JPH01150211A - Thin-film magnetic head - Google Patents
Thin-film magnetic headInfo
- Publication number
- JPH01150211A JPH01150211A JP30750487A JP30750487A JPH01150211A JP H01150211 A JPH01150211 A JP H01150211A JP 30750487 A JP30750487 A JP 30750487A JP 30750487 A JP30750487 A JP 30750487A JP H01150211 A JPH01150211 A JP H01150211A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- heat treatment
- magnetic field
- thin film
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 46
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 239000010408 film Substances 0.000 claims abstract description 37
- 229920001721 polyimide Polymers 0.000 claims abstract description 10
- 239000009719 polyimide resin Substances 0.000 claims abstract description 10
- 238000001723 curing Methods 0.000 claims 2
- 238000010292 electrical insulation Methods 0.000 claims 1
- 238000013007 heat curing Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000007796 conventional method Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高密度磁気記録に適する薄膜磁気ヘッドに係
り、特に非晶質磁性膜を用い、耐熱性ポリイミド系樹脂
を絶縁層に用いた薄膜磁気ヘッドに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film magnetic head suitable for high-density magnetic recording, and in particular, a thin film magnetic head that uses an amorphous magnetic film and a heat-resistant polyimide resin for the insulating layer. It relates to a thin film magnetic head.
磁気記録の高密度化、高性能化の進歩にはめざましいも
のがある。大型コンピューター用の磁気ディスク装置の
分野においては、記録密度の大幅な向上により、大容量
化が図ら九できた。磁気ディスク装置においては、従来
のフェライト型バルクヘッドに比べてインダクタンスが
小さく、高周波透磁率が大きくて、狭トラツク幅加工の
可能な薄膜ヘッドの使用が必須となっている。There has been remarkable progress in increasing the density and performance of magnetic recording. In the field of magnetic disk drives for large computers, significant improvements in recording density have made it possible to increase capacity. In magnetic disk drives, it is essential to use thin-film heads that have lower inductance and higher high-frequency magnetic permeability than conventional ferrite bulk heads, and can be processed into narrow track widths.
薄膜ヘッドにおいては、記録の高密度化に伴って分解能
を向上するために磁極を薄膜化する必要があり、薄い磁
極先端で磁気飽和が起こり易く、このため高飽和磁束密
度の磁性膜を用いた薄膜ヘッドが必要になっている。In thin-film heads, it is necessary to make the magnetic pole thinner in order to improve resolution as recording density increases, and magnetic saturation easily occurs at the thin magnetic pole tip. A thin film head is now required.
薄膜ヘッド用の磁性膜として、従来、主にNi−Fe系
合金膜(パーマロイ膜)が用いられてきたe N x
F e系合金膜は、耐食性に優れているが、飽和磁束
密度は1.OT である、Ni−Feでは、今後の高飽
和磁束密度化に対応しきれなくなってきている。Conventionally, Ni-Fe alloy films (permalloy films) have been mainly used as magnetic films for thin film heads.
The Fe-based alloy film has excellent corrosion resistance, but the saturation magnetic flux density is 1. Ni-Fe, which is OT, is no longer able to cope with future increases in saturation magnetic flux density.
近年高飽和磁束密度で高性能の磁性膜として非晶質スパ
ッタ膜が開発されつつある。この中でも特にガラス化元
素がB、Si、Pなどのメタロイド元素からなる非晶質
合金に比較して、耐熱性に優れており、磁気ヘッド用磁
性膜として優れた特性を有しているZr系非晶質合金は
具体的にはM a T b Z rの組成式で表わされ
る。ここでMは磁気モーメントを有するGo、Fe、N
iなどの少なくとも一種であり、TはMおよびZr以外
の遷移金属である。このようなガラス化元素が主にZr
からなる非晶質合金については特開昭55−13804
9ならびに特開昭56−84439等に述べられている
にれらのZr系非晶質合金の中でもMがGoからなるG
o−Zr系非晶質は、飽和磁束密度が高く、優れた磁性
材料である。しかし、この非晶質合金の磁歪定数は、2
〜4X10−6と比較的大きな値を示すため、添加元素
Tとして、非晶質合金の磁歪定数に負の寄与をあたえる
V、Nb。In recent years, amorphous sputtered films have been developed as high-performance magnetic films with high saturation magnetic flux density. Among these, Zr-based alloys have particularly excellent heat resistance and excellent characteristics as magnetic films for magnetic heads, compared to amorphous alloys whose vitrification elements are metalloid elements such as B, Si, and P. Specifically, the amorphous alloy is represented by the composition formula M a T b Z r. Here, M is Go, Fe, N, which has a magnetic moment.
i, and T is a transition metal other than M and Zr. Such vitrification elements are mainly Zr.
