JPH0671520A - Manufacture of mechanical member with high strength - Google Patents

Manufacture of mechanical member with high strength

Info

Publication number
JPH0671520A
JPH0671520A JP14736292A JP14736292A JPH0671520A JP H0671520 A JPH0671520 A JP H0671520A JP 14736292 A JP14736292 A JP 14736292A JP 14736292 A JP14736292 A JP 14736292A JP H0671520 A JPH0671520 A JP H0671520A
Authority
JP
Japan
Prior art keywords
mechanical member
residual stress
compressive residual
shot peening
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14736292A
Other languages
Japanese (ja)
Inventor
Naoharu Hamasaka
直治 浜坂
Masaki Nobuhara
正樹 信原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP14736292A priority Critical patent/JPH0671520A/en
Publication of JPH0671520A publication Critical patent/JPH0671520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the fatigue strength of a mechanical member by providing higher compressive residual stress to the mechanical member. CONSTITUTION:A method for manufacturing a mechanical member with high strength consists of the CBN grinding process 12 to execute the CBN grinding of the surface part of the mechanical member to be carburized in the carburizing process 11, and the shot peening process 13 to execute the shot peening treatment to the surface part of the mechanical member to be ground in this CBN grinding process 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、歯車,軸等の高強度を
要求される高強度機械部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing high strength mechanical members such as gears and shafts which require high strength.

【0002】[0002]

【従来の技術】従来、歯車,軸等のような高強度を要求
される機械部材には例えば浸炭により表面硬化処理がな
されていた。しかしながら、浸炭された機械部材の表面
部には通常その表面から10〜40μm程度の深さにわ
たって粒界酸化層が形成されており、この粒界酸化層は
前記機械部材の疲労強度を低下させる要因の一つとなっ
ていた。
2. Description of the Related Art Conventionally, mechanical members such as gears and shafts which are required to have high strength have been subjected to surface hardening treatment by carburizing, for example. However, a grain boundary oxide layer is usually formed on the surface of the carburized machine member over a depth of about 10 to 40 μm from the surface, and this grain boundary oxide layer is a factor that reduces the fatigue strength of the machine member. It was one of the.

【0003】浸炭された機械部材の疲労強度の低下を防
ぐために次の技術が提案されている。 (1)砥石研削,CBN(立方晶窒化硼素)研削等によ
り浸炭された機械部材から粒界酸化層を取り除く。これ
ら研削により機械部材の表面部に粒界酸化層が存在しな
くなるためその機械部材の疲労強度の低下が防止され
る。なお、CBN研削では機械部材の表面部に圧縮残留
応力が付与されるため、この機械部材の疲労強度が高め
られる。 (2)浸炭された機械部材にショットピーニング処理
(例えば、アークハイト値0.6〜1.0mmA)を行
う。このショットピーニング処理により機械部材の表面
部において前記CBN研削よりもさらに奥深くまで高い
圧縮残留応力が付与されるため、この機械部材の疲労強
度は高められる。
The following techniques have been proposed in order to prevent a decrease in fatigue strength of carburized mechanical members. (1) The grain boundary oxide layer is removed from the carburized machine member by grinding wheel grinding, CBN (cubic boron nitride) grinding or the like. By these grindings, the grain boundary oxide layer does not exist on the surface portion of the mechanical member, so that the fatigue strength of the mechanical member is prevented from lowering. In CBN grinding, a compressive residual stress is applied to the surface of the mechanical member, so the fatigue strength of this mechanical member is increased. (2) A shot peening process (for example, an arc height value of 0.6 to 1.0 mmA) is performed on the carburized mechanical member. By this shot peening treatment, a compressive residual stress higher than that of the CBN grinding is applied to the surface portion of the mechanical member, so that the fatigue strength of the mechanical member is increased.

【0004】一般に機械部材に生成する圧縮残留応力の
積分値が大きくなるとその機械部材の疲労強度が高くな
ることが知られている(図4参照)。したがって、機械
部材の疲労強度を高めようとするにはその機械部材に生
成する圧縮残留応力の積分値を大きくすればよいことに
なる。
It is generally known that the fatigue strength of a mechanical member increases as the integral value of the compressive residual stress generated in the mechanical member increases (see FIG. 4). Therefore, in order to increase the fatigue strength of the mechanical member, it is sufficient to increase the integral value of the compressive residual stress generated in the mechanical member.

