JPH01152210A - Method for adjusting gas characteristic for pre-reduction in smelting reduction - Google Patents
Method for adjusting gas characteristic for pre-reduction in smelting reductionInfo
- Publication number
- JPH01152210A JPH01152210A JP62310143A JP31014387A JPH01152210A JP H01152210 A JPH01152210 A JP H01152210A JP 62310143 A JP62310143 A JP 62310143A JP 31014387 A JP31014387 A JP 31014387A JP H01152210 A JPH01152210 A JP H01152210A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reduction
- reduction furnace
- furnace
- preliminary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 41
- 239000000428 dust Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000006114 decarboxylation reaction Methods 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 abstract description 45
- 239000003245 coal Substances 0.000 abstract description 24
- 239000002184 metal Substances 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 238000002407 reforming Methods 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 2
- 238000006722 reduction reaction Methods 0.000 description 146
- 239000007789 gas Substances 0.000 description 129
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 59
- 229910052742 iron Inorganic materials 0.000 description 25
- 238000002844 melting Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 241000722946 Acanthocybium solandri Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- -1 iron ore Chemical class 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
- Furnace Details (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、鉄鉱石のような、金属酸化物゛を含有する
鉱石を、予備還元炉にて固体状態で予備還元したのち溶
融還元炉にて溶融させて最終還元を行う方式の溶融還元
において、予備還元用ガスの性状を調整する方法に関す
るもので、とくに、反応剤である石炭などの消費量を減
らし、プロセス全体のエネルギー利用率を高めることの
できる、溶融還元における予備還元用ガス性状の調整方
法に関するものである。[Detailed Description of the Invention] (Industrial Application Field) This invention pre-reduces ore containing metal oxides, such as iron ore, in a solid state in a pre-reduction furnace and then transfers it to a smelting reduction furnace. This relates to a method of adjusting the properties of preliminary reduction gas in smelting reduction, which involves melting and final reduction.In particular, it reduces the consumption of coal, which is a reactant, and increases the energy utilization rate of the entire process. The present invention relates to a method for adjusting the properties of preliminary reduction gas in smelting reduction.
(従来の技術)
溶融還元法は、鉄鉱石(酸化鉄)などの金属酸化物を含
有する鉱石を、溶融状態で還元して鉄やフェロアロイを
製造する方法であり、将来の原料およびエネルギー事情
に適応するとして最近注目されるようになり、実用化の
ための研究開発が進められている技術である。この方法
に期待される特長はつぎの点にある。すなわち、製鉄法
としては、高炉法と比べて、安価な原料の使用、粉鉱の
塊成化などの事前処理工程の省略、設備の小型化などを
実現できること、またフェロアロイの製造法としては、
電力に依存しないプロセスの実用化が可能であることな
どである。(Conventional technology) The smelting reduction method is a method for producing iron and ferroalloys by reducing ores containing metal oxides, such as iron ore (iron oxide), in a molten state. This technology has recently attracted attention for its adaptability, and research and development for its practical application is underway. The expected features of this method are as follows. In other words, compared to the blast furnace method, as a steel manufacturing method, it is possible to use cheaper raw materials, omit pre-processing steps such as agglomeration of fine ore, and downsize equipment, and as a method for manufacturing ferroalloys,
For example, it is possible to put a process that does not depend on electricity into practical use.
溶融還元法には種々のプロセスが提案されており、還元
炉の形式も多様であるが、代表的な形式として金属浴炉
式の溶融還元炉があげられる。これは、たとえば製鉄用
のものでは、鉄浴(°溶鉄)内へ石炭および酸素ととも
に鉄鉱石を装入し、これを還元して溶鉄(銑鉄)を得る
還元炉であるが、反応が速く(固体状態で還元するもの
に比べて100倍以上の速度で還元することができる)
、設備形式がシンプルであるなどの理由で多くのプロセ
スに採用されている。Various processes have been proposed for the smelting reduction method, and there are various types of reduction furnaces, but a typical type is a metal bath furnace type smelting reduction furnace. For example, in steel manufacturing, this is a reduction furnace in which iron ore is charged together with coal and oxygen into an iron bath (molten iron), and this is reduced to obtain molten iron (pig iron). (It can be reduced at a rate more than 100 times faster than that in the solid state.)
, has been adopted in many processes due to its simple equipment format.
反面、これを用いた溶融還元プロセスはエネルギー利用
率が非常に悪く、熱源である石炭の6つエネルギーの大
部分が排ガスとともに逃散するため、最近ではつぎに示
すa)またはb)の方法によってこれを数倍している。On the other hand, the energy utilization rate of the smelting reduction process using this method is very poor, and most of the energy of the coal, which is the heat source, escapes with the exhaust gas. is multiplied several times.
a) 2次燃焼技術の適用:2次燃焼とは、溶融還元炉
内のガス空間部に酸素(またはこれを含むガス)を吹き
込んで、金属浴面から出てくる可燃性ガスの一部を燃焼
させる技術である。これによって発生する熱を金属浴中
に回収すれば、その分、石炭の消費量を減らすことがで
き、エネルギー利用率を上昇さUoることになる。浴面
から出る可燃性ガスのうち燃焼さ仕るガス分の割合を、
2次燃焼率という。a) Application of secondary combustion technology: Secondary combustion refers to blowing oxygen (or a gas containing oxygen) into the gas space in the smelting reduction furnace to remove some of the combustible gas coming out from the metal bath surface. This is a combustion technology. If the heat generated by this is recovered in the metal bath, the amount of coal consumed can be reduced by that amount, and the energy utilization rate will be increased. The proportion of combustible gas out of the combustible gas emitted from the bath surface is
This is called the secondary combustion rate.
溶融還元炉において、たとえば酸化鉄を還元する場合の
基本反応式は、2次燃焼の有無によってつぎのようにか
わる。まず、2次燃焼をしない(2次燃焼率が0%、炉
内ガス温度は1450℃)場合には、
1.430JニーPetO* + 1.293kg−C
+ 0.905Nm’−0t(25℃)(25℃)(2
5℃)
一方、2次燃焼率を30%にして炉内ガス温度を160
0℃にする場合には、
式■と式■とを比較すれば、溶融還元炉で車位置の溶鉄
を得るために必要なC(石炭)および0、の消費mは、
2次燃焼を適用することにより減少することがわかる。In a smelting reduction furnace, the basic reaction equation when reducing iron oxide, for example, changes as follows depending on the presence or absence of secondary combustion. First, when there is no secondary combustion (secondary combustion rate is 0%, gas temperature in the furnace is 1450°C), 1.430 J nee PetO* + 1.293 kg-C
+ 0.905Nm'-0t (25℃) (25℃) (2
5℃) On the other hand, the secondary combustion rate was set to 30% and the gas temperature in the furnace was set to 160℃.