Regarding the amorphous alloy consisting of
Among these Zr-based amorphous alloys described in 9 and JP-A-56-84439, M is Go.
The o-Zr amorphous material has a high saturation magnetic flux density and is an excellent magnetic material. However, the magnetostriction constant of this amorphous alloy is 2
Since V and Nb exhibit relatively large values of ~4X10-6, they make a negative contribution to the magnetostriction constant of the amorphous alloy as additive elements T.
Ta、Mo、Wなどの元素を用いることにより磁歪定数
がほぼOの非晶質合金が得られる。By using elements such as Ta, Mo, and W, an amorphous alloy with a magnetostriction constant of approximately O can be obtained.
特開昭62−107415では、これらの非晶質磁性膜
を用いて薄膜磁気ヘッドを製造している。In Japanese Patent Application Laid-Open No. 62-107415, a thin film magnetic head is manufactured using these amorphous magnetic films.
上記従来技術は、薄膜磁気ヘッド絶縁層に耐熱性ポリイ
ミド系樹脂PIQ(日立化成社命vA)を用いている。The above conventional technology uses heat-resistant polyimide resin PIQ (manufactured by Hitachi Chemical Co., Ltd. vA) for the thin film magnetic head insulating layer.
PIQは、熱硬化樹脂であり、硬化するために350℃
で熱処理する必要がある。従来この熱処理は無磁場で行
なっており、この時、非晶質膜の透磁率は300以下に
減少する。そこで、従来は薄膜磁気ヘッド製造工程が終
了したあとの磁場中熱処理によって、PIQの熱処理に
よる熱覆歴の影響を打ち消し、磁性膜の透磁率を向上さ
せていた。ところが、この熱処理の熱処理温度は、熱覆
歴によって受ける熱処理温度よりも高くする必要がある
。すなわち、磁場中熱処理温度は、少なくとも380℃
以上にする必要があった。PIQ is a thermosetting resin and requires 350℃ to cure
It needs to be heat treated. Conventionally, this heat treatment is performed without a magnetic field, and at this time, the magnetic permeability of the amorphous film is reduced to 300 or less. Therefore, in the past, heat treatment in a magnetic field was performed after the manufacturing process of the thin film magnetic head was completed to cancel out the influence of the thermal history caused by the heat treatment of PIQ and improve the magnetic permeability of the magnetic film. However, the heat treatment temperature of this heat treatment needs to be higher than the heat treatment temperature caused by the thermal covering history. That is, the heat treatment temperature in a magnetic field is at least 380°C.
I needed to do more than that.
ところが、薄膜ヘッド製造工程後に380℃以上の磁場
中熱処理を加えると、PIQによって形成された絶縁層
が変形してしまい、薄膜ヘッドの形成歩留が30%以下
になるという問題があった。However, when heat treatment in a magnetic field at 380° C. or higher is applied after the thin film head manufacturing process, the insulating layer formed by PIQ is deformed, resulting in a problem in that the production yield of the thin film head becomes 30% or less.
本発明の目的は、磁極に非晶質を用い、絶縁層にPIQ
を用いた薄膜ヘッドにおいて、薄膜ヘッド工程後の熱処
理温度を350℃以下とし、絶縁層の変形のないヘッド
を提供することである。 ゛〔問題点を解決するための
手段〕
上記問題を解決するために、PIQ硬化過程において、
薄膜ヘッドのトラック幅方向に磁場を印加しながら熱処
理すれば、薄膜ヘッド形成後の磁場中熱処理の温度を3
50℃以下にすることができ、薄膜ヘッド形成歩留を9
0%以上にすることができる。The object of the present invention is to use an amorphous material for the magnetic pole and a PIQ for the insulating layer.