【0005】 しかしながら、(1)砥石研削では機械部材の表面に圧
縮残留応力は付与されず、逆に、引張残留応力が付与さ
れることがある。また、CBN研削では機械部材の表面
部に付与される圧縮残留応力が及ぶ範囲はその表面から
50μm程度の深さまでであってその機械部材の奥深部
における疲労強度は高められない。 (2)ショットピーニング処理では機械部材の表面部に
付与される圧縮残留応力が及ぶ範囲はその表面から20
0μm程度の深さまでであるが、この圧縮残留応力のピ
ークは通常その機械部材の表面から50〜100μm程
度の深さに位置するとともに、この機械部材の最表面部
における圧縮残留応力は前記ピークの半分以下となる。
However, in (1) grinding with a grindstone, a compressive residual stress is not applied to the surface of a mechanical member, and conversely, a tensile residual stress may be applied. Further, in CBN grinding, the range of compressive residual stress applied to the surface portion of a mechanical member is up to a depth of about 50 μm from the surface, and the fatigue strength in the deep portion of the mechanical member cannot be increased. (2) In the shot peening process, the range of the compressive residual stress applied to the surface of the mechanical member is 20 from the surface.
Although the depth of the compressive residual stress is up to about 0 μm, the peak of the compressive residual stress is usually located at a depth of about 50 to 100 μm from the surface of the mechanical member, and the compressive residual stress at the outermost surface of the mechanical member is equal to Less than half.

【0006】これらの問題点を解決するために次のよう
な技術が提案されている。 (3)浸炭された機械部材にショットピーニング処理を
施した後、圧縮残留応力の低い表面部をCBN研削によ
り取除いて圧縮残留応力の高い部分をその機械部材の表
面部に現出させる(特開平1−264727号公報参
照)。 (4a)浸炭された機械部材にショットピーニング処理
を施した後、圧縮残留応力の低い表面部を電解研磨によ
り取り除いて圧縮残留応力の高い部分をその機械部材の
表面部に現出させる。 (4b)浸炭された機械部材の表面部に存在する圧縮残
留応力の低い部分を電解研磨により取り除いて圧縮残留
応力の高い部分をその機械部材の表面部に現出させた
後、この機械部材にショットピーニング処理を施す(4
a,4bについては特開平2−160428号公報参
照)。
The following techniques have been proposed to solve these problems. (3) After subjecting the carburized mechanical member to shot peening, the surface portion having a low compressive residual stress is removed by CBN grinding to expose the portion having a high compressive residual stress on the surface portion of the mechanical member (special feature). See Kaihei 1-264727). (4a) After the carburized mechanical member is subjected to shot peening, the surface portion having a low compressive residual stress is removed by electrolytic polishing to expose a portion having a high compressive residual stress on the surface portion of the mechanical member. (4b) After removing a portion having a low compressive residual stress existing on the surface portion of the carburized mechanical member by electrolytic polishing to expose a portion having a high compressive residual stress on the surface portion of the mechanical member, Perform shot peening (4
For a and 4b, refer to JP-A-2-160428).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、 (3)浸炭された機械部材は一般に歪みを生じていると
ともに、ショットピーニング処理により付与される圧縮
残留応力の高い(ピーク)部分はそのショットピーニン
グ処理の条件により前記機械部材の表面から20〜10
0μmの深さの範囲で変化するため、CBN研削により
圧縮残留応力の高い部分を機械部材の表面部に現出させ
ることは困難である。さらに、圧縮残留応力の高い部分
を機械部材の表面部に現出させることができたとして
も、その機械部材の圧縮残留応力が付与されている部分
を前記CBN研削により研削しているため、この機械部
材中に圧縮残留応力が付与されている部分が少なくなっ
て、その機械部材の疲労強度が十分に高くならない。
However, (3) the carburized mechanical member is generally distorted, and the high (peak) portion of the compressive residual stress imparted by the shot peening treatment is caused by the shot peening treatment. 20 to 10 from the surface of the mechanical member depending on the conditions
Since it changes in the depth range of 0 μm, it is difficult to expose a portion having a high compressive residual stress on the surface portion of the mechanical member by CBN grinding. Further, even if a portion having a high compressive residual stress can be exposed on the surface portion of the mechanical member, since the portion of the mechanical member to which the compressive residual stress is applied is ground by the CBN grinding, The portion of the mechanical member to which the compressive residual stress is applied is reduced, and the fatigue strength of the mechanical member is not sufficiently high.