When the temperature is 0℃, if we compare formula (■) and formula (2), the consumption m of C (coal) and 0 necessary to obtain molten iron at the car position in the smelting reduction furnace is:
It can be seen that it is reduced by applying secondary combustion.
なお、式■(2次燃焼率30%)の場合、加えたエネル
ギーはCの燃焼熱量であり、0.679kgX 810
0kcal/kg= 5500kcal。In addition, in the case of formula ■ (secondary combustion rate 30%), the added energy is the combustion heat of C, which is 0.679 kgX 810
0kcal/kg = 5500kcal.
一方、を効に利用された熱■は、Fetos (1kg
)の還元熱1d1759kcalとreの溶解熱239
kcalを合計した値1998kcalであるため、エ
ネルギー利用率は199g15500、ずなわち36%
である。On the other hand, the heat used effectively is Fetos (1kg
) heat of reduction 1d1759kcal and heat of solution of re 239
Since the total value of kcal is 1998 kcal, the energy utilization rate is 199g15500, or 36%
It is.
溶融還元炉に限って見れば、上記のように、2次燃焼率
が高いほどエネルギー利用率は高くなる。When looking only at smelting reduction furnaces, as mentioned above, the higher the secondary combustion rate, the higher the energy utilization rate.
b)予備還元工程の適用:鉱石を直接に溶融させて還元
せずに、固体状態で予備還元したのち、前記のような溶
融還元炉で最終還元する技術である。予備還元には、主
として、溶融還元炉での最終還元にともなって発生ずる
高温ガスを還元用ガスとして使用するので、エネルギー
のを効利用をはかることができる。予備還元炉としては
、鉱石が流動層を形成して上記のガスと接触・反応する
流動層形式のものが多く、反応温度は800℃前後で、
予備還元炉における還元率(予備還元率)は70〜95
%に設定されている。b) Application of preliminary reduction process: This is a technique in which the ore is not directly melted and reduced, but is preliminary reduced in a solid state, and then finally reduced in a smelting reduction furnace as described above. In the preliminary reduction, the high-temperature gas generated during the final reduction in the smelting reduction furnace is mainly used as the reducing gas, so that energy can be used effectively. Most pre-reduction furnaces are of the fluidized bed type, where the ore forms a fluidized bed and contacts and reacts with the above gases, and the reaction temperature is around 800°C.
The reduction rate (preliminary reduction rate) in the preliminary reduction furnace is 70 to 95.
It is set to %.
なお還元率とは、原料鉱石が6つ金属酸化物を基べへと
した酸素の減少率を示すもので、たとえば、FctO*
を基準(還元率0%)とした場合は、還元率11.1%
でFe+Oaに、同33.3%でFcOに、さらに同1
00%でFeに連光されることになる。所望の予備還元
率を得るためには、予備還元炉に導入する還元ガスの組
成おにび温度が適切でなければならない。Note that the reduction rate indicates the reduction rate of oxygen when the raw material ore is based on six metal oxides, for example, FctO*
If this is the standard (return rate 0%), the return rate is 11.1%.
33.3% to Fe+Oa, 33.3% to FcO, and 1% to FcO.
At 00%, it will be continuously illuminated by Fe. In order to obtain a desired preliminary reduction rate, the composition and temperature of the reducing gas introduced into the preliminary reduction furnace must be appropriate.
このような予備還元炉と溶融還元炉からなるプロセスに
ついて、予備還元率を75%とする場合、すなわち予備
還元炉にてFat’sがFcOとF6との混合状態にま
で還元される場合には、その基本反応式はつぎのように
なる。In a process consisting of such a pre-reduction furnace and a smelting reduction furnace, when the pre-reduction rate is set to 75%, that is, when Fat's is reduced to a mixed state of FcO and F6 in the pre-reduction furnace, , the basic reaction formula is as follows.
(予備還元炉にて)
1.430kg4atOs+ 1.29ONm”CO→
0.625kg−Pe(s)+0.482kg−FcO
+0.838Nm3・CO+0.451Nm”COt
・・・・■(溶融還元炉にて)
ここで、加えたエネルギーはCのもつ燃焼熱量、0.6
31kgX 8100kcal/kg= 5111kc
alであるので、エネルギー利用率は39%である。(In preliminary reduction furnace) 1.430kg4atOs+ 1.29ONm”CO→
0.625kg-Pe(s)+0.482kg-FcO
+0.838Nm3・CO+0.451Nm"COt
...■ (in the smelting reduction furnace) Here, the added energy is the combustion heat of C, 0.6
31kgX 8100kcal/kg= 5111kc
al, the energy utilization rate is 39%.
なお式■で、化学m論的に要求される以上のmのCOを
加えた理由は、800℃でFe、03をFeに還元する
ためには、予備還元炉の出口ガス中(弐〇の右辺)のC
o/(CO十Cot)比を65%以上に保たなければな
らない(第3図参照)ことによる。The reason for adding more m of CO than is chemically required in equation (2) is that in order to reduce Fe, 03 to Fe at 800°C, it is necessary to C on the right side)
This is due to the fact that the o/(CO+Cot) ratio must be kept at 65% or more (see Figure 3).
溶融還元炉では、このC0ftdを確保するためにCを
追加し、この発熱反応にともなう熱収支を平衡させる冷
却剤としてCO,を使用すると、式■の関係になる。In the smelting reduction furnace, if C is added to ensure this C0ftd and CO is used as a coolant to balance the heat balance accompanying this exothermic reaction, the relationship shown in equation (2) will be obtained.
以上、エネルギー利用率を高める二つの方法a)および
b)を示したが、最近の溶融還元においては両者を組み
合わせて採用することが多い。Two methods a) and b) for increasing the energy utilization rate have been shown above, but in recent melting reduction, a combination of both is often employed.
すなわち、溶融還元炉には2次燃焼技術を適用するとと
6に、これより発生ずるガスを用いて鉱石を70〜95
%の還元率に予備還元しておく、というプロセスが一般
的である。In other words, if secondary combustion technology is applied to the smelting reduction furnace, the gas generated from this will be used to burn ore to 70 to 95
The common process is to pre-refund to a return rate of 1.5%.
