way, the titanium alloy becomes a martensitic single-phase structure by solution treatment at a temperature higher than the β transformation point (995° C.) and cooling to room temperature at a rate higher than oil cooling. Furthermore, by aging treatment at a temperature below the β transformation point from this state, the ω phase is finely precipitated from the martensitic base (aging temperature: 400°C), or the α phase is finely precipitated from the martensite base (aging temperature: 400°C). (Aging treatment temperature: 400°C) & becomes a weave. In addition, when solution treatment is performed at a temperature below the β transformation point and cooled with oil, α + β two-phase M
When an i-texture is obtained and further subjected to aging treatment at a temperature below the β transformation point, a structure is obtained in which the α phase or the ω phase is finely precipitated from the β phase, and the pro-eutectoid α phase remains.

次に、各種熱処理を施したチタン合金の硬さを第6図、
第7図に示す。
Next, Figure 6 shows the hardness of titanium alloys subjected to various heat treatments.
It is shown in FIG.

1050℃・0.5hの溶体化処理後油冷した場合、ピ
ンカース硬度Hv335が得られるが、更にβ変態点以
下の時効処理を施すことにより、Hシ350〜370と
向上している。これは、マルテンサイト地がらα相ある
いはω相が微細に析出したMlmによる効果である。
When oil-cooled after solution treatment at 1050° C. for 0.5 h, a Pinkers hardness of Hv335 is obtained, but by further aging treatment below the β transformation point, Hv is improved to 350 to 370. This is an effect due to Mlm in which α phase or ω phase is finely precipitated from martensite grains.

一方、900℃・0.5hの溶体化処理後油冷したチタ
ン合金は、(Iν350を示し、更に600℃・5hの
時効処理を施してもtlv345を示している。これは
、β相にα相が微細に析出するが、β相の量が少なく硬
度の向上がなされてない。
On the other hand, a titanium alloy oil-cooled after solution treatment at 900°C for 0.5h shows (Iv350), and even after further aging treatment at 600°C for 5h, it shows tlv345. Although the phase is finely precipitated, the amount of β phase is small and hardness is not improved.

次に、各種熱処理を施したチタン合金を鏡面仕上げ処理
を施した結果を第6表に示す。
Next, Table 6 shows the results of mirror finishing the titanium alloys that have been subjected to various heat treatments.

第6表 ※ 鏡面仕上げは、サンドベーパによる研磨・研磨剤に
よる研磨、更にパフ研磨の処理を行った。
Table 6 * Mirror finish was achieved by polishing with sand vapor, polishing with an abrasive, and then puff polishing.

第6表から900℃・0.5hの溶体化処理後油冷した
チタン合金及び、更に600℃・5hの時効処理を施し
たチタン合金は、鏡面仕上げ処理を施しても鏡面状態が
得られず、1050℃・0.5hの溶体化処理後油冷し
、更に500℃・16 h 、  600℃・16h、
700℃・16hの各時効処理を施したチタン合金は鏡
面仕上げ処理により、良好な鏡面状態が得られている。
From Table 6, titanium alloys that have been solution-treated at 900°C for 0.5 hours and then oil-cooled, and titanium alloys that have been further aged at 600°C for 5 hours cannot obtain a mirror finish even if they are subjected to mirror finishing treatment. , oil cooling after solution treatment at 1050°C for 0.5h, further 500°C for 16h, 600°C for 16h,
The titanium alloy that has been subjected to various aging treatments at 700° C. for 16 hours has a good mirror finish due to the mirror finish treatment.

ただし、400℃・16hの時効処理を施した場合は、
完全にα相もしくはω相が析出しておらず鏡面状態が得
られなかった。
However, when aging treatment is performed at 400℃ for 16 hours,
The α phase or ω phase was not completely precipitated, and a mirror surface state could not be obtained.