An object of the present invention is to provide a head using a thin film head in which the heat treatment temperature after the thin film head process is 350° C. or lower, and the insulating layer is not deformed. [Means for solving the problem] In order to solve the above problem, in the PIQ curing process,
If heat treatment is performed while applying a magnetic field in the track width direction of the thin film head, the temperature of the heat treatment in the magnetic field after forming the thin film head can be reduced by 3.
The temperature can be lowered to 50℃, and the thin film head formation yield can be reduced to 9.
It can be set to 0% or more.
磁場を印加しながらPIQ硬化熱処理時をおこなうこと
は、従来の方法に比較して磁性膜の異方性を均一にする
ものと考えられる。その理由は以下のように考えられる
。薄膜ヘッドの磁性膜は幅が20μm〜100μmの磁
極形状に加工されるため1反磁場の影響により、第2図
に示すような磁区構造が実現される。磁区の内部ではそ
れぞれ矢印で示す方向に磁化が向いている。この場合。It is thought that performing the PIQ hardening heat treatment while applying a magnetic field makes the anisotropy of the magnetic film more uniform than in conventional methods. The reason for this is thought to be as follows. Since the magnetic film of the thin film head is processed into a magnetic pole shape with a width of 20 μm to 100 μm, a magnetic domain structure as shown in FIG. 2 is realized under the influence of one demagnetizing field. Inside each magnetic domain, magnetization is oriented in the direction indicated by the arrow. in this case.
無磁場中で熱処理を行なうと、各々の磁区では、磁化の
内部磁場によって、磁場中熱処理と同じような処理を受
ける。したがって、磁極内部で異方性の方向及び大きさ
の分布した状態が実現される。When heat treatment is performed in a non-magnetic field, each magnetic domain undergoes treatment similar to heat treatment in a magnetic field due to the internal magnetic field of magnetization. Therefore, a state in which the direction and magnitude of anisotropy are distributed is realized inside the magnetic pole.
一方、磁極トラック幅方向に磁極磁性膜を充分飽和させ
るだけの磁場を印加すると、磁極は単磁区状態となる。On the other hand, when a magnetic field sufficient to saturate the pole magnetic film in the direction of the pole track width is applied, the pole becomes a single domain state.
この状態で熱処理すると、磁場が均一にかかった磁場中
熱処理を受けるため、磁極内部の異方性は均一な状態と
なる6以上の2つの熱覆歴を考えた場合、後者の方が、
薄膜ヘッド形成後の磁場中熱処理でその影響を打ち消し
やすいものと見ることができる。従って、本発明による
と、薄膜ヘッド形成後の磁場中熱処理温度を低くでき、
薄膜ヘッドの形成歩留を向上させることができる。When heat-treated in this state, the anisotropy inside the magnetic pole becomes uniform because the magnetic field is heat-treated in a uniform magnetic field.Considering two heat-covering histories of 6 or more, the latter is better.
It can be seen that this effect can be easily canceled out by heat treatment in a magnetic field after forming the thin film head. Therefore, according to the present invention, the temperature of heat treatment in a magnetic field after forming a thin film head can be lowered;
The formation yield of thin film heads can be improved.
以下1本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.
第3図に、Co9zTasZra非晶質膜を磁極に用い
た薄膜磁気ヘッドの断面図(イ)、上面図(ロ)を示し
ている。本薄膵ヘッドはA QxOs−T i C。FIG. 3 shows a cross-sectional view (A) and a top view (B) of a thin-film magnetic head using a Co9zTasZra amorphous film as a magnetic pole. This thin pancreatic head is A QxOs-T i C.
Zr()z等の非磁性基板上1に下部磁性層2を形成す
る。下部磁性層2は、CoezTaaZrs非晶質膜で
形成した。CO9!T aδZra非晶質膜は二極高周
波スパッタ法により形成した後、イオンミリング法によ
り磁極形状に加工する。このとき。A lower magnetic layer 2 is formed on a nonmagnetic substrate 1 such as Zr()z. The lower magnetic layer 2 was formed of a CoezTaaZrs amorphous film. CO9! The TaδZra amorphous film is formed by a bipolar high-frequency sputtering method, and then processed into a magnetic pole shape by an ion milling method. At this time.
