JPH01151920A - Pressure-swing absorption method - Google Patents
Pressure-swing absorption methodInfo
- Publication number
- JPH01151920A JPH01151920A JP62310648A JP31064887A JPH01151920A JP H01151920 A JPH01151920 A JP H01151920A JP 62310648 A JP62310648 A JP 62310648A JP 31064887 A JP31064887 A JP 31064887A JP H01151920 A JPH01151920 A JP H01151920A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- adsorption tower
- adsorption
- gas
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000010521 absorption reaction Methods 0.000 title abstract description 4
- 238000001179 sorption measurement Methods 0.000 claims abstract description 158
- 238000010926 purge Methods 0.000 claims abstract description 53
- 238000004140 cleaning Methods 0.000 claims abstract description 43
- 238000003795 desorption Methods 0.000 claims abstract description 16
- 238000011084 recovery Methods 0.000 claims abstract description 15
- 238000005406 washing Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 abstract description 13
- 239000007789 gas Substances 0.000 abstract 7
- 239000000047 product Substances 0.000 abstract 2
- 239000002912 waste gas Substances 0.000 abstract 2
- 239000002253 acid Substances 0.000 description 17
- 239000003463 adsorbent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000005749 Copper compound Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、2塔以上の吸着塔を用いて混合ガスから特
定成分(例えば−酸化炭素(Go))を高収率で分離回
収することができる圧力スイング吸着方法に関するもの
である。Detailed Description of the Invention (Industrial Field of Application) This invention is directed to the separation and recovery of specific components (e.g. carbon oxide (Go)) from a mixed gas using two or more adsorption towers in high yield. The present invention relates to a pressure swing adsorption method that allows for
(従来技術) 従来、例えばCOが含まれた混合ガスからc。(Conventional technology) Conventionally, c from a mixed gas containing CO, for example.
を分離回収する圧力スイング吸着方法としては、昇圧工
程と吸着工程と均圧工程と洗浄工程と脱着工程とを有し
、吸着塔の洗浄工程において発生するパージ排ガスをそ
のまま廃棄するのではなく、このパージ排ガスを他の吸
着塔に導入してこのパージ排ガス中のCO酸成分さらに
吸着させてc。The pressure swing adsorption method involves a pressure raising process, an adsorption process, a pressure equalization process, a cleaning process, and a desorption process. The purge gas is introduced into another adsorption tower to further adsorb the CO acid component in the purge gas.
成分の回収率を向上させるようにしたものが知られてい
る。Some devices are known that improve the recovery rate of components.
上記従来の圧力スイング吸着方法を第3図に示す工程説
明図と、第4図に示すような2つの吸着塔A、Bを有す
る装置とに基いて一方の吸着塔Δを中心に説明する。ま
ず昇圧工程では、原料ガス圧縮機11によってco、N
2 、CO2、N2 f7)混合ガスである原料ガスが
加圧されて供給管路21および弁31aを通して上記一
方の吸着塔Aに供給される。これによって吸着塔Aは所
定の吸着圧力まで昇圧される。The above conventional pressure swing adsorption method will be explained based on the process diagram shown in FIG. 3 and an apparatus having two adsorption towers A and B as shown in FIG. 4, focusing on one adsorption tower Δ. First, in the pressure increasing step, the raw material gas compressor 11
2, CO2, N2 f7) The raw material gas, which is a mixed gas, is pressurized and supplied to one of the adsorption towers A through the supply pipe 21 and the valve 31a. As a result, the adsorption tower A is pressurized to a predetermined adsorption pressure.
つぎに吸着工程では、上記昇圧工程に引き続き原料ガス
が吸着塔Aに供給されるとともに、弁32aが開かれる
。これによって吸着塔A内の吸着剤(例えばゼオライト
、活性炭あるいはアルミナなど)に原料ガス中の吸着性
の高いGo(易吸着成分)が加圧下で吸着され、吸着性
の低いN2およびN2 (難吸着成分)が排出管路2
2および弁32aを通して大気中へ放出される。この吸
着工程は、吸着塔Aの出口におけるCO濃度が入口にお
ける原料ガス中のCoII度と同じになる直前に弁31
aと弁32aとを閉じることによって終了され、これに
よって吸着塔Aはその内部が吸着圧力のままで封鎖され
る。Next, in the adsorption step, the raw material gas is supplied to the adsorption tower A following the pressure increasing step, and the valve 32a is opened. As a result, highly adsorbable Go (an easily adsorbable component) in the raw gas is adsorbed by the adsorbent (e.g. zeolite, activated carbon, or alumina) in the adsorption tower A under pressure, and N2 and N2 (a component that is difficult to adsorb) are adsorbed under pressure. component) is discharge pipe 2
2 and into the atmosphere through valve 32a. In this adsorption step, the valve 31
The process is completed by closing the valve 32a and the adsorption tower A, thereby sealing the adsorption tower A with its interior still at the adsorption pressure.