以上のことから、α+β型チタン合金は、β変態点以上
の温度で溶体化処理を施し、室温まで急冷した後、β変
態点以下の温度で時効処理を施す熱処理によって、マル
テンサイト地に微細なα相あるいはω相を析出した組織
とし、鏡面仕上げ処理によって良好な鏡面状態が達成さ
れるものである。
Based on the above, α + β type titanium alloys are heat-treated by solution treatment at a temperature above the β transformation point, rapidly cooled to room temperature, and then aged at a temperature below the β transformation point. It has a structure in which α phase or ω phase is precipitated, and a good mirror state is achieved by mirror finishing treatment.

実施例−3 本実施例では、第7表に示すβ型チタン合金を用い、第
8表に示す各種熱処理を施した。
Example 3 In this example, β-type titanium alloys shown in Table 7 were used and various heat treatments shown in Table 8 were performed.

第  7  表 第8表 β趨点  : 730℃ 各種熱処理を施したチタン合金の組織を第8図に示す。Table 7 Table 8 β trend point: 730℃ Figure 8 shows the structure of titanium alloys subjected to various heat treatments.

第8図囚は、熱処理前のチタン合金の組織であり、β粒
界が細長く引き延ばされている。
Figure 8 shows the structure of the titanium alloy before heat treatment, in which the β grain boundaries are elongated and elongated.

第8図Bは、750℃・Loginの溶体化処理後油冷
したチタン合金の組織であり、等輪島のβ単相m織とな
っている。
FIG. 8B shows the structure of a titanium alloy that has been oil-cooled after solution treatment at 750° C. Login, and has a β single-phase m weave with equicyclic islands.

第8図0は、750℃・10m1nの溶体化処理後油冷
し、更に450℃・40hの時効処理を施したチタン合
金の組織であり、β相全面からα相が微細に析出してい
る。
Figure 8 0 shows the structure of a titanium alloy that was solution-treated at 750°C for 10 ml, cooled in oil, and then aged at 450°C for 40 hours. The α phase is finely precipitated from the entire surface of the β phase. .

第8図0は、700℃・10m1nの溶体化処理後油冷
したチタン合金の組織であり、β相にα相が混在してい
る。
FIG. 80 shows the structure of a titanium alloy that was oil-cooled after solution treatment at 700° C. and 10 ml, in which the α phase is mixed with the β phase.

第8図りは、700℃・10+sinの溶体化処理後油
冷し、更に450℃・40hの時効処理を施したチタン
合金の組織であり、β相からα相が微細に析出している
が、初析のα相が残存している。
The eighth diagram shows the structure of a titanium alloy that was solution-treated at 700°C and 10+sin, then oil-cooled, and then aged at 450°C for 40 hours, in which the α phase is finely precipitated from the β phase. The pro-eutectoid α phase remains.

このように、該チタン合金は、β変態点(730℃)以
上の温度で溶体化処理を行い油冷以上の速度で室温まで
冷却することにより、β単相の組織となり、更にβ変態
点以下の温度で時効処理することにより、β相から微細
なαあるいはω相が析出した組織が得られる。
In this way, the titanium alloy becomes a β-single-phase structure by solution treatment at a temperature above the β-transformation point (730°C) and cooling to room temperature at a rate faster than oil cooling. By aging at a temperature of , a structure in which fine α or ω phases are precipitated from the β phase can be obtained.

次に、各種熱処理を施したチタン合金の硬さを、第9図
に示す。
Next, FIG. 9 shows the hardness of titanium alloys subjected to various heat treatments.