非晶質磁性膜は一軸異方性を持つので、磁極のトラック
幅方向8と磁性膜の容易軸方向とが一致するようにした
。更にAQzOa、5iftによってギャップ層3を形
成した。Since the amorphous magnetic film has uniaxial anisotropy, the track width direction 8 of the magnetic pole was made to coincide with the easy axis direction of the magnetic film. Furthermore, a gap layer 3 was formed using AQzOa and 5ift.
次にAQ、Cuによって導電コイル4を形成する。導電
コイル4と上部磁性層6との絶縁性を保つために絶縁層
5を設ける必要がある。ここでは。Next, a conductive coil 4 is formed using AQ and Cu. It is necessary to provide an insulating layer 5 to maintain insulation between the conductive coil 4 and the upper magnetic layer 6. here.
導電コイル4によってできた凹凸を平坦化でき、かつ熱
的に安定な耐熱性ポリイミド系樹脂PIQを用いた。P
IQは流動性なのでそれを硬化させるために熱処理を施
す必要がある。標準的には、PIQをスピンナーによっ
て塗布後に、200℃で熱処理した後さらに350℃の
熱処理を行なう。Heat-resistant polyimide resin PIQ, which can flatten the unevenness created by the conductive coil 4 and is thermally stable, was used. P
Since IQ is fluid, it is necessary to perform heat treatment to harden it. Typically, after applying PIQ using a spinner, heat treatment is performed at 200°C, and then further heat treatment is performed at 350°C.
このとき、磁場は印加していない。At this time, no magnetic field was applied.
さらにその上に上部磁性層6を設ける。上部磁性層6と
しては下部と同様に、CoezTasZ ra非晶質膜
を二極高周波スパッタ法により形成した後、イオンミリ
ング法により磁極形状に加工した。Furthermore, an upper magnetic layer 6 is provided thereon. As the upper magnetic layer 6, similarly to the lower part, a CoezTasZ ra amorphous film was formed by the bipolar high frequency sputtering method, and then processed into a magnetic pole shape by the ion milling method.
なお、下部磁極と同じように、磁極のトラック幅方向8
が磁性膜の容易軸方向と一致するようにした。In addition, like the lower magnetic pole, the track width direction 8 of the magnetic pole
is made to coincide with the easy axis direction of the magnetic film.
その後、AfizOaの保護膜8を形成した後、磁性膜
の軟磁気特性を向上させるため、磁場中熱処理を施した
。磁場中熱処理は、薄膜ヘッドのトラック幅方向8に磁
場を印加して11℃(熱処理1)、その後トラック幅方
向8と直角方向に磁場を印加して12℃(熱処理2)の
熱処理をそれぞれ1時間流した。磁場は5kOeの直流
磁場である。さらに、チップ加工、研磨を行なって、薄
膜ヘッドとなる。Thereafter, after forming the protective film 8 of AfizOa, heat treatment was performed in a magnetic field in order to improve the soft magnetic properties of the magnetic film. Heat treatment in a magnetic field was performed by applying a magnetic field in the track width direction 8 of the thin film head at 11°C (heat treatment 1), and then applying a magnetic field in a direction perpendicular to the track width direction 8 and heat treatment at 12°C (heat treatment 2). Time passed. The magnetic field is a 5 kOe DC magnetic field. Furthermore, chip processing and polishing are performed to form a thin film head.
第4図には、上記薄膜ヘッドの磁場中熱処理温度と再生
出力との関係を示す。再生出力の評価は保磁力4000
eのシーFezesの塗布媒体で行なった。再生出力は
最大出力を1とする相対出力で示す。FIG. 4 shows the relationship between the heat treatment temperature in a magnetic field and the reproduction output of the thin film head. Evaluation of reproduction output is coercive force 4000
It was carried out with a coating medium of Sea Fezes of E. The playback output is expressed as a relative output with the maximum output being 1.