上記吸着塔Aが上記昇圧工程および吸着工程にある間、
他方の吸着塔Bでは脱着工程が行われており、この脱着
工程により前工程までに吸着されたCO酸成分真空ポン
プ12によって減圧脱着され、このCO酸成分回収管路
23および弁33bを通して製品ガス貯留槽4に製品ガ
スとして導入される。While the adsorption tower A is in the pressure increasing step and adsorption step,
In the other adsorption tower B, a desorption step is being carried out, and in this desorption step, the CO acid component adsorbed in the previous step is desorbed under reduced pressure by the vacuum pump 12, and the product gas is passed through the CO acid component recovery pipe 23 and valve 33b. It is introduced into the storage tank 4 as a product gas.
上記吸着工程が終了すると、吸着塔Aは連絡管路24a
の弁34aを開くことによって均圧工程に入る。これに
よって吸着圧力まで昇圧された吸着塔A内の原料ガスは
減圧状態の吸着塔Bに移動し、吸着塔Aはほぼ大気圧ま
で減圧され、また吸着塔Bはほぼ大気圧まで昇圧される
。上記2つの吸着塔A、Bがほぼ大気圧に互いに均圧し
た段階で弁34aを閉じる。When the above adsorption step is completed, the adsorption tower A is connected to the connecting pipe 24a.
The pressure equalization process begins by opening the valve 34a. As a result, the raw material gas in the adsorption tower A, which has been pressurized to the adsorption pressure, moves to the adsorption tower B, which is in a reduced pressure state, and the adsorption tower A is reduced in pressure to approximately atmospheric pressure, and the pressure in the adsorption tower B is increased to approximately atmospheric pressure. The valve 34a is closed when the pressures of the two adsorption towers A and B are equalized to approximately atmospheric pressure.
この後、吸着塔Aは洗浄工程に入る。この洗浄工程では
、洗浄用ガス供給管路25の弁35aと、連絡管路24
aの弁34aと、排出管路22の弁32bとが開かれて
製品ガス貯留槽4のCO成分ガスが吸着塔Aに導入され
る。このCO成分ガスによって吸着塔A内に残留する難
吸着成分がパージされ、このパージ排ガスは他方の吸着
塔Bに送給されてパージ排ガス中のCO酸成分一部が吸
着塔B内の吸着剤に吸着される。この吸着塔BでCO酸
成分吸着された残りのパージ排ガスはほぼ大気圧となる
ので排ガス圧縮機13によって大気中に放出される。After this, adsorption tower A enters a cleaning process. In this cleaning process, the valve 35a of the cleaning gas supply pipe 25 and the connecting pipe 24 are
The valve 34a of a and the valve 32b of the discharge pipe 22 are opened, and the CO component gas in the product gas storage tank 4 is introduced into the adsorption tower A. This CO component gas purges the poorly adsorbed components remaining in the adsorption tower A, and this purge exhaust gas is sent to the other adsorption tower B, where a part of the CO acid component in the purge exhaust gas is transferred to the adsorbent in the adsorption tower B. is adsorbed to. The remaining purge exhaust gas from which the CO acid component has been adsorbed in the adsorption tower B has approximately atmospheric pressure, and is therefore discharged into the atmosphere by the exhaust gas compressor 13.
洗浄工程で開いた弁35a、34a、32bを閉じた後
、吸着塔Aは脱着工程に入る。この脱着工程では、回収
管路23の弁33aを開いて真空ポンプ12を作動する
ことによって吸着塔A内に吸着されたCO酸成分減圧脱
着され、このCO成分ガスが製品ガス貯留槽4に回収さ
れる。After closing the valves 35a, 34a, and 32b that were opened in the cleaning process, the adsorption tower A enters the desorption process. In this desorption step, by opening the valve 33a of the recovery pipe 23 and operating the vacuum pump 12, the CO acid component adsorbed in the adsorption tower A is desorbed under reduced pressure, and this CO component gas is recovered into the product gas storage tank 4. be done.
この脱着工程が吸着塔Aで行なわれている而、他方の吸
着塔Bでは昇圧工程と吸着工程とが行なわれている。そ
して上記地方の吸着塔Bが均圧工程に入ることによって
吸着塔Aはほぼ大気圧まで昇圧され、他方の吸着塔Bが
洗浄工程に入ることによって吸着塔Aでは上記吸着塔B
からのパージ排ガス中のCO酸成分一部が吸着され、残
りのパージ排ガスが排出管路22を通して大気へ放出さ
れる。この後、吸着塔Aは昇圧工程に戻り、以下同様の
工程が繰返される。While this desorption step is being performed in adsorption tower A, the other adsorption tower B is performing a pressure increasing step and an adsorption step. Then, as the local adsorption tower B enters the pressure equalization process, the pressure of the adsorption tower A is increased to almost atmospheric pressure, and as the other adsorption tower B enters the cleaning process, the adsorption tower B
A portion of the CO acid component in the purge exhaust gas from the purge gas is adsorbed, and the remaining purge gas is discharged to the atmosphere through the exhaust pipe 22. After this, the adsorption tower A returns to the pressure increasing process, and the same process is repeated thereafter.