第9図により、該チタン合金を750℃・10IIli
nの溶体化処理後油冷して得られるチタン合金のビッカ
ース硬度Hν260であるが、600℃以下の温度によ
る時効処理によって、Hν300以上の硬度が得られて
いる。更に時効処理時間は、40h以上で処理効果が発
注している。これは、β相より漱細なα相もしくはω相
が析出した組織となる効果である0次に、各種熱処理を
施したチタン合金に、鏡面仕上げ処理を施した結果を第
9表に示す。
According to FIG. 9, the titanium alloy was heated at 750°C and 10IIli.
The Vickers hardness of the titanium alloy obtained by oil cooling after solution treatment of n is Hv260, but a hardness of Hv300 or more is obtained by aging treatment at a temperature of 600°C or less. Furthermore, the aging treatment time is 40 hours or more for better treatment effects. This is due to the effect of forming a structure in which the α phase or ω phase, which is thinner than the β phase, precipitates.Table 9 shows the results of mirror finishing treatment performed on titanium alloys that have been subjected to various heat treatments.

※ 鏡面仕上げは、サンドペーパによる研磨、研磨剤に
よる研磨、更に研磨の処理を行った。
*The mirror finish was achieved by polishing with sandpaper, polishing with an abrasive, and further polishing.

第9表から、750℃弓0m1nの溶体化処理後油冷し
、更に450℃・40hの時効処理を施したチタン合金
が鏡面仕上げ処理にて、良好な鏡面状態が得られている
Table 9 shows that titanium alloys that were subjected to oil cooling after solution treatment at 750° C. for 0 m1n, and then subjected to aging treatment at 450° C. for 40 hours, were subjected to mirror finishing treatment to obtain a good mirror finish.