ところが、こうした二つの方法を単純に組み合わ仕ても
、プロセス全体のエネルギー利用率は必ずしも向上する
とは限らない。すなわち、2次燃焼率を高めていけば、
溶融還元炉より発生ずるガス中にはCOなどの還元成分
が減少するので、エネルギーとしてのCの量を増やさな
い限り、予備還元率が低下するからである。たとえば、
2次燃焼率が35%を超えて、予備還元率70%を達成
するためには、理論上、無限大口のCが必要であり、エ
ネルギー利用率は0に等しい。However, simply combining these two methods does not necessarily improve the energy utilization rate of the entire process. In other words, if you increase the secondary combustion rate,
This is because reducing components such as CO are reduced in the gas generated from the smelting reduction furnace, so unless the amount of C as energy is increased, the preliminary reduction rate will decrease. for example,
In order to achieve a secondary combustion rate of over 35% and a preliminary reduction rate of 70%, an infinite amount of C is theoretically required, and the energy utilization rate is equal to zero.
そこで、従来、プロセス全体のエネルギー利用率を高め
るために、つぎのような方法をとっていた。Therefore, conventionally, the following methods have been used to increase the energy utilization rate of the entire process.
イ)2次燃焼率を30%以下に制限することにより、前
記のような高い(70〜95%)予備還元率を確保する
。なおこの場合、溶融還元炉から発生ずるガス中には、
還元成分が十分に含まれるので、このガスは流量と温度
だけを調整して予備還元に用いる。b) By limiting the secondary combustion rate to 30% or less, a high preliminary reduction rate (70 to 95%) as described above is ensured. In this case, the gas generated from the melting reduction furnace contains
Since it contains sufficient reducing components, this gas is used for preliminary reduction by adjusting only the flow rate and temperature.
a)溶融還元炉からの発生ガスを改質し、ガス中に還元
成分(COおよびII、)を増やして予備還元用ガスと
することにより、高い(最大40%程度)2次燃焼率と
高い予備還元率を両立させる(特開昭59−22250
8号)。a) By reforming the gas generated from the smelting reduction furnace and increasing the reducing components (CO and II) in the gas and using it as preliminary reduction gas, a high secondary combustion rate (up to about 40%) can be achieved. Balancing the preliminary return rate (Japanese Patent Application Laid-Open No. 59-22250
No. 8).
ハ)予備還元炉からの排ガスの一部を、脱炭酸および再
加熱したうえ、溶融還元炉からの発生ガスに混合して予
備還元用ガスとすることににす、高い2次燃焼率と高い
予備還元率を両立させる(COINプロセスなど)。C) A portion of the exhaust gas from the pre-reduction furnace will be decarbonated and reheated, and then mixed with the gas generated from the smelting reduction furnace to be used as pre-reduction gas, resulting in a high secondary combustion rate and high Balancing the preliminary return rate (COIN process, etc.).
(発明が解決しようとする問題点)
上記した従来の方法のいずれによっても、鉱石(金属酸
化物)を還元して全屈を得るために必要な石炭(C)の
消費量が多い、ナなイっちエネルギー利用率が十分でな
いという問題点が依然として残る。たとえば、イ)の方
法によって鉄鉱石を還元する場合は、前記のエネルギー
利用率はせいぜい40%であり、高炉法による場合のそ
れが50%以上であることを煮えると、前記した欠点が
克服されたとは言いがたい。(Problems to be Solved by the Invention) In any of the above conventional methods, the amount of coal (C) required to reduce the ore (metal oxide) and obtain total yield is large. The problem of insufficient energy utilization still remains. For example, when iron ore is reduced by method (a), the energy utilization rate is at most 40%, and if the blast furnace method is used, it is more than 50%. It's hard to say.
Cの消費mが多いことから02の消費量も多くなり、し
たがって現実的には、スラグの発生i7k、石灰の消費
m1生成金属のスラグ中へのロスなどの面で悪影響がで
るばかりか、これらに関する設備上の負担を増加させる
ことにもなる。Since the consumption m of C is large, the consumption of 02 is also large, and therefore, in reality, not only will there be a negative impact on the generation of slag i7k and the consumption m1 of lime, but also the loss of produced metals into the slag. This will also increase the burden on equipment related to this.
また、前記の口)およびハ)の方法では、イ)の方法よ
りも2次燃焼率を高くできるので、多少はエネルギー利
用率が高くなるが、高い予備還元率を確保するために、
ガス性状を大幅に調整(改質または脱炭酸)することが
必要で、そのために膨大な設備費と運転費が必要となる
。In addition, in methods (a) and (c) above, the secondary combustion rate can be higher than in method a), so the energy utilization rate is somewhat higher, but in order to ensure a high preliminary reduction rate,
It is necessary to significantly adjust the gas properties (reforming or decarboxylation), which requires enormous equipment and operating costs.
(発明の目的)
本発明は上記の問題点を解消することを目的としてなさ
れたもので、予備還元用ガスの性状を調整することによ
り、エネルギー利用率を大幅に向上さ仕、石炭、酸素お
よび石灰などの消費量をできるだけ少なくするだめの、
溶融還元における予備還元用ガス性状の調整方法を提供
しようとするものである。(Purpose of the Invention) The present invention was made with the aim of solving the above problems, and by adjusting the properties of the preliminary reduction gas, the energy utilization rate can be significantly improved. The goal is to minimize the consumption of lime, etc.
The present invention aims to provide a method for adjusting the properties of preliminary reduction gas in melt reduction.
(問題点を解決するための手段)
上記した目的を達成するためのこの発明の要旨とすると
ころは、金属酸化物を含有する鉱石を予備還元炉にて固
体状態で予備還元したのち溶融還元炉にて溶融させて最
終還元を行うとともに、溶融還元炉において発生ずる還
元能力のあるガスを予備還元炉へ導入する方式によって
、前記鉱石の溶融還元を行うに際し、溶融還元炉からの
発生ガスまたは予備還元炉からの排ガスの一部を改質し
て、予備還元炉へ導入するガスに混合したうえ、この混
合ガスを温度上昇させることにより、予備還元炉におけ
る鉱石の予備通元率が理論上33%程度になるようガス
組成と温度を調整することである。(Means for Solving the Problems) The gist of the present invention for achieving the above-mentioned object is to pre-reduce ore containing metal oxides in a solid state in a pre-reduction furnace, and then reduce the ore in a smelting reduction furnace. At the same time, the gas generated in the smelting reduction furnace and having a reducing ability is introduced into the preliminary reduction furnace. By reforming a part of the exhaust gas from the reduction furnace, mixing it with the gas introduced into the pre-reduction furnace, and raising the temperature of this mixed gas, the preliminary permissibility of the ore in the pre-reduction furnace can theoretically be increased to 33. The gas composition and temperature should be adjusted so that the
(作用)
この発明の、予備還元用ガス性状の調整方法によれば、
金属酸化物を含有する鉱石は、予備ぷ元炉にて予備還元
率が33%程度になるまで予備還元されたのち、還元速
度の高い溶融還元炉にて最終還元されるが、予備還元用
ガスはわずかな調整によって前記予備還元率を達成する
性状になるので、溶融還元炉において2次燃焼率を十分
に高くすることができ、したがってプロセス全体のエネ
ルギー利用率が最大限に上昇する。(Function) According to the method of adjusting the properties of the preliminary reduction gas of the present invention,
Ore containing metal oxides is pre-reduced in a preliminary reduction furnace until the preliminary reduction rate is approximately 33%, and then finally reduced in a smelting reduction furnace with a high reduction rate. has a property that achieves the pre-reduction rate with a slight adjustment, so that the secondary combustion rate can be made sufficiently high in the smelting reduction furnace, and therefore the energy utilization rate of the entire process can be maximized.