上記従来の圧力スイング吸着方法においては、洗浄工程
で例えば吸着塔へに供給される洗浄用ガスはCO純度の
高い製品ガスであるために、吸着塔Aの洗浄後のパージ
排ガスは上記製品ガスより低いがその製品ガスに近いC
O純度を有している。In the above-mentioned conventional pressure swing adsorption method, the cleaning gas supplied to the adsorption tower in the cleaning step is a product gas with high CO purity, so the purge exhaust gas after cleaning of the adsorption tower A is higher than the product gas. C low but close to its product gas
It has O purity.
したがって上記従来の方法では洗浄後のパージ排ガスを
他方の吸着塔Bに送給し、この吸着塔Bでパージ排ガス
中のco酸成分吸着するようにしているが、製品ガス貯
留槽4からの供給元圧が比較的低いために上記他方の吸
着塔BでのCO酸成分回収が十分ではなく、このため上
記他方の吸着塔Bから排出管路22を通して廃棄される
パージ排ガス中には多量のCO酸成分含まれることにな
る。Therefore, in the conventional method described above, the purge exhaust gas after cleaning is sent to the other adsorption tower B, and this adsorption tower B adsorbs the cobalt acid component in the purge exhaust gas. Because the original pressure is relatively low, the recovery of the CO acid component in the other adsorption tower B is not sufficient, and therefore a large amount of CO is contained in the purge gas discharged from the other adsorption tower B through the discharge pipe 22. It will contain acid components.
この結果、CO酸成分回収率を十分に向上させることは
できないという問題がある。As a result, there is a problem that the CO acid component recovery rate cannot be sufficiently improved.
そこで均圧工程においては、2つの吸着塔A。Therefore, in the pressure equalization process, two adsorption towers A are used.
Bがほぼ大気圧となるまで互いに均圧させるのではなく
、第3図に1点鎖線で示すように吸着工程後の吸着塔A
が大気圧まで減圧された状態で他方の吸着塔Bは大気圧
より低い圧力となるように設定する方法も提案されてい
る(例えば特開昭61−37970号公報参照)。この
方法によれば洗浄工程を上記他方の吸着塔Bの出口側の
弁32bが閉じた状態で行っても、パージ排ガスを一方
の吸着塔Aから他方の吸着塔Bに導入することができ、
これによってパージ排ガスは上記他方の吸着塔Bから廃
棄されることなく蓄えられる。Instead of equalizing the pressure between B and B until it reaches almost atmospheric pressure, the adsorption tower A after the adsorption process is
A method has also been proposed in which the pressure of the other adsorption tower B is set to be lower than atmospheric pressure while the adsorption tower B is reduced to atmospheric pressure (see, for example, Japanese Patent Application Laid-open No. 37970/1983). According to this method, even if the cleaning step is performed with the valve 32b on the outlet side of the other adsorption tower B closed, the purge exhaust gas can be introduced from one adsorption tower A to the other adsorption tower B,
As a result, the purge exhaust gas is stored without being disposed of from the other adsorption tower B.
ところが、この方法では、吸着中の吸着塔Aと脱着中の
吸着塔Bとの均圧時に、吸着塔Bが常圧へ復帰する以前
に吸着塔Aが常圧まで減圧されるように吸着圧力値およ
び脱着圧力値を設定せねばならなず、これらの圧力の設
定に手間を要することになる。また均圧時間の設定、調
整に多大な労力を要するうえに、洗浄工程時に洗浄され
る吸着塔内圧力が徐々に高くなり、これにより洗浄効果
が低下するという問題点もある。However, in this method, when equalizing the pressure between adsorption tower A during adsorption and adsorption tower B during desorption, the adsorption pressure is adjusted such that adsorption tower A is reduced to normal pressure before adsorption tower B returns to normal pressure. It is necessary to set the desorption pressure value and the desorption pressure value, and setting these pressures requires time and effort. Further, there is another problem in that a great deal of effort is required to set and adjust the pressure equalization time, and the pressure inside the adsorption tower that is cleaned during the cleaning step gradually increases, thereby reducing the cleaning effect.
また製品ガス貯留槽4からの洗浄用ガスの供給圧力を比
較的高くすることも考えられる。ところが、この場合に
は洗浄圧力が時間の経過とともに轟くなるために吸着剤
の吸着特性により洗浄効果がその分悪くなり、この結果
、脱着回収されるCO成分ガスの純度が低下する。It is also conceivable to make the supply pressure of the cleaning gas from the product gas storage tank 4 relatively high. However, in this case, as the cleaning pressure increases over time, the cleaning effect deteriorates accordingly due to the adsorption properties of the adsorbent, and as a result, the purity of the CO component gas desorbed and recovered decreases.