熱処理1の熱処理温度T1が350℃以下の時は、T2
を何度にしようとも、この薄膜ヘッドで得られる最大出
力の半分以下の出力しか得られない。ところがTz=3
80℃では、T!=340℃のとき最大出力をうろこと
ができた。つまり、絶縁層にPIQを用いた第3図でし
めされる薄膜ヘッドにおいて、PIQの硬化熱処理を無
磁場中で行なった場合には、その後の磁性膜特性改善熱
処理の温度を350’C以上にしなければ、十分な再生
出力が得られないことがわかった。When the heat treatment temperature T1 of heat treatment 1 is 350°C or less, T2
No matter how many times you try to increase the output, you will only be able to obtain less than half of the maximum output that can be obtained with this thin-film head. However, Tz=3
At 80℃, T! The maximum output was achieved when the temperature was 340°C. In other words, in the thin film head shown in Fig. 3 that uses PIQ for the insulating layer, if the PIQ hardening heat treatment is performed in the absence of a magnetic field, the temperature of the subsequent heat treatment for improving the magnetic film properties should be 350'C or higher. It turns out that without it, sufficient playback output cannot be obtained.
第5図に、磁場中熱処理温度T1と、絶縁層が変形する
ことによる薄膜ヘッドの不良率(不良率=100−歩留
)との関係を示すaTxが350℃以上で不良率が急激
に増大しTz=380℃では不良率は70%以上になっ
ている。従って、従来の薄膜ヘッドでは十分な再生出力
の得られるヘッドの歩留は30%以下であった。Figure 5 shows the relationship between the magnetic field heat treatment temperature T1 and the defective rate of the thin film head due to deformation of the insulating layer (defective rate = 100 - yield). When aTx is 350°C or higher, the defective rate increases rapidly. At Tz=380°C, the defective rate is 70% or more. Therefore, with conventional thin-film heads, the yield of heads capable of providing sufficient reproduction output was 30% or less.
次に、絶縁層PIQの硬化熱処理の際に、磁極のトラッ
ク幅方向に5kOeの直流磁場を印加して熱処理を行な
った、第3図と同一構造の薄膜ヘッドを作製した。磁性
膜の特性を向上させる熱処理は、AQzOsの保護膜8
を形成した後に行なった。このとき、磁極のトラック幅
方向と直角方向に5 k Oeの直流磁場を印加した。Next, a thin film head having the same structure as that shown in FIG. 3 was fabricated, in which heat treatment was performed by applying a DC magnetic field of 5 kOe in the track width direction of the magnetic pole during hardening heat treatment of the insulating layer PIQ. Heat treatment to improve the properties of the magnetic film is performed on the protective film 8 of AQzOs.
This was done after forming the . At this time, a DC magnetic field of 5 k Oe was applied in a direction perpendicular to the track width direction of the magnetic pole.
第1図に磁性膜の特性向上磁場中熱処理温度Tとヘッド
の再生出力との関係を示す。FIG. 1 shows the relationship between the magnetic field heat treatment temperature T for improving the characteristics of the magnetic film and the reproduction output of the head.
再生出力の評価は、第4図と同様に保磁力4000eの
シーFezesの塗布媒体で行なった。再生出力は第3
図における最大出力を1とする相対出力で示す、また、
磁場中熱処理は1時間行なった。The reproduction output was evaluated using a Sea Fezes coating medium having a coercive force of 4000e as in FIG. 4. The playback output is the third
It is shown as a relative output with the maximum output in the figure as 1, and
The heat treatment in the magnetic field was performed for 1 hour.
再生出力は上記処理温度が350℃で最大値をとリ、そ
の値は第4図の最大再生出力と同等であった。すなわち
、本発明によると、磁性膜の磁場中温度は350℃以下
にすることができることがわかった。従って1本発明に
よると、十分な再生出力の得られるヘッドの歩留は90
%以上となった。The reproduction output reached its maximum value at the processing temperature of 350° C., and this value was equivalent to the maximum reproduction output shown in FIG. 4. That is, it has been found that according to the present invention, the temperature of the magnetic film in the magnetic field can be lowered to 350° C. or lower. Therefore, according to the present invention, the yield of heads that can obtain sufficient reproduction output is 90.
% or more.
なお、薄膜ヘッドの磁極を飽和するためには、5koa
以上の磁場を印加する必要があった。In addition, in order to saturate the magnetic pole of the thin film head, 5 koa is required.
It was necessary to apply a magnetic field larger than that.