(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図はこの発明の第1実施例に関する製鉄用の溶融還
元系統図である。図において、20は溶融還元炉、30
は予備還元炉であり、予備還元炉30において鉄鉱石を
固体状態で予備還元したのち、溶融還元炉20にて溶融
させて最終還元を行う一方、溶融還元炉20において発
生ずる還元能力のある高温ガスを予備還元炉30に還元
ガスとして導入する方式を示している。FIG. 1 is a smelting and reduction system diagram for iron manufacturing relating to a first embodiment of the present invention. In the figure, 20 is a melting reduction furnace, 30
is a pre-reduction furnace, in which the iron ore is pre-reduced in a solid state in the pre-reduction furnace 30 and then melted in the smelting-reduction furnace 20 for final reduction. A method is shown in which gas is introduced into the preliminary reduction furnace 30 as a reducing gas.
図示したように、溶融還元炉20の溶鉄20a(および
スラグ20b)中に装入されるものには、予備還元炉3
0で予備還元された鉄鉱石(予備還元鉄。移送管34よ
り)のほかに、石炭および石灰(吹き込み管22より)
、酸素および必要な場合の前記炭酸ガス(吹き込み管2
3より)などがある。これらは溶融還元炉20において
、たとえば式■のように反応し溶融状態で還元される。As shown in the figure, the molten iron 20a (and slag 20b) of the smelting reduction furnace 20 includes a pre-reduction furnace 3.
In addition to iron ore (preliminary reduced iron, from the transfer pipe 34) that has been pre-reduced at 0, coal and lime (from the blowing pipe 22)
, oxygen and, if necessary, said carbon dioxide gas (blow tube 2
3) etc. These react in the melting reduction furnace 20, for example, as shown in equation (2) and are reduced in a molten state.
溶融還元炉20では、このような還元反応にともなって
COなどを含む可燃性ガスが溶鉄20aの浴中から発生
ずるので、前記のように炉内ガス空間部20cに吹き込
み管21より酸素を吹き込み、2次燃焼を行う。In the melting reduction furnace 20, combustible gas containing CO and the like is generated from the bath of the molten iron 20a due to such a reduction reaction, so oxygen is blown into the furnace gas space 20c from the blowing pipe 21 as described above. , performs secondary combustion.
本実施例では、2次燃焼させて溶融還元炉20より発生
したガスを、炉口フード20dに連結したガス管lに通
し、このガス管lより分岐したガス管1aに一部を分配
して湿式集塵機3、送風(茂4および脱炭酸装置5を経
由させたうえ、分岐した他方のガス管1bのガスとガス
管2にて合流・混合し、さらにホット・ザイクロン6お
よび部分燃焼器7を経由させ、予備還元用ガスとして予
備還元炉30へ導入するようにしている。In this embodiment, the gas generated from the melting reduction furnace 20 through secondary combustion is passed through the gas pipe l connected to the furnace mouth hood 20d, and a portion is distributed to the gas pipe 1a branched from the gas pipe l. Wet type dust collector 3, blowing air (via Shigeru 4 and decarboxylation device 5), and then combining and mixing with gas from the other branched gas pipe 1b in gas pipe 2, and then hot Zyclone 6 and partial combustor 7. The gas is introduced into the preliminary reduction furnace 30 as a preliminary reduction gas.
なお、湿式集塵機3はこれに限らず、ガスを冷却および
除塵できる装置であればよく、脱炭酸装置5もこれ以外
のガス改質装置、たとえば炭化水素や微粉炭によってC
OlをCOや11.に改質するもので6よい。部分燃焼
器7は、ガスの一部に酸素(またはこれを含むガス)を
吹き込んで可燃成分の一部を燃焼させることにより、ガ
ス温度を上昇させるものであるが、加熱□装置など他の
手段により温度上昇させるものでもよい。Note that the wet dust collector 3 is not limited to this, and any device that can cool and remove dust from gas may be used, and the decarboxylation device 5 may also be used for other gas reforming devices, such as hydrocarbons or pulverized coal.
Ol to CO or 11. 6 is good if it is modified to The partial combustor 7 raises the gas temperature by blowing oxygen (or a gas containing oxygen) into a part of the gas and burning part of the combustible components, but it is also possible to use other means such as a heating device. It may be possible to raise the temperature by
なお、図示の予備還元炉30は流動層式の還元炉で、鉱
石装入管31より装入される粉粒状の鉄鉱石は、上記の
ようにしてガス管2より炉内に導入される予備還元用ガ
スによって、分散板(整流板)30a上で流動P7J3
0bを形成し、この状態で還元ガスと接触・反応して予
備還元される。The illustrated preliminary reduction furnace 30 is a fluidized bed type reduction furnace, and the powdery iron ore charged through the ore charging pipe 31 is the preliminary reduction furnace introduced into the furnace through the gas pipe 2 as described above. Flow P7J3 on the dispersion plate (straightening plate) 30a by the reducing gas
0b is formed, and in this state it contacts and reacts with a reducing gas to undergo preliminary reduction.
予備還元鉄は、排出管32または33より排出され、移
送管34内をたとえば気体移送によって移送されて、溶
融還元炉20に装入される。一方、予備還元に用いた前
記のガスは排ガス管8より排出される。The preliminary reduced iron is discharged from the discharge pipe 32 or 33, transferred within the transfer pipe 34 by, for example, gas transfer, and charged into the melting reduction furnace 20. On the other hand, the gas used for preliminary reduction is discharged from the exhaust gas pipe 8.