このほかに排出管路22からのパージ排ガスを原料ガス
圧縮機11の吸込み側に導入し、上記パージ排ガスを原
料ガスとして再使用することも考えられる。ところが、
この場合には原料ガス圧縮*iiの能力や図示しない前
処理工程(例えば水分の除去など)の能力を再使用する
分だけ大きくする必要があり、このため経済性に欠ける
という問題がある。In addition, it is also conceivable to introduce the purge exhaust gas from the discharge pipe 22 into the suction side of the raw material gas compressor 11 and reuse the purge exhaust gas as the raw material gas. However,
In this case, it is necessary to increase the raw material gas compression capacity *ii and the capacity of a pretreatment process (for example, water removal, etc.) not shown in the drawings to account for the reuse, and therefore there is a problem that it is uneconomical.
(発明の目的)
この発明は、このような従来の問題を解決するためにな
されたものであり、特定成分の回収率を容易かつ確実に
向上することができ、しかも純度や経済性を損うことの
ない圧力スイング吸着方法を提供するものである。(Purpose of the invention) This invention was made in order to solve such conventional problems, and it is possible to easily and reliably improve the recovery rate of specific components, and it is possible to easily and reliably improve the recovery rate of specific components. This provides a pressure swing adsorption method that does not cause problems.
(発明の構成)
この発明は、昇圧工程と吸着工程と均圧工程と洗浄工程
と182着工程とを有し、少なくとも2以上の圧力スイ
ング吸着塔において上記工程を互いにずらせて繰返すこ
とによって混合ガス中の特定成分を吸着回収する圧力ス
イング吸着方法において、上記洗浄工程では脱着工程で
回収された特定成分ガスを洗浄用ガスとして均圧工程後
の吸着塔に導入し、ある吸着塔の洗浄工程ではこの吸着
塔と互いに異なる他の吸着塔の出口を閉じ、洗浄工程で
発生するパージ排ガスを上記他の吸着塔に導く際に、そ
のパージ排ガスを再加圧して上記他の吸着塔に送給する
ものである。(Structure of the Invention) This invention has a pressure increasing step, an adsorption step, a pressure equalization step, a washing step, and a 182nd adsorption step, and the mixed gas is In the pressure swing adsorption method for adsorbing and recovering specific components in the water, in the cleaning process, the specific component gas recovered in the desorption process is introduced as a cleaning gas into the adsorption tower after the pressure equalization process, and in the cleaning process of a certain adsorption tower, The outlets of this adsorption tower and another adsorption tower different from each other are closed, and when the purge exhaust gas generated in the cleaning process is guided to the other adsorption tower, the purge exhaust gas is repressurized and sent to the other adsorption tower. It is something.
上記構成によれば、洗浄工程で洗浄用ガスが比較的小さ
い圧力で供給されても、そのパージ排ガスは洗浄工程の
吸着塔から他の吸着塔へ送給される際に再加圧されるの
で、出口を閏じた状態の他の吸着塔へ確実に導入するこ
とができ、しかも上記パージ排ガスは吸着剤に加圧状態
で吸着させることができ、このため上記他の吸着塔では
パージ排ガスを廃棄することな〈従来よりも多聞の特定
成分を吸着回収することができる。According to the above configuration, even if the cleaning gas is supplied at a relatively low pressure in the cleaning process, the purge exhaust gas is repressurized when being fed from the adsorption tower in the cleaning process to other adsorption towers. , the purge exhaust gas can be reliably introduced into the other adsorption tower with the outlet narrowed, and the purge exhaust gas can be adsorbed onto the adsorbent under pressure. It is possible to adsorb and recover more specific components than before without having to discard them.
(実施例)
第2図に示すこの発明を実施するための装置は、第4図
に示す従来の装置に対して2つの吸着塔A。(Example) The apparatus for carrying out the present invention shown in FIG. 2 has two adsorption towers A in contrast to the conventional apparatus shown in FIG.
Bで発生するパージ排ガスを一方から他方へ互いに加圧
して送給する加圧管路26を設けたものである。この加
圧管路26にはパージ排ガス圧縮機14が設けられ、吸
着塔A、Bの出口は弁36a。A pressurizing pipe line 26 is provided for pressurizing and feeding the purge exhaust gas generated in B from one side to the other. A purge exhaust gas compressor 14 is installed in this pressurizing pipe 26, and the outlets of the adsorption towers A and B are connected to valves 36a.
36bを介して上記パージ排ガス圧縮機14の吸込み側
と接続され、また上記吸着塔A、、Bの入口は弁37a
、37bを介してパージ排ガス圧縮1114の吐出側と
接続されている。また第2図に示す装置には、第4図に
示す従来の装置に設けられている排ガス圧縮e113が
省略されている。The inlets of the adsorption towers A, B are connected to the suction side of the purge exhaust gas compressor 14 through the valve 37a.