【0008】ショットピーニング処理後にCBN研削を
行った機械部材の表面からの深さとその機械部材に生成
する圧縮残留応力との関係について図5に基づいて詳述
する。浸炭された機械部材に付与される圧縮残留応力が
破線で示されており、この浸炭された機械部材にショッ
トピーニング処理が施されるとその機械部材の表面部に
おける圧縮残留応力は高くなって一点鎖線で示されるよ
うになる。ショットピーニング処理が施された機械部材
の表面部がCBN研削により例えば20μm研削される
とそのCBN研削により機械部材の表面部に圧縮残留応
力が付与されるため、この機械部材の圧縮残留応力は実
線で示されるようになる。
The relationship between the depth from the surface of the mechanical member that has been CBN ground after the shot peening treatment and the compressive residual stress generated in the mechanical member will be described in detail with reference to FIG. The compressive residual stress applied to the carburized mechanical member is shown by the broken line, and when the carburized mechanical member is subjected to shot peening, the compressive residual stress on the surface of the mechanical member increases and As shown by the chain line. When the surface portion of the mechanical member that has been subjected to shot peening is ground by CBN grinding, for example, to 20 μm, a compressive residual stress is applied to the surface portion of the mechanical member by the CBN grinding. Will be indicated by.

【0009】図5からもわかるように、浸炭された機械
部材の表面部には粒界酸化層が形成されており、この粒
界酸化層は軟らかくまたその機械部材においてショット
ピーニング処理の際の緩衝材として作用するため、この
浸炭された機械部材の奥深部においてそのショットピー
ニング処理により付与される圧縮残留応力は高くならな
い。また、図中斜線で示される部分は本来ショットピー
ニング処理により高い圧縮残留応力が付与されている部
分であるが、この高い圧縮残留応力が付与されている部
分は前記CBN研削により研削される。この結果、前記
機械部材の疲労強度を高めることができない。
As can be seen from FIG. 5, a grain boundary oxide layer is formed on the surface of the carburized mechanical member. The grain boundary oxide layer is soft and the mechanical member has a buffer during the shot peening treatment. Since it acts as a material, the compressive residual stress imparted by the shot peening treatment in the deep part of the carburized mechanical member does not become high. Further, the shaded portion in the figure is the portion to which a high compressive residual stress is originally given by the shot peening process, and the portion to which this high compressive residual stress is given is ground by the CBN grinding. As a result, the fatigue strength of the mechanical member cannot be increased.

【0010】(4a,4b)一般に電解研磨は浸炭され
た機械部材の表面部の凸部を凹部に比べて優先的に削除
してその機械部材の外観を良くする、すなわちその機械
部材の表面に平滑性,光沢性を付与する手段の一つであ
って、前記機械部材の精度を維持することおよび粒界酸
化層を均一に除去することが困難である。したがって、
歯車等の機械部材に適用するのは実用的ではない。
(4a, 4b) In general, electrolytic polishing improves the appearance of a mechanical member by preferentially removing the convex portion on the surface of the carburized mechanical member over the concave portion, that is, on the surface of the mechanical member. It is one of means for imparting smoothness and glossiness, and it is difficult to maintain the precision of the mechanical member and to uniformly remove the grain boundary oxide layer. Therefore,
It is not practical to apply it to mechanical members such as gears.

【0011】本発明は前記問題点に鑑みてなされたもの
であって、高強度が要求される機械部材においてその機
械部材の疲労強度を高める高強度機械部材の製造方法を
提供することを目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for manufacturing a high-strength mechanical member that increases fatigue strength of the mechanical member that requires high strength. To do.