以上のことから、β型チタン合金は、β変態点以上の温
度で溶体化処理を施し、室温まで急冷した後、β変態点
以下の温度で時効処理を施す熱処理によって、β相から
微細なα相あるいはω相を析出した組織とし、鏡面仕上
げ処理によって良好な鏡面状態が達成されるものである
From the above, β-type titanium alloys are produced by solution treatment at a temperature above the β transformation point, rapid cooling to room temperature, and then aging treatment at a temperature below the β transformation point. The structure has a precipitated phase or ω phase, and a good mirror finish is achieved by mirror finishing treatment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればα+β型チタン合
金あるいはβ型チタン合金を熱処理によって、マルテン
サイト単相あるいはβ単相の状態から、α相、ω相の析
出物を均一に微細に析出させた組織を形成することがで
き、鏡面仕上げ処理によって良好な鏡面状態を達成する
ことができるもので、チタン合金の持つ高硬度、耐擦傷
性を堝なわずに、鏡面効果を付与した高級窓のある装飾
品を提供することができるものである。
As explained above, according to the present invention, α+β type titanium alloy or β type titanium alloy is heat treated to uniformly and finely precipitate α phase and ω phase precipitates from a martensite single phase or β single phase state. This product can form a mirror-like structure and achieve a good mirror finish through mirror finishing treatment.It is a high-grade window that gives a mirror effect without sacrificing the high hardness and scratch resistance of titanium alloy. It is possible to provide certain decorative items.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚は従来のチタン合金成形体の鏡面仕上げ処理前
の断面図、第1図B、0は従来のチタン合金成形体の鏡
面仕上げ処理後の断面図、第2図囚はTi9.5V  
2.5Mo −3jjの熱処理前の合金組織を示す顕微
鏡写真(x 400)、第2図BはTi −9,5V−
2,5Mo −3AIの溶体化処理(750℃−0,5
h)後油冷した合金組織を示す顕微鏡写真(x 400
)、第2図0はTi −9,5V−2,5Mo −3A
/の溶体化処理(750℃・0.5h)後油冷し、更に
時効処理(500℃・5h)した合金組織を示す顕微鏡
写真(x 400)、第2図0はTi−9,5V−2,
5Mo  3Nの溶体化処理(850℃・0.5h)後
油冷した合金組織を示す顕微鏡写真(x 400)、第
2図0はTi −9,5V−2,5Mo −3Mの溶体
化処理(850℃・0.5h)後油冷し、更に時効処理
(400℃・+6h)した合金組織を示す顕微鏡写真(
X400)、第2図りはTi −9,5V−2,5Mo
 −3Nの溶体化処理(850℃・0.5h)後油冷し
、更に時効処理(450℃・16h)した合金組織を示
す顕微鏡写真(X 400)、第2図GはTi −9,
5V−2,5Mo −3Hの溶体化処理(850℃・0
.5h)後油冷し、更に時効処理(500℃弓6h)し
た合金組織を示すs!J微鏡耳鏡写真400)、第3図
はTi −9,5V  2.5Mo  3Nの溶体化処
理(850℃・0.5h)後油冷し、更に時効処理した
合金のビッカース硬度を示す図、第4図はTt −9,
5V−2,5Mo −3AIの溶体化処理(750℃・
0、5h)後油冷し、更に時効処理した合金のピンカー
ス硬度を示す図、第52囚はTi−6Al−6Vの熱処
理前の合金組織を示す顕微鏡(x 400)、第5図囚
はTi−6A! 4V(D溶体化処理(900℃・0.
5h)後油冷した合金組織を示す顕微鏡写真(X400
)、第5図0はTt−6Al−4Vの溶体化処理(90
0℃・0.5h)後油冷し、更に時効処理(600℃・
5h)した合金組織を示す顕微鏡写真(X 400)、
第5図0はTニー6/’J−4Vの溶体化処理(105
0℃・0.5h)後油冷した合金組織を示す顕微鏡写真
(X400)、第5図りはTi−6AI−4Vの溶体化
処理(1050℃・0.5h)後油冷し、更に時効処理
(400℃・16h)した合金&11織を示す顕微鏡写
真(X400)、第5図[F]はTi−6N−4Vの溶
体化処理(1050℃・0.5h)後油冷し、更に時効
処理(500℃・16h)した合金組織を示す顕微鏡写
真(X400)、第5図0はTi−6A/−4Vの溶体
化処理(1050℃・0.5h)後油冷し、更に時効処
理(600℃・16h)した合金Mi織を示す顕微鏡写
真(x 400)、第5図aOはTi−6A/−4Vの
溶体化処理(1050℃・0.5h)後油冷し、更に時
効処理(600℃・16b)した合金組織を示す顕微鏡
写真(x 400)、第6図はTt−6A!4Vの溶体
化処理(1050℃・0.5h)後油冷し、更に時効処
理した合金のピンカース硬度を示す図、第7図はTi−
6A/−4Vの溶体化処理(900℃・0゜5h)後油
冷し、更に時効処理した合金のピンカース硬度を示す図
、第8図(4)はTr−15V −3AI−35n  
3Crの熱処理前の合金組織を示す顕微鏡写真(X40
0)、第8図りはTi−15V−3Al  3Sn−3
Crの溶体化処理(750℃・lomin)後油冷した
合金組織を示す顕微鏡写真(X400)、第8図0はT
i−15V −3kl −3Sn −3Crの溶体化処
理(750℃弓抛in)後油冷し、更に時効処理(45
0℃・40h)した合金組織を示す顕微鏡写真(X40
0)、第8図0はTi−15V−3/V−3Sn−3C
rの溶体化処理(7oO℃・10nin)後油冷した合
金組織を示す顕微鏡写真(X400)、第8図■はTi
−15V −3AI −3Sn −3Crの溶体化処理
(700℃・10m1n)後油冷し、更に時効処理(4
50℃・40h)した合金組織を示す顕微鏡写真(X 
400)、第9図はTi  15V  31’J  3
Sn−3Crの溶体化処理(700℃・10m1n)後
油冷し、更に時効処理した合金のピンカース硬度を示す
図である。 1・・・硬質相 2・・・軟質相 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 (A) (B) (C) 躬 17 時効時間(hr) 第 3 図 一効五友(1) 第 4 図 晴ガ綺聞(hr) 躬 6 図