, 37b to the discharge side of the purge exhaust gas compressor 1114. Furthermore, the exhaust gas compression e113 provided in the conventional device shown in FIG. 4 is omitted in the device shown in FIG. 2.
第1図に示す実施例の特徴は、一方の吸着塔の洗浄工程
で発生するパージ排ガスを他方の吸着塔に送給するのに
、第3図に示す従来の方法においては連絡管路24a、
24bを通して送給するようにしているのに対し、この
実施例では上記加圧管路26を通して送給するようにし
た点にある。The feature of the embodiment shown in FIG. 1 is that in order to send purge exhaust gas generated in the cleaning process of one adsorption tower to the other adsorption tower, in the conventional method shown in FIG.
24b, whereas in this embodiment, it is fed through the pressurized pipe line 26.
すなわち一方の吸着塔Aの均圧工程によって2つの吸着
塔A、Bをほぼ大気圧まで均圧した後、連絡管路24a
の弁34aを閉じる。これによってすべての弁31a
〜37a、31b 〜37b。That is, after the pressure of the two adsorption towers A and B is equalized to almost atmospheric pressure by the pressure equalization process of one adsorption tower A, the connecting pipe 24a is
Close the valve 34a. As a result, all valves 31a
~37a, 31b ~37b.
は閏じられる。この後、上記一方の吸着塔への洗浄工程
では、洗浄用ガス供給管路25の弁35aを開くととも
に、加圧管路26の吸着塔Aの出口側の弁36aと他方
の吸着塔Bの入口側の弁37aとを開いてパージ排ガス
圧縮機14を作動させる。すると、吸着塔Aの洗浄によ
って生じるパージ排ガスはパージ排ガス圧縮機14によ
って吸着塔Aから吸引されるとともに、そのパージ排ガ
スは加圧されて他方の吸着塔Bに蓄圧される。この後、
洗浄工程を終えた一方の吸着塔Aは脱着工程、パージ排
ガスが蓄圧された他方の吸着塔Bは原料ガスによる昇圧
工程にそれぞれ移る。is stolen. After that, in the cleaning process for one of the adsorption towers, the valve 35a of the cleaning gas supply pipe 25 is opened, and the valve 36a of the pressurization pipe 26 on the outlet side of the adsorption tower A and the inlet of the other adsorption tower B are The side valve 37a is opened to operate the purge exhaust gas compressor 14. Then, the purge exhaust gas generated by cleaning the adsorption tower A is sucked from the adsorption tower A by the purge exhaust gas compressor 14, and the purge exhaust gas is pressurized and stored in the other adsorption tower B. After this,
One adsorption tower A, which has completed the cleaning process, moves to a desorption process, and the other adsorption tower B, in which the pressure of the purge exhaust gas has been accumulated, moves to a pressure increasing process using raw material gas.
したがってこの他方の吸着塔Bでは、大気圧より高い圧
力下でパージ排ガス中のCO酸成分吸着回収を行うなう
ことができるので、従来の大気圧下で吸着させる場合よ
りも多量のCO酸成分吸着回収することができる。この
結果CO成分回収における収率を従来よりも向上させる
ことができる。Therefore, in this other adsorption tower B, the CO acid component in the purge exhaust gas can be adsorbed and recovered under a pressure higher than atmospheric pressure, so a larger amount of CO acid component can be absorbed than in the conventional case where the CO acid component is adsorbed under atmospheric pressure. It can be collected by adsorption. As a result, the yield in CO component recovery can be improved compared to the conventional method.
また、これまで廃棄されていたパージ排ガスは廃棄され
ることなく上記他方の吸着塔Bに昇圧用ガスの一部とし
て蓄圧されるので、従来方法における上記パージ排ガス
の放出用の排ガス圧縮機13(第4図参照)を省略する
ことができる。In addition, the purge exhaust gas that has been discarded up to now is not disposed of but is stored in the other adsorption tower B as part of the pressurizing gas, so the exhaust gas compressor 13 ( (see FIG. 4) can be omitted.
またパージ排ガス圧縮機14によって洗浄工程の吸着塔
Aからパージ排ガスを吸引するようにしているので、他
方の吸着塔Bの排出管路22側の弁32bを閉じた状態
に°しても上記パージ排ガスを確実に上記他方の吸着塔
に導入することができる。同様にパージ排ガス圧縮1f
i14によってパージ排ガスを他方の吸着塔Bに送給す
るようにしているので、均圧工程で上記吸着塔Bを大気
圧より低い状態に設定する必要もない。In addition, since the purge exhaust gas compressor 14 sucks the purge exhaust gas from the adsorption tower A in the cleaning process, even if the valve 32b on the discharge pipe 22 side of the other adsorption tower B is closed, the purge gas will still be removed. The exhaust gas can be reliably introduced into the other adsorption tower. Similarly purge exhaust gas compression 1f
Since the purge exhaust gas is fed to the other adsorption tower B by i14, there is no need to set the adsorption tower B to a state lower than atmospheric pressure in the pressure equalization step.