【0012】[0012]

【課題を解決するための手段】本発明の高強度機械部材
の製造方法は、浸炭工程において浸炭される機械部材の
表面部にCBN研削を行うCBN研削工程と、このCB
N研削工程において研削される機械部材の表面部にショ
ットピーニング処理を行うショットピーニング工程とを
具えることを特徴とする。
A method of manufacturing a high-strength mechanical member according to the present invention comprises a CBN grinding step of performing CBN grinding on a surface portion of a carburizing machine member in the carburizing step, and the CB grinding step.
And a shot peening step of performing a shot peening treatment on the surface portion of the machine member to be ground in the N grinding step.

【0013】[0013]

【作用】本発明の高強度機械部材の製造方法は、まず浸
炭工程において浸炭された機械部材の表面部に生じた粒
界酸化層がCBN研削工程においてCBN研削される。
このCBN研削により機械部材の精度が高められるとと
もにその機械部材に圧縮残留応力が付与されてその機械
部材の疲労強度が高められる。次いで、このCBN研削
された機械部材の表面部にショットピーニング工程にお
いてショットピーニング処理が行われる。したがって、
このショットピーニング処理により機械部材にさらに圧
縮残留応力が付加されるためその機械部材の疲労強度が
さらに高められる。
In the method for manufacturing a high-strength mechanical member of the present invention, first, the grain boundary oxide layer formed on the surface portion of the carburized mechanical member in the carburizing step is CBN ground in the CBN grinding step.
By this CBN grinding, the precision of the mechanical member is increased and a compressive residual stress is applied to the mechanical member to increase the fatigue strength of the mechanical member. Next, in the shot peening step, a shot peening process is performed on the surface portion of the machine member that has been CBN ground. Therefore,
By this shot peening treatment, compressive residual stress is further applied to the mechanical member, so that the fatigue strength of the mechanical member is further increased.

【0014】[0014]

【実施例】次に、本発明の具体的な一実施例について図
面を参照しつつ説明する。本発明の高強度機械部材の製
造方法の工程が図1に示されている。この工程によれ
ば、浸炭工程11において浸炭された機械部材の表面部
にCBN研削工程12においてCBN研削が施された
後、ショットピーニング工程13においてショットピー
ニング処理が施される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a specific embodiment of the present invention will be described with reference to the drawings. The steps of the method for manufacturing a high strength mechanical member of the present invention are shown in FIG. According to this process, the surface portion of the mechanical member carburized in the carburizing process 11 is subjected to CBN grinding in the CBN grinding process 12, and then shot peening is performed in the shot peening process 13.

【0015】前述されたCBN研削後にショットピーニ
ング処理がなされた機械部材の表面からの深さとその機
械部材に付与される圧縮残留応力との関係が図2に示さ
れている。図2において、浸炭された機械部材に付与さ
れる圧縮残留応力が破線で示されている。この浸炭され
た機械部材にCBN研削が施されてその機械部材の表面
部が例えば20μm研削されると、この機械部材の表面
部における圧縮残留応力は高くなって二点鎖線で示され
るようになる。そして、この機械部材にショットピーニ
ング処理が施されるとその機械部材に付与される圧縮残
留応力は太実線で示されるようになる。
FIG. 2 shows the relationship between the depth from the surface of the mechanical member which has been shot peened after the above-mentioned CBN grinding and the compressive residual stress applied to the mechanical member. In FIG. 2, the compressive residual stress applied to the carburized mechanical member is shown by a broken line. When the carburized mechanical member is subjected to CBN grinding and the surface portion of the mechanical member is ground by, for example, 20 μm, the compressive residual stress on the surface portion of the mechanical member becomes high and is shown by a chain double-dashed line. . When this mechanical member is subjected to shot peening, the compressive residual stress applied to the mechanical member is indicated by the thick solid line.

【0016】図2からもわかるように、浸炭された機械
部材の表面部には粒界酸化層が形成されており、この粒
界酸化層は軟らかくまたその機械部材においてショット
ピーニング処理の際の緩衝材として作用するため、CB
N研削によりまずその粒界酸化層が取除かれる。この
際、機械部材の表面部において浸炭により付与されてC
BN研削により削除される圧縮残留応力(図において斜
線で示す。)は、CBN研削により付与される圧縮残留
応力に比べると極めてわずかである。また、このCBN
研削により機械部材の精度が高められる。CBN研削に
より粒界酸化層が取除かれて圧縮残留応力が高められた
機械部材にショットピーニング処理が施されると、この
ショットピーニング処理により機械部材の奥深部にまで
圧縮残留応力が付与される。この結果、前記機械部材の
疲労強度をその機械部材の奥深くまで高めることができ
る。
As can be seen from FIG. 2, a grain boundary oxide layer is formed on the surface of the carburized mechanical member. The grain boundary oxide layer is soft and the mechanical member has a buffer during the shot peening treatment. CB because it acts as a material
The grain boundary oxide layer is first removed by N grinding. At this time, C is formed by carburizing on the surface of the mechanical member.
The compressive residual stress removed by BN grinding (shown by diagonal lines in the figure) is extremely small compared to the compressive residual stress applied by CBN grinding. Also, this CBN
The precision of the mechanical member is increased by the grinding. When shot peening treatment is applied to a mechanical member in which the grain boundary oxide layer has been removed by CBN grinding and the compressive residual stress has been increased, this shot peening treatment imparts compressive residual stress to the deep part of the mechanical member. . As a result, the fatigue strength of the mechanical member can be increased deep inside the mechanical member.

【0017】次に、本発明の高強度機械部材の製造方法
により製造された機械部材と、従来の製造方法により製
造された機械部材とにおける回転曲げ疲労強度試験結果
を図3に示す。この試験結果は、浸炭された機械部材
の回転曲げ疲労強度の限度を1として、 浸炭+CBN研削、 浸炭+ショットピーニング処理、 浸炭+ショットピーニング処理+CBN研削、 浸炭+CBN研削+ショットピーニング処理(本発
明)、 がなされた機械部材の回転曲げ疲労強度をその回転曲げ
の繰返し回数に対応させて表したものである。
Next, FIG. 3 shows the results of the rotary bending fatigue strength test of the mechanical member manufactured by the method for manufacturing a high-strength mechanical member of the present invention and the mechanical member manufactured by the conventional manufacturing method. The test results are carburization + CBN grinding, carburization + shot peening treatment, carburization + shot peening treatment + CBN grinding, carburization + CBN grinding + shot peening treatment (invention) with the limit of the rotary bending fatigue strength of the carburized machine member being 1. The rotational bending fatigue strength of the machined member is shown in correspondence with the number of times the rotational bending is repeated.

【0018】この試験結果によれば、本発明による高強
度機械部材の製造方法を用いて製造された機械部材の回
転曲げ疲労強度は従来の製造方法を用いて製造された機
械部材よりも高い値を示しており、この値は従来のもの
の少なくとも1.1倍となっている。
According to the test results, the rotational bending fatigue strength of the mechanical member manufactured by using the method for manufacturing a high-strength mechanical member according to the present invention is higher than that of the mechanical member manufactured by using the conventional manufacturing method. This value is at least 1.1 times that of the conventional one.

【0019】[0019]

【発明の効果】以上のように構成された本発明によれ
ば、機械部材の表面から奥深部にわたって高い圧縮残留
応力が付与されるため、この機械部材の疲労強度を高め
ることができる。また、この機械部材がCBN研削され
ることによりその機械部材の精度を高めることができ
る。
According to the present invention configured as described above, since a high compressive residual stress is applied from the surface of the mechanical member to the deep portion, the fatigue strength of the mechanical member can be increased. Further, the precision of the mechanical member can be improved by CBN grinding the mechanical member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の高強度機械部材の製造方法
の工程を示す図である。
FIG. 1 is a diagram showing steps of a method for manufacturing a high-strength mechanical member according to an embodiment of the present invention.

【図2】本発明の一実施例の高強度機械部材の製造方法
により製造される機械部材における圧縮残留応力を説明
する図である。
FIG. 2 is a diagram illustrating a compressive residual stress in a mechanical member manufactured by a method for manufacturing a high-strength mechanical member according to an embodiment of the present invention.