また第6図にPIQの硬化熱処理時に磁場中熱処理を施
したものとそうでないもののなかで、同一の再生出力が
得られるものを選び、200℃の雰囲気中で保持したと
きの再生出力の経時変化を比較した。PIQの硬化熱処
理時に磁場中熱処理を施したものは、そうでないものに
くらべて経時変化が小さいことが明らかになった。Figure 6 shows the change in playback output over time when the same playback output was selected from those that were heat-treated in a magnetic field during the hardening heat treatment of PIQ and those that were not. compared. It was revealed that PIQ that was heat-treated in a magnetic field during the hardening heat treatment showed smaller changes over time than those that were not heat-treated.
他の非晶質膜、たとえば、CoNbZr。Other amorphous films, such as CoNbZr.
Co W Z rを磁極に用いた薄膜ヘッドについても
同様であった6従って、上記現象は非晶質膜を用いた薄
膜ヘッド一般にいえることと考えられる。The same was true for thin film heads using CoWZr as magnetic poles.6 Therefore, it is thought that the above phenomenon is generally applicable to thin film heads using amorphous films.
本発明によれば、絶縁層にPIQのような耐熱性ポリイ
ミド系樹脂を用い、磁極に非晶質磁性膜を用いた薄膜ヘ
ッドにおいて、非晶質磁性膜の磁場中熱処理温度を35
0℃以下の低温にできるため、絶縁層の変形を防ぐこと
ができ薄膜ヘッドの形成歩留を向上させることができる
。また1本発明の薄膜ヘッドは、従来に比べて経時劣化
を小さくできた。According to the present invention, in a thin film head using a heat-resistant polyimide resin such as PIQ for the insulating layer and an amorphous magnetic film for the magnetic pole, the heat treatment temperature of the amorphous magnetic film in a magnetic field is 35°C.
Since the temperature can be kept at a low temperature of 0° C. or lower, deformation of the insulating layer can be prevented and the yield of thin film head formation can be improved. Furthermore, the thin film head of the present invention has less deterioration over time than the conventional one.
第1図は、本発明の一実施例の磁性膜の磁場中熱処理温
度Tとヘッドの再生出力を示す特性図、第2図は磁極上
に形成される磁区構造の模式図、第3図は本発明の一実
施の薄膜磁気ヘッドの断面図および上面図、第4図は簿
膜磁気ヘッドの磁場中熱処理温度と再生出力との関係を
示す特性図、第5図は磁場中熱処理温度と、絶縁層が変
形することによる薄膜ヘッドの不良率と相関図、第6図
はPIQの硬化処理時に磁場中熱処理を施したヘッドと
そうでないものの再生出力の経時変化特性率 l
図
然処理韮z 7 (’Cつ
第 2 の
第 312]
(ロ)
第 4 口
熱処理温度T7(°り
第 5 圀
熱処理温度TI(°すFIG. 1 is a characteristic diagram showing the magnetic field heat treatment temperature T of a magnetic film according to an embodiment of the present invention and the reproduction output of the head, FIG. 2 is a schematic diagram of the magnetic domain structure formed on the magnetic pole, and FIG. A sectional view and a top view of a thin film magnetic head according to an embodiment of the present invention, FIG. 4 is a characteristic diagram showing the relationship between the heat treatment temperature in a magnetic field and the reproduction output of the thin film magnetic head, and FIG. 5 shows the relationship between the heat treatment temperature in a magnetic field and the reproduction output. Figure 6 shows the relationship between the failure rate of thin-film heads due to deformation of the insulating layer, and the characteristic rate of change over time in the reproduction output of heads that were heat-treated in a magnetic field during the PIQ hardening process and those that were not.