この実施例では、プロセス全体のエネルギー利用率を高
めるために、予備還元炉30において鉄鉱石をほとんど
PeOになるまで還元するよう、予備還元用ガスの性状
を調整するとともに、溶融還元炉20における2次燃焼
率を60%以上としている。予備還元炉においてPQv
O3h’FQOにまで還元される場合は、予備還元率は
33.3%であるが、原料として実際に使用する鉄鉱石
には、PetO5のほかに、酸素mがやや少ないFe5
0+も若干は含まれているので、実際の予備還元率は3
3.3%を多少下回る値となる。In this example, in order to increase the energy utilization rate of the entire process, the properties of the preliminary reduction gas are adjusted so that the iron ore is reduced to almost PeO in the preliminary reduction furnace 30, and the The secondary combustion rate is set at 60% or more. PQv in the pre-reduction furnace
When reduced to O3h'FQO, the preliminary reduction rate is 33.3%, but in addition to PetO5, the iron ore actually used as a raw material contains Fe5, which has a slightly lower oxygen m content.
Since some 0+ is included, the actual preliminary return rate is 3.
The value is slightly lower than 3.3%.
図のようなプロセスにおいて、予備還元用ガスの性状を
調整することにより、このように予備還元率と2次燃焼
率とを設定する理由について、以下に説明する。The reason why the preliminary reduction rate and the secondary combustion rate are set in this way by adjusting the properties of the preliminary reduction gas in the process shown in the figure will be explained below.
前記したように、予備還元炉30における予備還元率は
、予備還元用ガスに含まれるCOのm(比率)によって
決まる。また、このCOmは、溶融還元炉20に装入す
るC(石炭)の爪および2次燃焼率によって決まり、さ
らに、このCのmは、溶融還元炉20に装入する鉄鉱石
の予備還元率に応じて変わる。こういった傾向は、前記
の基本反応式■〜■や、2次燃焼率および予備還元率を
変更したいくつかの反応式、さらに第3図に示す鉄のC
Oガスによる公知の還元平衡図などを見くらべることに
より、容易に理解することができる。As described above, the preliminary reduction rate in the preliminary reduction furnace 30 is determined by m (ratio) of CO contained in the preliminary reduction gas. In addition, this COm is determined by the claw and secondary combustion rate of C (coal) charged into the smelting reduction furnace 20, and m of this C is the preliminary reduction rate of iron ore charged into the smelting reduction furnace 20. It changes depending on. These trends can be seen in the basic reaction equations ■ to
This can be easily understood by looking at a known reduction equilibrium diagram using O gas.
以上の点を定m的に検討すれば、単位量の溶鉄Fe(I
2)を得るためのCの消費mを最少にする、いいかえれ
ばエネルギー利用率を最大にする、適当な予備還元率と
2次燃焼率とを求めることができると考えられる。そこ
で発明者らは、現実的な条件(鉄鉱石および石炭の性状
、各部の放熱損失など)を設定したうえで、これを計算
によって求め、さらに確認実験を行った。こうして得た
結果はつぎのとおりである。If we consider the above points regularly, we can find that a unit amount of molten iron Fe(I
It is believed that it is possible to find an appropriate preliminary reduction rate and secondary combustion rate that minimize the consumption m of C to obtain 2), or in other words, maximize the energy utilization rate. Therefore, the inventors set realistic conditions (properties of iron ore and coal, heat radiation loss in each part, etc.), determined these through calculations, and conducted further confirmation experiments. The results thus obtained are as follows.
i)石炭(C)の消費mは、2次燃焼率が20%以上の
場合は予備還元率が33%のときに最少となり、これら
の値は2次燃焼率が20%未満の場合の最少石炭消費m
よりも少ない。また予備還元率が33%の場合の石炭の
消費量は、2次燃焼率が20%より高いほど少なくなる
。i) The consumption m of coal (C) is the minimum when the secondary combustion rate is 20% or more and the preliminary reduction rate is 33%, and these values are the minimum when the secondary combustion rate is less than 20%. Coal consumption m
less than. Further, when the preliminary reduction rate is 33%, the amount of coal consumed decreases as the secondary combustion rate is higher than 20%.
i) 2次燃焼率が60%を超えると、溶融還元炉から
の発生ガス中のC0ff1が低下するので、このガスを
改質しない限り、33%の予備還元率を達成することが
できない。i) When the secondary combustion rate exceeds 60%, C0ff1 in the gas generated from the smelting reduction furnace decreases, so the preliminary reduction rate of 33% cannot be achieved unless this gas is reformed.
要約すると、予備還元率は33%に保ち、2次燃焼率を
できるだけ高くすることが、石炭の消費mを減らすこと
になる。たとえば、2次燃焼率が50%で予備還元率が
33%の場合の石炭の消費mは、前記の例(2次燃焼率
0%、予備還元率75%)に比べて約り0%少なくなる
ことから、これによる改壱度の大きさがわかる。In summary, keeping the preliminary reduction rate at 33% and increasing the secondary combustion rate as high as possible will reduce coal consumption m. For example, when the secondary combustion rate is 50% and the preliminary reduction rate is 33%, the coal consumption m is approximately 0% less than the previous example (secondary combustion rate 0%, preliminary reduction rate 75%). From this, we can see the magnitude of the degree of reform caused by this.
ところが、石炭の消費mをさらに低減するために、2次
燃焼率を60%以上にすれば、上記i)のために、溶融
還元炉20からの発生ガスをそのまま予備還元用ガスと
して用いるわけにはいかない。本実施例で、予備還元用
ガスの性状を調整することにより、予備還元率を33%
程度、2火燃焼率を60%以上に設定したのは、以上の
理由によるものである。However, if the secondary combustion rate is set to 60% or more in order to further reduce coal consumption m, the gas generated from the smelting reduction furnace 20 cannot be used as it is as the preliminary reduction gas for the purpose of i) above. I'm not going. In this example, the preliminary reduction rate was increased to 33% by adjusting the properties of the preliminary reduction gas.
The reason why the degree and two-fire combustion rate were set at 60% or more is due to the above reasons.
本実施例において、溶融還元炉20での2次燃焼率を6
5%とし、発生ガスはガス管!よりガス管1aおよびl
bに50%ずつ分配し、部分燃焼器7ではガス中の可燃
成分の15%を燃焼させるようにした場合の、ガス管の
各部分(第1図中の点A−G)におけるガス性状に関す
る試算結果を下記に示す。In this embodiment, the secondary combustion rate in the melting reduction furnace 20 is set to 6.
5% and the generated gas is a gas pipe! Gas pipes 1a and l
Regarding the gas properties in each part of the gas pipe (points A-G in Fig. 1) when 50% of the combustible components in the gas are combusted in the partial combustor 7. The trial calculation results are shown below.
なお上記の試算では、湿式集塵器3においてはガスの冷
却・除塵にともなって67Nm3の11.0が除去され
、脱炭酸装置5においてはガス中の90%、293Nm
’のCOlが取り除かれるものとし、各装置およびガス
管内でのガスの温度降下、さらにはそれにともなうガス
のシフト反応も考慮している。According to the above calculation, 11.0 of 67Nm3 is removed by cooling and removing dust from the gas in the wet dust collector 3, and 293Nm3, which is 90% of the gas, is removed in the decarboxylation device 5.
It is assumed that CO1 of ' is removed, and the temperature drop of the gas in each device and gas pipe, as well as the shift reaction of the gas accompanying this, are also taken into consideration.
上記の数値のうち注目されるものは、点G(予備還元炉
30の出口)におけるガス組成である。Of the above values, what is noteworthy is the gas composition at point G (the exit of the pre-reduction furnace 30).
ここでのガス中には、還元成分としてCOおよび11、
が含まれるが、これらの比率が高く、予備還元率33%
を達成する(鉄鉱石をFeOまで還元する)のに十分な
値となっている。すなわち、ガス中にCOとI+、があ
る場合には、800℃でFeOを得る条件はCo/Co
、 > 0.35であるが、試算結果ではCo/Co、
= 0.36であり、これを満足する。The gas here contains CO and 11 as reducing components.
However, these ratios are high, with a preliminary return rate of 33%.
(reducing iron ore to FeO). That is, if there are CO and I+ in the gas, the conditions for obtaining FeO at 800°C are Co/Co
, > 0.35, but the trial calculation results show that Co/Co,
= 0.36, which is satisfied.
以上のように予備進光用ガスの性状を調整することによ
り、予備還元率を33%程度に保ったまま、2次燃焼率
を65%に上昇させれば、前記した2次燃焼率50%の
場合に比べて、石炭の消費量がさらに数%低減される。By adjusting the properties of the preliminary flashing gas as described above, if the secondary combustion rate is increased to 65% while maintaining the preliminary reduction rate at about 33%, the secondary combustion rate can be increased to 50%. Coal consumption is further reduced by several percent compared to the previous case.
なお、2次燃焼率が20%を超える場合の石炭消費mに
ついては、予備還元率が33%を超えると急激に増加す
るのに対し、予備還元率が33%以下に低下して6石炭
消費mは少ししか増加しないので、実際の操業における
予備還元率は十数%〜33%の間のいずれの値でもよい
。本実施例の方法では、ガス管1aに分配するガスmを
増やして多量のガスを改質すれば、2次燃焼率をさらに
高くすることができ、したがって石炭消費量をより低減
させることも可能である。一方、2次燃焼率が60%以
下の場合でも、この方法でガス性状を調整すれば、予備
還元用ガスの還元力を高めることができるので、小容量
の予備還元炉を使用して同じ予備還元率(33%程度)
を達成できるなど、多くの利点が生じる。Regarding coal consumption m when the secondary combustion rate exceeds 20%, it increases rapidly when the preliminary reduction rate exceeds 33%, but when the preliminary reduction rate decreases to 33% or less, the coal consumption m Since m increases only a little, the preliminary reduction rate in actual operation may be any value between a dozen percent and 33 percent. In the method of this embodiment, by increasing the gas m distributed to the gas pipe 1a and reforming a large amount of gas, it is possible to further increase the secondary combustion rate, and therefore it is also possible to further reduce coal consumption. It is. On the other hand, even if the secondary combustion rate is 60% or less, adjusting the gas properties using this method can increase the reducing power of the pre-reducing gas. Refund rate (about 33%)
There are many benefits, such as being able to achieve
つぎに、この発明に関する第2の実施例を、第2図に基
づいて説明する。この実施例は、第1実施例と同様の製
鉄用溶融還元プロセスを示すものであるが、溶融還元炉
20より発生し、ガス管1を経て予備還元炉30へ導入
するガス中に、冷却・除塵した予備還元炉30からの排
ガスの一部を、改質したのち混合するようにした点に特
徴がある。すなわち、予備還元炉30より出てガス管8
を通る排ガスは、湿式集11!!!機3で冷却・除塵し
たのち、ガス管8aおよび8bに分岐させ、ガス管8b
側のガスを排出処理するとともに、ガス管8a側のガス
を、送風機4および脱炭酸装置5を経由させて、ガス管
Iの前記ガス中に合流・混合している。こうして混合し
たガスは、第1実施例と同様に、部分燃焼器7で一部を
燃焼して昇温させたのち、予備還元用ガスとして予備還
元炉30へ導入する。Next, a second embodiment of the present invention will be described based on FIG. 2. This embodiment shows the same smelting and reduction process for steel manufacturing as in the first embodiment, but the gas generated from the smelting and reducing furnace 20 and introduced into the preliminary reduction furnace 30 via the gas pipe 1 contains cooling and The present invention is characterized in that a part of the dust-removed exhaust gas from the preliminary reduction furnace 30 is reformed and then mixed. That is, the gas pipe 8 exits from the preliminary reduction furnace 30.
The exhaust gas passing through the wet collection 11! ! ! After cooling and removing dust in machine 3, it is branched into gas pipes 8a and 8b, and gas pipe 8b
At the same time, the gas on the side of the gas pipe 8a is passed through the blower 4 and the decarboxylation device 5 to join and mix with the gas in the gas pipe I. As in the first embodiment, the gas thus mixed is partially combusted in the partial combustor 7 to raise its temperature, and then introduced into the preliminary reduction furnace 30 as a preliminary reduction gas.
さらにこの実施例では、予備還元用ガス性状をより正確
に調整するために、溶融還元炉20からの発生ガスの一
部を、必要に応じてガス管1cより排出できるようにし
ている。ガス管1cに導くガスは、前記のガス管8bの
ガスと合流させて排出するようにしてもよい。また、こ
うして排出するガスには可燃成分が含まれているので、
たとえば製鉄所内の燃料として使用することもできる。Further, in this embodiment, in order to more accurately adjust the properties of the preliminary reduction gas, a part of the gas generated from the melting reduction furnace 20 can be discharged from the gas pipe 1c as necessary. The gas led to the gas pipe 1c may be discharged after being merged with the gas in the gas pipe 8b. In addition, the gas emitted in this way contains flammable components, so
For example, it can be used as a fuel in steel plants.
なお図中、第1実施例と共通ずる部分には同一の符号を
付している。In the drawings, parts common to those in the first embodiment are designated by the same reference numerals.