【図3】本発明の一実施例の高強度機械部材の製造方法
により製造される機械部材と従来の製造方法により製造
される機械部材との回転曲げ疲労強度の比較を示す図で
ある。
FIG. 3 is a diagram showing a comparison of rotational bending fatigue strength between a mechanical member manufactured by a method for manufacturing a high-strength mechanical member according to an embodiment of the present invention and a mechanical member manufactured by a conventional manufacturing method.

【図4】機械部材における圧縮残留応力と疲労強度との
関係を説明する図である。
FIG. 4 is a diagram illustrating a relationship between a compressive residual stress and a fatigue strength of a mechanical member.

【図5】従来の高強度機械部材の製造方法により製造さ
れる機械部材における圧縮残留応力を説明する図であ
る。
FIG. 5 is a diagram illustrating compressive residual stress in a mechanical member manufactured by a conventional method for manufacturing a high-strength mechanical member.

【符号の説明】[Explanation of symbols]

11 浸炭工程 12 CBN研削工程 13 ショットピーニング工程 11 Carburizing process 12 CBN grinding process 13 Shot peening process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浸炭工程において浸炭される機械部材の
表面部にCBN研削を行うCBN研削工程と、このCB
N研削工程において研削される機械部材の表面部にショ
ットピーニング処理を行うショットピーニング工程とを
具えることを特徴とする高強度機械部材の製造方法。
1. A CBN grinding step of performing CBN grinding on a surface portion of a machine member carburized in the carburizing step, and the CB
A method for producing a high-strength mechanical member, comprising: a shot peening step of performing a shot peening treatment on a surface portion of the mechanical member ground in the N grinding step.
JP14736292A 1992-06-08 1992-06-08 Manufacture of mechanical member with high strength Pending JPH0671520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736292A JPH0671520A (en) 1992-06-08 1992-06-08 Manufacture of mechanical member with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736292A JPH0671520A (en) 1992-06-08 1992-06-08 Manufacture of mechanical member with high strength

Publications (1)

Publication Number Publication Date
JPH0671520A true JPH0671520A (en) 1994-03-15

Family

ID=15428491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736292A Pending JPH0671520A (en) 1992-06-08 1992-06-08 Manufacture of mechanical member with high strength

Country Status (1)

Country Link
JP (1) JPH0671520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655026B1 (en) 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine
EP2168534A1 (en) 2008-09-30 2010-03-31 Yoichi Mikawa Intraocular lens
CN104625571A (en) * 2015-01-06 2015-05-20 湖南科技大学 Age-hardening aluminum alloy cutting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655026B1 (en) 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine
EP2168534A1 (en) 2008-09-30 2010-03-31 Yoichi Mikawa Intraocular lens
CN104625571A (en) * 2015-01-06 2015-05-20 湖南科技大学 Age-hardening aluminum alloy cutting method

Similar Documents

Publication Publication Date Title
JP2994508B2 (en) Manufacturing method of coil spring
JPH0671520A (en) Manufacture of mechanical member with high strength
JPH05148537A (en) Production of coil spring
JPH10202435A (en) Manufacture of helical gear
JP2723150B2 (en) Surface treatment method for steel members
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JP3301857B2 (en) Carburizing method
JP3028624B2 (en) How to strengthen carburized parts
JPH11300528A (en) Method for highly strengthening gear, and highly strengthened gear
JP2000096208A (en) Golf club member made of titanium and its hardening treatment
JPS5935630A (en) Heat treatment of gear
JP2810799B2 (en) Manufacturing method of coil spring
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength
JPS6280322A (en) Endless steel belt and manufacture thereof
JPH03256672A (en) Manufacture of machine structure part and shot peening device
JPH04246123A (en) Manufacture of magneto-striction type torque sensor shaft
JPH0592319A (en) Processing method for toothed wheel
JP2983567B2 (en) Surface treatment method for steel members
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JP3033638B2 (en) Methods for improving the fatigue strength of carburized and hardened parts
JPH0215925A (en) Strengthening method for gear
JPH06768A (en) Shot peening method
JP3036023B2 (en) How to reinforce oil hole in shaft member
JPH0332516A (en) Manufacture of saw blade of coated belt
JPH07290363A (en) Manufacture of high-performance gear

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001219