なお上記実施例においては、COを含む原料ガスから特
定成分としてCOを分離回収する場合について説明した
が、これに限らず、例えばN2と02とAr(アルゴン
)とからなる原料ガスから特定成分として例えばN2を
分離回収する場合にも適用することができる。In the above embodiment, a case was explained in which CO is separated and recovered as a specific component from a raw material gas containing CO, but the present invention is not limited to this. For example, it can be applied to the case where N2 is separated and recovered.
また上記実施例においては、2つの吸着塔A。Further, in the above embodiment, there are two adsorption towers A.
Bから構成される装置を用いているが、これに限らず、
例えば4つの吸着塔からなる装置において互いに工程を
ずらせて連続運転させるようにしてもよい。Although a device consisting of B is used, it is not limited to this.
For example, in an apparatus consisting of four adsorption towers, the processes may be shifted from each other and operated continuously.
(具体例)
第2図に示す装置を用いてCOが70%、CO2が15
%、N2が15%の組成の原料ガスからCOを分離回収
する場合について第1図に示す工程にしたがって試験し
た。なお吸着剤としては活性アルミナに銅化合物を添着
させたものを使用した。(Specific example) Using the apparatus shown in Figure 2, CO is 70% and CO2 is 15%.
A test was conducted in accordance with the process shown in FIG. 1 for the case where CO was separated and recovered from a raw material gas having a composition of 15% and N2. The adsorbent used was activated alumina impregnated with a copper compound.
まず一方の吸着塔Aにおいて吸着圧力2 D/ciGで
昇圧工程および吸着工程を行った後に、均圧工程により
上記吸着塔Aを大気圧まで減圧する。First, a pressure raising step and an adsorption step are performed in one adsorption tower A at an adsorption pressure of 2 D/ciG, and then the pressure of the adsorption tower A is reduced to atmospheric pressure in a pressure equalization step.
つぎに減圧した吸着塔Aに製品ガス貯留槽4から製品ガ
スを圧力0.1幻/dGで流して吸着塔Aを洗浄し、洗
浄後大気圧となって吸着塔Aの出口から出てくるパージ
排ガスをパージ排ガス圧縮機14によって0.3に9/
dGまで加圧して他方の吸着塔Bに蓄圧してCO酸成分
吸着回収させる。Next, the product gas from the product gas storage tank 4 is flowed into the reduced pressure adsorption tower A at a pressure of 0.1 phantom/dG to clean the adsorption tower A, and after cleaning, the pressure becomes atmospheric and comes out from the outlet of the adsorption tower A. The purge exhaust gas is reduced to 0.3 by the purge exhaust gas compressor 14.
The pressure is increased to dG, the pressure is accumulated in the other adsorption tower B, and the CO acid component is adsorbed and recovered.
洗浄後の吸着塔Aを真空ポンプ12によって50Tor
rまで減圧してCO酸成分脱着回収する。脱着工程終了
後の吸着塔Aを他方の吸着塔Bの均圧工程によってほぼ
大気圧まで昇圧し、その後上記他方の吸着塔Bの洗浄工
程でのパージ排ガスをパージ排ガス圧縮機14によって
吸着塔Aに導入して吸着塔Aを0.3Kg/aJGまで
昇圧する。これで1サイクルを終了し、再び上記昇圧工
程に戻り原料ガス圧縮機11によって吸着圧力2 Kg
/ cd Gまで昇圧させる。The adsorption tower A after washing is heated to 50 Torr by the vacuum pump 12.
The CO acid component is desorbed and recovered by reducing the pressure to r. The pressure of the adsorption tower A after the desorption step is increased to approximately atmospheric pressure by the pressure equalization step of the other adsorption tower B, and then the purge exhaust gas from the cleaning step of the other adsorption tower B is transferred to the adsorption tower A by the purge exhaust gas compressor 14. to raise the pressure of adsorption tower A to 0.3 Kg/aJG. This completes one cycle and returns to the pressure increasing step again to increase the adsorption pressure to 2 kg by the raw material gas compressor 11.
/cd G.
上記1サイクルを8分間で運転した結果、運転開始後約
80分間で製品ガスのCo純度は99゜7%となり、ま
た00回収率は85%を維持することができた。As a result of operating the above one cycle for 8 minutes, the Co purity of the product gas reached 99.7% approximately 80 minutes after the start of operation, and the 00 recovery rate was able to be maintained at 85%.