Figure 1 is a cross-sectional view of a conventional titanium alloy molded body before mirror finishing treatment, Figure 1 B, 0 is a cross-sectional view of a conventional titanium alloy molded body after mirror finishing treatment, and Figure 2 is a Ti9.5V
Micrograph (x 400) showing the alloy structure before heat treatment of 2.5Mo-3jj, Figure 2B is Ti-9,5V-
Solution treatment of 2,5Mo-3AI (750°C-0,5
h) Micrograph showing the alloy structure after oil cooling (x 400
), Figure 2 0 is Ti -9,5V-2,5Mo -3A
Micrograph (x 400) showing the alloy structure after solution treatment (750°C, 0.5h), oil cooling, and further aging treatment (500°C, 5h), Figure 2 0 is Ti-9,5V- 2,
A micrograph (x 400) showing the alloy structure after solution treatment (850°C, 0.5 h) of 5Mo 3N and oil cooling. Micrograph showing the alloy structure after oil cooling (850°C, 0.5h) and further aging treatment (400°C, +6h)
X400), the second diagram is Ti-9,5V-2,5Mo
-3N solution treatment (850°C, 0.5h), oil cooling, and aging treatment (450°C, 16h).
Solution treatment of 5V-2,5Mo-3H (850℃・0
.. s! showing the alloy structure after oil cooling after 5 hours) and further aging treatment (500℃ arching for 6 hours)! J Microscope Otoscope Photo 400), Figure 3 is a diagram showing the Vickers hardness of the alloy after solution treatment of Ti-9,5V 2.5Mo 3N (850°C, 0.5 h), oil cooling, and further aging treatment. , FIG. 4 shows Tt -9,
Solution treatment of 5V-2,5Mo-3AI (750℃・
Figure 52 shows the alloy structure before heat treatment of Ti-6Al-6V under a microscope (x 400); Figure 5 shows the Ti-6Al-6V alloy structure before heat treatment. -6A! 4V (D solution treatment (900℃・0.
5h) Micrograph showing the alloy structure after oil cooling (X400
), Figure 5 0 shows the solution treatment of Tt-6Al-4V (90
After oil cooling (0℃・0.5h), aging treatment (600℃・
5h) Micrograph (X 400) showing the alloy structure,
Figure 5 0 shows the solution treatment of T knee 6/'J-4V (105
A micrograph (X400) showing the alloy structure after oil quenching (0°C, 0.5h). (400℃・16h) Micrograph (X400) showing alloy & 11 weave, Figure 5 [F] shows Ti-6N-4V solution treatment (1050℃・0.5h) followed by oil cooling and further aging treatment. A micrograph (X400) showing the alloy structure after Ti-6A/-4V was solution-treated (1050°C for 0.5h), cooled in oil, and then aged (600°C). A micrograph (x 400) showing the alloyed Mi weave subjected to Ti-6A/-4V solution treatment (1050°C for 0.5h), oil cooling, and further aging treatment (600°C for 0.5h). A micrograph (x 400) showing the alloy structure at ℃・16b), Figure 6 is Tt-6A! Figure 7 shows the Pinkers hardness of the alloy that was oil-cooled after 4V solution treatment (1050°C, 0.5h) and then aged.
Figure 8 (4) shows the Pinkers hardness of the alloy which was oil-cooled after solution treatment at 6A/-4V (900°C, 0° for 5 hours) and further subjected to aging treatment.
Micrograph showing the alloy structure of 3Cr before heat treatment (X40
0), the 8th diagram is Ti-15V-3Al 3Sn-3
A micrograph (X400) showing the alloy structure after Cr solution treatment (750°C lomin) and oil cooling, Fig. 8 0 is T
i-15V -3kl -3Sn -3Cr was subjected to solution treatment (750°C arch in), oil cooling, and further aging treatment (45°C).