Unexpected treatment temperature 7 ('C second 312th) (b) Fourth heat treatment temperature T7
Claims (1)
ル、該磁極と該導電コイルの電気的絶縁を保つために耐
熱性ポリミド系樹脂の絶縁層を有する薄膜磁気ヘッドに
おいて、該耐熱性ポリイミド系樹脂の硬化熱処理を該磁
極のトラック幅方向に直流あるいは交流の磁場を印加し
ながら行なうことを特徴とする薄膜磁気ヘッド。 2、該耐熱性ポリイミド系樹脂の硬化熱処理の後に、該
磁極のトラック幅方向と直角方向に直流あるいは交流の
磁場を印加しながら磁場中熱処理をすることを特徴とす
る特許請求の範囲第1項記載の薄膜磁気ヘッド。 3、該磁場の大きさ95kOe以上とすることを特徴と
する特許請求の範囲第1項ないし第2項記載の薄膜磁気
ヘッド。 4、該非晶質磁性膜をCoTaZr系非晶質膜とし、該
耐熱性ポリイミド系樹脂の硬化処理後の該磁場中熱処理
の温度330℃以上350℃以下とすることを特徴とす
る特許請求の範囲第2項ないし第3項記載の薄膜磁気ヘ
ッド。[Claims] 1. A thin film magnetic head having a magnetic pole made of an amorphous magnetic film, a gap layer, a conductive coil, and an insulating layer made of a heat-resistant polyimide resin to maintain electrical insulation between the magnetic pole and the conductive coil. A thin film magnetic head characterized in that the heat-curing treatment of the heat-resistant polyimide resin is performed while applying a direct current or alternating current magnetic field in the track width direction of the magnetic pole. 2. After the heat treatment for curing the heat-resistant polyimide resin, heat treatment is performed in a magnetic field while applying a direct current or alternating current magnetic field in a direction perpendicular to the track width direction of the magnetic pole. The thin film magnetic head described. 3. The thin film magnetic head according to claims 1 or 2, wherein the magnetic field has a magnitude of 95 kOe or more. 4. The scope of claims characterized in that the amorphous magnetic film is a CoTaZr-based amorphous film, and the temperature of the heat treatment in the magnetic field after the curing treatment of the heat-resistant polyimide resin is 330°C or more and 350°C or less The thin film magnetic head according to items 2 and 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30750487A JPH01150211A (en) | 1987-12-07 | 1987-12-07 | Thin-film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30750487A JPH01150211A (en) | 1987-12-07 | 1987-12-07 | Thin-film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01150211A true JPH01150211A (en) | 1989-06-13 |
Family
ID=17969879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30750487A Pending JPH01150211A (en) | 1987-12-07 | 1987-12-07 | Thin-film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01150211A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125809A (en) * | 1990-09-18 | 1992-04-27 | Hitachi Ltd | Production of thin-film magnetic head |
-
1987
- 1987-12-07 JP JP30750487A patent/JPH01150211A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125809A (en) * | 1990-09-18 | 1992-04-27 | Hitachi Ltd | Production of thin-film magnetic head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6221218B1 (en) | Method of forming an inductive write head for magnetic data storage media | |
US5126907A (en) | Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density | |
JPH10199726A (en) | Soft magnetic thin-film based on co-ni-fe, manufacturing the same, and magnetic head and magnetic memory using the same | |
JPH03130910A (en) | Thin film magnetic head and manufacture thereof | |
JP3155234B2 (en) | Thin film magnetic head and method of manufacturing the same | |
JP4759455B2 (en) | Magnetic shield and manufacturing method thereof, thin film magnetic head | |
JPH0478012A (en) | Manufacture of thin film magnetic head | |
JPH06318516A (en) | Soft magnetic multilayer film and magnetic head using same | |
JPH01150211A (en) | Thin-film magnetic head | |
JPS6129105A (en) | Magnetic alloy thin film | |
JPH01124108A (en) | Thin-film magnetic head | |
JPH0283809A (en) | Production of thin-film magnetic head | |
US5687044A (en) | Magnetoresistive head with micro-crystallite shielding layer | |
JPH10340431A (en) | Magneto-resistance effect type head and magnetic recording/reproducing device | |
JP3375009B2 (en) | Thin film magnetic head | |
JP3130407B2 (en) | Manufacturing method of magnetic film and thin film magnetic head | |
JP3399899B2 (en) | Thin film magnetic device | |
JPH02308408A (en) | Thin-film magnetic head | |
JPH0198110A (en) | Production of thin film magnetic head | |
JP3036891B2 (en) | Thin film magnetic head | |
JPH06195638A (en) | Thin film magnetic head | |
JP2747216B2 (en) | Thin film magnetic head | |
JPS63809A (en) | Formation of thin film magnetic head core | |
JPH02126410A (en) | Thin film magnetic head structure | |
JPS62139114A (en) | Heat treatment for composite type magnetic head |