(第1の比較例)
第4図に示す従来の装置を用いて上記具体例と同組成の
原料ガスからCoを分離回収する場合について第3図に
示す従来の工程にしたがって試験した。この場合、洗浄
工程としては、吸着塔Aに製品ガス貯留槽4から製品ガ
スを圧力0.2Ky/cdGで流して吸着項八を洗浄し
、洗浄後0.1Kg/dGとなって吸着塔Aの出口から
出てくるパージ排ガスを他方の吸着塔Bに流入させてC
O成分を吸着回収させ、この他方の吸着塔日の出口から
大気圧となって出てくる排ガスを排ガス圧縮機13によ
って廃棄させるようにした。(First Comparative Example) Using the conventional apparatus shown in FIG. 4, a test was conducted in accordance with the conventional process shown in FIG. 3 for separating and recovering Co from a raw material gas having the same composition as in the above specific example. In this case, the cleaning step is to flow the product gas from the product gas storage tank 4 into the adsorption tower A at a pressure of 0.2Ky/cdG to clean the adsorption term 8, and after cleaning, the pressure becomes 0.1Kg/dG and the product gas is supplied to the adsorption tower A. The purge exhaust gas coming out from the outlet of C flows into the other adsorption tower B.
The O component was adsorbed and recovered, and the exhaust gas coming out at atmospheric pressure from the outlet of the other adsorption tower was disposed of by the exhaust gas compressor 13.
この結果、製品ガスのCO純度は98.9%となり、0
0回収率は78%であった。As a result, the CO purity of the product gas was 98.9%, which was 0.
The zero recovery rate was 78%.
(第2の比較例)
第1の比較例における洗浄工程として他方の吸着塔Bの
出口側の弁32bを閉じた状態で行った。(Second Comparative Example) The cleaning step in the first comparative example was carried out with the valve 32b on the outlet side of the other adsorption tower B being closed.
このため、吸@塔Aに製品ガス貯留槽4から製品ガスを
圧力0.4に!F/cjGで流して吸着塔Aを洗浄し、
吸着塔Aの出口から出てくるパージ排ガスを他方の吸着
塔Bに流入させてCO酸成分吸着回収させるようにした
。なおこの場合、洗浄工程の初めに吸着塔Aの出口から
出てくるパージ排ガスの圧力は比較的低いが、その圧力
は時間の経過とともに高くなり、最終的には0.4に9
/cdGになる。Therefore, the product gas is supplied to the absorption tower A from the product gas storage tank 4 at a pressure of 0.4! Clean adsorption tower A by flowing with F/cjG,
The purge exhaust gas coming out of the outlet of the adsorption tower A was made to flow into the other adsorption tower B, where the CO acid component was adsorbed and recovered. In this case, the pressure of the purge exhaust gas coming out of the outlet of adsorption tower A at the beginning of the cleaning process is relatively low, but the pressure increases with the passage of time and eventually reaches 0.4 to 9.
/cdG becomes.
この結果、製品ガスのCO純度は98.5%となり、0
0回収率は84%であった。As a result, the CO purity of the product gas was 98.5%, which was 0.
The zero recovery rate was 84%.
(発明の効果)
この発明の圧力スイング吸着方法によれば、洗浄用ガス
が比較的小さい圧力で吸着塔に供給されても、その吸着
塔からのパージ排ガスは他の吸着塔へ送給される際に再
加圧されるので、出口が閉じた状態の他の吸着塔へ確実
に導入することができ、しかも他の吸着塔はその出口を
閉じた状態にあるので上記パージ排ガスは吸着塔内に加
圧状態で保持される。このため上記他の吸着塔ではパー
ジ排ガスを廃棄することなくパージ排ガス中の特定成分
を従来よりも多量に吸着回収することができる。(Effects of the Invention) According to the pressure swing adsorption method of the present invention, even if the cleaning gas is supplied to the adsorption tower at a relatively low pressure, the purge exhaust gas from the adsorption tower is sent to other adsorption towers. Since it is repressurized at the same time, it can be reliably introduced into other adsorption towers whose outlets are closed, and since the other adsorption towers have their exits closed, the purge exhaust gas is not contained within the adsorption tower. is held under pressure. Therefore, in the other adsorption towers mentioned above, it is possible to adsorb and recover a larger amount of the specific component in the purge gas than before without discarding the purge gas.
したがって均圧工程で上記他の吸着塔を大気圧より低い
圧力に設定する必要もなく、通常の吸着性能を有する吸
着剤で特定成分の回収率を容易かつ確実に向上すること
ができ、しかも純度や経済性を損うことはない。Therefore, there is no need to set the other adsorption towers at a pressure lower than atmospheric pressure in the pressure equalization process, and it is possible to easily and reliably improve the recovery rate of specific components using an adsorbent with normal adsorption performance. There is no loss in economic efficiency.