Micrograph (X40
0), Figure 8 0 is Ti-15V-3/V-3Sn-3C
Micrograph (X400) showing the alloy structure after oil cooling after solution treatment (7oO℃・10nin) of Ti
-15V -3AI -3Sn -3Cr solution treatment (700°C, 10ml) followed by oil cooling and further aging treatment (4
Micrograph (X
400), Figure 9 shows Ti 15V 31'J 3
It is a figure which shows the Pinkers hardness of the alloy which was oil-cooled after solution treatment (700 degreeC, 10mln) of Sn-3Cr, and was further aged. 1...Hard phase 2...Soft phase or higher Applicant Seiko Electronic Industries Co., Ltd. Agent Patent attorney Keinosuke Hayashi (A) (B) (C) 17 Prescription time (hr) Part 3 Figure 1 Effect 5 Tomo (1) Figure 4 Harugakimon (hr) Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)α+β型チタン合金もしくはβ型チタン合金の熱
処理方法において、 β変態温度以上の温度でβ溶体化処理した後、室温まで
急冷し、更に、β変態温度以下の温度で時効処理するこ
とを特徴とするチタン合金の熱処理方法。
(1) In the heat treatment method for α+β type titanium alloy or β type titanium alloy, after β solution treatment at a temperature higher than the β transformation temperature, rapid cooling to room temperature, and further aging treatment at a temperature lower than the β transformation temperature. Characteristic heat treatment method for titanium alloys.
(2)α+β型チタン合金もしくはβ型チタン合金の熱
処理方法において、 前記α+β型チタン合金もしくは前記β型チタン合金の
主組織をマルテンサイト相もしくはβ相とする第1の工
程と、前記マルテンサイト相もしくは前記β相よりα相
、ω相、もしくはα相とω相からなる析出物を析出する
第2の工程とからなることを特徴とするチタン合金の処
理方法。
(2) A method for heat treatment of an α+β type titanium alloy or a β-type titanium alloy, including a first step in which the main structure of the α+β-type titanium alloy or the β-type titanium alloy is a martensitic phase or a β-phase, and the martensitic phase Alternatively, a method for treating a titanium alloy comprising a second step of precipitating an α phase, an ω phase, or a precipitate consisting of an α phase and an ω phase from the β phase.
(3)α+β型チタン合金もしくはβ型チタン合金から
なるチタン合金成形体の製造方法において、前記α+β
型チタン合金もしくはβ型チタン合金を所望の形状の成
形体に形成し、 前記成形体をβ変態温度以上の温度でβ溶体化処理し、
室温まで急冷し、次いで、β変態温度以下の温度で時効
処理し、室温まで徐冷した後、前記成形体を研磨処理す
ることを特徴とするチタン合金成形体の製造方法。
(3) In the method for producing a titanium alloy molded body made of an α+β type titanium alloy or a β type titanium alloy, the α+β
forming a type titanium alloy or a β-type titanium alloy into a molded body of a desired shape, subjecting the molded body to β-solution treatment at a temperature equal to or higher than the β-transformation temperature,
1. A method for producing a titanium alloy molded body, which comprises rapidly cooling to room temperature, then aging treatment at a temperature below the β transformation temperature, slow cooling to room temperature, and then polishing the molded body.
JP1233922A 1988-12-26 1989-09-08 Method for producing titanium alloy having mirror surface Expired - Lifetime JPH07100846B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1233922A JPH07100846B2 (en) 1988-12-26 1989-09-08 Method for producing titanium alloy having mirror surface
US07/579,467 US5171375A (en) 1989-09-08 1990-09-06 Treatment of titanium alloy article to a mirror finish
DE69014501T DE69014501T2 (en) 1989-09-08 1990-09-07 Process for the treatment of titanium alloy and piece made therewith.
EP90309793A EP0416929B1 (en) 1989-09-08 1990-09-07 Process for treating a titanium alloy or article made therefrom

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-328426 1988-12-26
JP32842688 1988-12-26
JP1233922A JPH07100846B2 (en) 1988-12-26 1989-09-08 Method for producing titanium alloy having mirror surface

Publications (2)

Publication Number Publication Date
JPH02258960A true JPH02258960A (en) 1990-10-19
JPH07100846B2 JPH07100846B2 (en) 1995-11-01

Family

ID=26531260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233922A Expired - Lifetime JPH07100846B2 (en) 1988-12-26 1989-09-08 Method for producing titanium alloy having mirror surface

Country Status (1)

Country Link
JP (1) JPH07100846B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441656A (en) * 1990-06-08 1992-02-12 Nkk Corp Mirror-finish polishing method for titanium material
US5503691A (en) * 1992-05-06 1996-04-02 Mintek The aesthetic enhancement or modification of articles or components made of non-ferrous metals
JP2009228053A (en) * 2008-03-21 2009-10-08 Daido Steel Co Ltd Titanium material and method for producing the same
WO2011105039A1 (en) * 2010-02-23 2011-09-01 Thk株式会社 Titanium material, rolling device including component composed of titanium material, and method of manufacturing titanium material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949816A (en) * 1972-05-18 1974-05-15
JPS5620152A (en) * 1979-07-30 1981-02-25 Toshiba Corp Manufacture of erosion resistant alloy
JPS62133053A (en) * 1985-12-03 1987-06-16 Kobe Steel Ltd Heat treatment of titanium-alloy rolled plate
JPH01152250A (en) * 1987-12-10 1989-06-14 Nippon Steel Corp Manufacture of beta-titanium alloy having high hardness value

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949816A (en) * 1972-05-18 1974-05-15
JPS5620152A (en) * 1979-07-30 1981-02-25 Toshiba Corp Manufacture of erosion resistant alloy
JPS62133053A (en) * 1985-12-03 1987-06-16 Kobe Steel Ltd Heat treatment of titanium-alloy rolled plate
JPH01152250A (en) * 1987-12-10 1989-06-14 Nippon Steel Corp Manufacture of beta-titanium alloy having high hardness value

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441656A (en) * 1990-06-08 1992-02-12 Nkk Corp Mirror-finish polishing method for titanium material
US5503691A (en) * 1992-05-06 1996-04-02 Mintek The aesthetic enhancement or modification of articles or components made of non-ferrous metals
JP2009228053A (en) * 2008-03-21 2009-10-08 Daido Steel Co Ltd Titanium material and method for producing the same
WO2011105039A1 (en) * 2010-02-23 2011-09-01 Thk株式会社 Titanium material, rolling device including component composed of titanium material, and method of manufacturing titanium material
JP2011174120A (en) * 2010-02-23 2011-09-08 Thk Co Ltd Titanium material, rolling device including component composed of titanium material, and method for producing the titanium material

Also Published As

Publication number Publication date
JPH07100846B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
EP0663453B1 (en) Titanium alloy and method for production thereof
JPS63277745A (en) Production of titanium alloy member and member produced thereby
JPH0480791B2 (en)
JPH0234766A (en) Carburizing and hardening method
JPH02258960A (en) Heat treatment for titanium alloy
EP0416929B1 (en) Process for treating a titanium alloy or article made therefrom
AU2017290058A1 (en) Methods of forming an oxide layer on a metal body
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JPH0372133B2 (en)
US3002865A (en) Method of strengthening the surface of metallic springs by warm working
US3355333A (en) Selective hardening of age-hardenable alloys and articles produced thereby
JPH02294462A (en) Carburizing quenching method for steel member
JPS63176430A (en) Manufacture of coil spring
JP2787455B2 (en) Carburizing and quenching method
JPS6156242A (en) Method for manufacturing high strength gear
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0452247A (en) Pin for track assembly and its manufacture
JPH02115362A (en) Ni-ti shape memory alloy showing gold color and its production
JPH06299307A (en) Method for modifying surface of precipitation hardening type alloy
JPS62284047A (en) Manufacture of shape memory alloy
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPH01152250A (en) Manufacture of beta-titanium alloy having high hardness value
JPS626612B2 (en)
JPS6270512A (en) Surface hardening method for carburized product
JPH0671520A (en) Manufacture of mechanical member with high strength

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 14

EXPY Cancellation because of completion of term