この実施例でも、予備還元炉30における鉄鉱石の予備
還元率が33%程度になるようガス組成と温度を調整す
るので、溶融還元炉20において高い2次燃焼率をとる
ことができ、従来にりも少ない石炭消費量で溶鉄を得る
ことができる。In this embodiment as well, the gas composition and temperature are adjusted so that the preliminary reduction rate of iron ore in the preliminary reduction furnace 30 is about 33%, so a high secondary combustion rate can be achieved in the smelting reduction furnace 20, which is better than the conventional method. Molten iron can be obtained with less coal consumption.
ただ、この場合には、第1実施例と比べて、COおよび
11.のmがより少ない、予備還元炉30からの排ガス
を改質するため、より多くのガス(たとえば、全排ガス
の70〜80%)をガス管8aに導き脱炭酸する必要が
ある。一方、この実施例によれば、溶融還元炉20の操
業状態の変動に基づいてガスの発生mが変動する場合に
も、ガス管8aに分配するガスmまたはガス管1cより
排出するガスmを増減することにより、予備還元用ガス
舟を調節できる利点がある。この点は、予備還元炉30
が、還元用ガスの流mを正確に調節する必要のある流動
層式のものである場合には、特に有利である。However, in this case, CO and 11. In order to reform the exhaust gas from the preliminary reduction furnace 30 where m is smaller, it is necessary to introduce more gas (for example, 70 to 80% of the total exhaust gas) into the gas pipe 8a and decarbonate it. On the other hand, according to this embodiment, even when the amount of gas generated m changes based on changes in the operating state of the smelting reduction furnace 20, the gas m distributed to the gas pipe 8a or the gas m discharged from the gas pipe 1c can be controlled. There is an advantage that the pre-reduction gas tank can be adjusted by increasing or decreasing the amount. In this point, the preliminary reduction furnace 30
This is particularly advantageous if the system is of the fluidized bed type, in which the flow m of the reducing gas must be precisely regulated.
なお、以上にのべた本発明の、溶融還元における予備還
元用ガス性状の調整方法は、鉄鉱石を還元して鉄を得る
場合に限らず、クロム鉱石(Cry’3またはFeCr
2O4)を還元してフェロクロムを得るなど、同様のプ
ロセスにより他の金属を溶融還元する場合にも適用でき
る。The above-described method of adjusting gas properties for preliminary reduction in smelting reduction according to the present invention is not limited to the case where iron is obtained by reducing iron ore.
It can also be applied to the case where other metals are melted and reduced by a similar process, such as obtaining ferrochrome by reducing 2O4).
(発明の効果)
以上のように構成した本発明の、溶融還元における予備
還元用ガス性状の調整方法によれば、下記の効果が6た
らされる。(Effects of the Invention) According to the method for adjusting the properties of the preliminary reduction gas in smelting reduction of the present invention configured as described above, the following effects can be obtained.
1) 2次燃焼率を高くすることができるので、溶融金
属を得るために必要な石炭の消費量が大幅に低減される
。1) Since the secondary combustion rate can be increased, the consumption of coal necessary to obtain molten metal is significantly reduced.
2)上記l)にともない、酸素および石灰などの消費量
も低減する。2) Along with the above 1), consumption of oxygen, lime, etc. is also reduced.
3)上記l)、2)にともない、排ガスの発生mが減少
する。3) Along with the above l) and 2), the amount of exhaust gas generated m is reduced.
4)上記1)、2)によって溶融金属中のスラグの発生
爪が減るので、これによる金属のロスが減少して金属の
製造歩留まりが向上する。4) The above 1) and 2) reduce the number of slag formations in the molten metal, thereby reducing metal loss and improving the metal manufacturing yield.
5)上記l)〜4)にともない、石炭や石灰の搬送設備
、酸素供給設備および排ガス処理段4!ifが小規模化
できるので、設備費およびその運転費が削減できる。5) In line with l) to 4) above, coal and lime conveyance equipment, oxygen supply equipment, and exhaust gas treatment stage 4! Since the if can be downsized, equipment costs and operating costs can be reduced.
6)予備還元率が低いため、予備還元炉の8爪を小さく
できる。6) Since the preliminary reduction rate is low, the 8 jaws of the preliminary reduction furnace can be made smaller.
7)予備還元用ガスの還元能力(還元性成分の量)が低
くてもよいため、溶融還元炉からの発生ガスまたは予備
還元炉からの排ガスのうち一部だけを改質すればよく、
したがって改質装置の設備費および運転費が少なくて済
む。7) Since the reducing ability (amount of reducing components) of the preliminary reduction gas may be low, it is only necessary to reform a part of the gas generated from the smelting reduction furnace or the exhaust gas from the preliminary reduction furnace,
Therefore, the equipment cost and operating cost of the reformer can be reduced.
第1図は本発明の第1実施例を示す溶融還元系統図、第
2図は本発明の第2実施例を示す溶融還元系統図、第3
図はCOガスによる鉄の還元平衡図である。
1 、la、lb、lc、 2 、8.8a、8b・−
・ガス管、3− Q、式%式%Fig. 1 is a melting reduction system diagram showing a first embodiment of the present invention, Fig. 2 is a melting reduction system diagram showing a second embodiment of the present invention, and Fig. 3 is a melting reduction system diagram showing a second embodiment of the present invention.
The figure is an equilibrium diagram of the reduction of iron by CO gas. 1, la, lb, lc, 2, 8.8a, 8b・-
・Gas pipe, 3-Q, formula % formula %
Claims (3)
状態で予備還元したのち溶融還元炉にて溶融させて最終
還元を行うとともに、溶融還元炉において発生する還元
能力のあるガスを予備還元炉へ導入する方式によって、
前記鉱石の溶融還元を行うに際し、 前記溶融還元炉からの発生ガスまたは前記予備還元炉か
らの排ガスの一部を改質して、予備還元炉へ導入するガ
スに混合したうえ、この混合ガスを温度上昇させること
により、予備還元炉における鉱石の予備還元率が理論上
33%程度になるようにガス組成と温度を調整すること
を特徴とする溶融還元における予備還元用ガス性状の調
整方法。(1) Ore containing metal oxides is pre-reduced in a solid state in a pre-reduction furnace and then melted in a smelting reduction furnace for final reduction, and the gas with reducing ability generated in the smelting reduction furnace is prepared as a reserve. Depending on the method of introduction into the reduction furnace,
When performing smelting reduction of the ore, a part of the gas generated from the smelting reduction furnace or the exhaust gas from the pre-reduction furnace is reformed and mixed with the gas introduced into the pre-reduction furnace, and this mixed gas is A method for adjusting gas properties for preliminary reduction in smelting reduction, characterized by adjusting gas composition and temperature by increasing temperature so that the preliminary reduction rate of ore in a preliminary reduction furnace is theoretically about 33%.
元炉からの排ガスの一部を、冷却・除塵したのち送風機
および脱炭酸装置を経由させて、予備還元炉へ導入する
ガスに混合したうえ、この混合ガスの一部を燃焼して温
度上昇させてガス組成と温度を調整する特許請求の範囲
第1項に記載の溶融還元における予備還元用ガス性状の
調整方法。(2) A part of the gas generated from the smelting reduction furnace or the exhaust gas from the pre-reduction furnace is cooled and dust removed, and then mixed with the gas introduced into the pre-reduction furnace via a blower and decarboxylation device. The method of adjusting gas properties for preliminary reduction in smelting reduction according to claim 1, wherein a part of the mixed gas is combusted to raise the temperature to adjust the gas composition and temperature.
の排ガスを冷却・除塵したのち、その一部を、送風機お
よび脱炭酸装置を経由させて、予備還元炉へ導入するガ
スに混合したうえ、この混合ガスの一部を燃焼して温度
上昇させてガス組成と温度を調整する特許請求の範囲第
1項に記載の溶融還元における予備還元用ガス性状の調
整方法。(3) After cooling and removing dust from the gas generated from the smelting reduction furnace or the exhaust gas from the pre-reduction furnace, a part of it is mixed with the gas introduced into the pre-reduction furnace via a blower and decarboxylation device. The method of adjusting gas properties for preliminary reduction in smelting reduction according to claim 1, wherein a part of the mixed gas is combusted to raise the temperature to adjust the gas composition and temperature.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310143A JP2623269B2 (en) | 1987-12-08 | 1987-12-08 | Method of adjusting gas properties for preliminary reduction in smelting reduction |
AU26579/88A AU600398C (en) | 1987-12-07 | 1988-12-05 | Method of smelting reduction of ores containing metal oxides |
MX014062A MX170052B (en) | 1987-12-07 | 1988-12-06 | METHOD OF REDUCTION BY FOUNDRY OF MINES CONTAINING METAL OXIDES |
CN88108380A CN1015549B (en) | 1987-12-07 | 1988-12-07 | Method of smelting reduction of ores containing metal oxides |
EP88120482A EP0319966B1 (en) | 1987-12-07 | 1988-12-07 | Method of smelting reduction of ores containing metal oxides |
AT88120482T ATE97695T1 (en) | 1987-12-07 | 1988-12-07 | METHOD OF MELT REDUCTION OF OXIDE ORES. |
ES88120482T ES2048752T3 (en) | 1987-12-07 | 1988-12-07 | PROCEDURE FOR THE REDUCTION IN THE FUSION OF OXIDIC MINERALS. |
CA000585238A CA1338099C (en) | 1987-12-07 | 1988-12-07 | Method of smelting reduction of ores containing metal oxides |
DE3885862T DE3885862T2 (en) | 1987-12-07 | 1988-12-07 | Process for smelting reduction of oxidic ores. |
KR1019880016284A KR910008141B1 (en) | 1987-12-07 | 1988-12-07 | Method of smetting reduction of ores containing metal oxides |
BR888806437A BR8806437A (en) | 1987-12-07 | 1988-12-07 | REDUCTION PROCESS BY MELTING A METAL OXIDE ORE |
US07403058 US4940488C2 (en) | 1987-12-07 | 1989-09-01 | Method of smelting reduction of ores containing metal oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310143A JP2623269B2 (en) | 1987-12-08 | 1987-12-08 | Method of adjusting gas properties for preliminary reduction in smelting reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01152210A true JPH01152210A (en) | 1989-06-14 |
JP2623269B2 JP2623269B2 (en) | 1997-06-25 |
Family
ID=18001684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62310143A Expired - Lifetime JP2623269B2 (en) | 1987-12-07 | 1987-12-08 | Method of adjusting gas properties for preliminary reduction in smelting reduction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2623269B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61179809A (en) * | 1985-02-04 | 1986-08-12 | Nippon Steel Corp | Operating method of melt reduction process |
JPS61284510A (en) * | 1985-06-12 | 1986-12-15 | Kawasaki Steel Corp | Production of molten metal |
JPS62227008A (en) * | 1986-03-28 | 1987-10-06 | Nippon Steel Corp | Melt reduction method for iron ore |
-
1987
- 1987-12-08 JP JP62310143A patent/JP2623269B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61179809A (en) * | 1985-02-04 | 1986-08-12 | Nippon Steel Corp | Operating method of melt reduction process |
JPS61284510A (en) * | 1985-06-12 | 1986-12-15 | Kawasaki Steel Corp | Production of molten metal |
JPS62227008A (en) * | 1986-03-28 | 1987-10-06 | Nippon Steel Corp | Melt reduction method for iron ore |
Also Published As
Publication number | Publication date |
---|---|
JP2623269B2 (en) | 1997-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4940488A (en) | Method of smelting reduction of ores containing metal oxides | |
JPH01195226A (en) | Smelting reduction method | |
CA2408720C (en) | Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore | |
US4111687A (en) | Process for the production of intermediate hot metal | |
CN113025771B (en) | Grate type direct reduced iron production system and method for sintering machine | |
CA1338099C (en) | Method of smelting reduction of ores containing metal oxides | |
JPH01152210A (en) | Method for adjusting gas characteristic for pre-reduction in smelting reduction | |
JPS61221322A (en) | Melting and refining method for metallic raw material | |
US4412862A (en) | Method for the production of ferrochromium | |
JPH01149911A (en) | Smelting reduction process | |
JPS60145307A (en) | Reducing method of iron ore by melting | |
JP2868921B2 (en) | Operation method of smelting reduction furnace | |
JPS62230923A (en) | Manufacture of iron by smelting and reduction | |
JPH06228623A (en) | Steelmaking method having small energy consumption | |
JPH01147009A (en) | Melting and reducing method | |
JPH01162711A (en) | Smelting reduction method | |
JPH0214412B2 (en) | ||
JPS6141884A (en) | Method of recovering sensible heat of metallurgical sludge | |
GB2026548A (en) | Production of intermediate hot metal for steelmaking | |
JPS6347308A (en) | Smelting, reducing and refining equipment | |
JPH0130888B2 (en) | ||
JPH01191719A (en) | Method for operating smelting reduction furnace | |
JPH09202909A (en) | Smelting reduction equipment and operation thereof | |
CA1101677A (en) | Process and apparatus for the production of intermediate hot metal | |
JPH01162710A (en) | Method and apparatus for smelting reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080411 Year of fee payment: 11 |