第1図はこの発明の実施例の各工程と吸11内の定性的
な圧力とを経時的に示ず工程説明図、第2図は第1図の
工程を実施する装置の概略構成図、第3図は従来の方法
の各工程と吸着塔内の定性的な圧力とを経時的に示す工
程説明図、第4図は第3図の工程を実施する装置の概略
構成図である。
A、B・・・吸着塔(圧力スイング吸着塔)。FIG. 1 is a process explanatory diagram showing each process and qualitative pressure in the suction 11 over time in an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an apparatus for carrying out the process of FIG. 1. FIG. 3 is a process explanatory diagram showing each step of the conventional method and the qualitative pressure in the adsorption tower over time, and FIG. 4 is a schematic diagram of an apparatus for carrying out the process of FIG. 3. A, B... Adsorption tower (pressure swing adsorption tower).
Claims (1)
程とを有し、少なくとも2以上の圧力スイング吸着塔に
おいて上記工程を互いにずらせて繰返すことによつて混
合ガス中の特定成分を吸着回収する圧力スイング吸着方
法において、上記洗浄工程では脱着工程で回収された特
定成分ガスを洗浄用ガスとして均圧工程後の吸着塔に導
入し、ある吸着塔の洗浄工程ではこの吸着塔と互いに異
なる他の吸着塔の出口を閉じ、洗浄工程で発生するパー
ジ排ガスを上記他の吸着塔に導く際に、そのパージ排ガ
スを再加圧して上記他の吸着塔に送給することを特徴と
する圧力スイング吸着方法。1. It has a pressure raising step, an adsorption step, a pressure equalization step, a washing step, and a desorption step, and adsorbs specific components in the mixed gas by repeating the above steps in at least two or more pressure swing adsorption towers with a shift from each other. In the pressure swing adsorption method for recovery, in the above-mentioned cleaning process, the specific component gas recovered in the desorption process is introduced as a cleaning gas into the adsorption tower after the pressure equalization process, and in the cleaning process of a certain adsorption tower, a gas different from this adsorption tower is used. Pressure characterized in that when the outlet of the other adsorption tower is closed and the purge exhaust gas generated in the cleaning process is guided to the other adsorption tower, the purge exhaust gas is re-pressurized and sent to the other adsorption tower. Swing suction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310648A JP2569091B2 (en) | 1987-12-07 | 1987-12-07 | Pressure swing adsorption method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310648A JP2569091B2 (en) | 1987-12-07 | 1987-12-07 | Pressure swing adsorption method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01151920A true JPH01151920A (en) | 1989-06-14 |
JP2569091B2 JP2569091B2 (en) | 1997-01-08 |
Family
ID=18007777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62310648A Expired - Lifetime JP2569091B2 (en) | 1987-12-07 | 1987-12-07 | Pressure swing adsorption method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2569091B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073875C (en) * | 1997-10-24 | 2001-10-31 | 化学工业部西南化工研究设计院 | Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas |
KR100324709B1 (en) * | 1999-03-19 | 2002-02-16 | 이종훈 | Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof |
-
1987
- 1987-12-07 JP JP62310648A patent/JP2569091B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073875C (en) * | 1997-10-24 | 2001-10-31 | 化学工业部西南化工研究设计院 | Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas |
KR100324709B1 (en) * | 1999-03-19 | 2002-02-16 | 이종훈 | Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2569091B2 (en) | 1997-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5620501A (en) | Recovery of trace gases from gas streams | |
EP1018359A2 (en) | Pressure swing adsorption process and system with product storage tank(s) | |
KR100984796B1 (en) | Gas separation method | |
JPH07265635A (en) | Method for selective separation of component relatively strong in adsorbing power from component relatively weak in adsorbing power in feed material gas mixture | |
US6045603A (en) | Two phase pressure swing adsorption process | |
JP3073917B2 (en) | Simultaneous pressure change adsorption method | |
JPH08224428A (en) | Continuous method for separating component of gas mixture bymeans of pressure swing adsorption | |
US5993517A (en) | Two stage pressure swing adsorption process | |
US5547492A (en) | Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor | |
US6113672A (en) | Multiple equalization pressure swing adsorption process | |
US6083299A (en) | High pressure purge pressure swing adsorption process | |
JP4895467B2 (en) | Oxygen concentration method and oxygen concentration apparatus | |
JPH01151920A (en) | Pressure-swing absorption method | |
JP2569095B2 (en) | Pressure swing adsorption method | |
JP3287607B2 (en) | Method for producing an oxygen-enriched product stream | |
KR100275858B1 (en) | Pressure and apparatus for nitrogen production by pressure swing adsorption | |
JP2529929B2 (en) | Method for separating and recovering carbon monoxide gas | |
KR100292555B1 (en) | Pressure swing adsorption process for hydrogen purification with high productivity | |
JP2529928B2 (en) | Method for separating and recovering carbon monoxide gas | |
JPH0938443A (en) | Gas separator | |
JPS61136419A (en) | Selective desorption in pressure swing adsorption | |
JPH01234313A (en) | Production of carbon dioxide having high purity | |
JPS62153388A (en) | Concentration of methane | |
JPH0994424A (en) | Gaseous mixture separator | |
JP4171392B2 (en) | Gas separation and recovery method and pressure swing adsorption gas separation and recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |