JPH02126410A - Thin film magnetic head structure - Google Patents

Thin film magnetic head structure

Info

Publication number
JPH02126410A
JPH02126410A JP27926188A JP27926188A JPH02126410A JP H02126410 A JPH02126410 A JP H02126410A JP 27926188 A JP27926188 A JP 27926188A JP 27926188 A JP27926188 A JP 27926188A JP H02126410 A JPH02126410 A JP H02126410A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
thin film
photoresist
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27926188A
Other languages
Japanese (ja)
Inventor
Masaaki Sano
雅章 佐野
Katsuya Mitsuoka
光岡 勝也
Takao Imagawa
尊雄 今川
Koichi Nishioka
浩一 西岡
Shinji Narushige
成重 真治
Tetsuo Kobayashi
哲夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27926188A priority Critical patent/JPH02126410A/en
Publication of JPH02126410A publication Critical patent/JPH02126410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic head for high recording density by forming a lower magnetic layer of amorphous material and an upper magnetic layer of crystalline material and using the material whose saturation magnetic flux density is higher than that of 'Permalloy(R)'. CONSTITUTION:The lower magnetic layer 2 is formed by using quarter target of 43Co-23Ni-13Fe-21Pd in a sputtering method. In the sputtering stage, orthogonally crossed magnetic field is horizontally impressed on the surface of a substrate 1 in order to reduce anisotropic magnetic field. Then, patterning is performed on the substrate to obtain a magnetic core pattern in desired shape and dimension in an ion milling method and a conductive coil 5 is formed through a photoresist 4 and the upper magnetic layer 6 is formed on the coil 5. The curing temperature of the photoresist 4 is set at 250 deg.C at such a time and the upper magnetic film is sputtered at low temperature to prevent the photoresist from being damaged. It is assumed that film thickness is 2mum. As to the magnetic characteristic, coercive force in a direction of the axis hard to be magnetized is 1.2 oersted, anisotropic magnetic field is 6.5 oersted, magnetostriction constant is -0.5X10<-6> and the saturation magnetic flux density is 1.5 stera and the photoresist is not damaged by sputtering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘッドに係り、特に、高記録密度対
応で、かつ、製造プロセスが容易な薄膜磁気ヘッドに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head, and more particularly to a thin film magnetic head that is compatible with high recording density and easy to manufacture.

〔従来の技術〕[Conventional technology]

従来、薄膜磁気ヘッド用の磁気コアには約80vt/%
Niと約20wt%Feからなる二元合金であるパーマ
ロイ薄膜が使用されている。この材料は、結晶磁気異方
性、及び、磁歪定数が共に小さいため、保磁力が小さく
、高透磁率であるため薄膜磁気ヘッド用の磁気コアとし
た場合、優れた読み出し性能を示すことから広く使用さ
れている。
Conventionally, the magnetic core for thin film magnetic heads has a power of about 80vt/%.
A permalloy thin film, which is a binary alloy consisting of Ni and about 20 wt% Fe, is used. This material has low coercive force and high magnetic permeability due to its small magnetocrystalline anisotropy and magnetostriction constant, so it is widely used as a magnetic core for thin-film magnetic heads because it shows excellent read performance. It is used.

しかし、パーマロイは飽和磁束密度が約1テスラと低い
ためにパーマロイ膜を使用した薄膜磁気ヘッドでは高記
録密度対応の高保磁力媒体、あるいは、狭トラック幅磁
気ヘッド化に対しては書き込み性能に劣り十分な記録が
できない欠点がある。
However, since permalloy has a low saturation magnetic flux density of approximately 1 Tesla, thin-film magnetic heads using permalloy films have poor writing performance and are insufficient for high coercive force media compatible with high recording densities or narrow track width magnetic heads. The disadvantage is that it does not allow accurate recording.

そこで、パーマロイの膜厚を厚くして磁気飽和を防ぐこ
とが考えられるが薄膜磁気ヘッド−の分解能の低下につ
ながり好ましくない。そこで、パーマロイよりも飽和磁
束密度の高い材料としてCO系非晶質の開発、Fe系結
晶質材料の開発、あるいは、Fa−8i−AQ系(セン
ダスト)材料の開発が進められている。
Therefore, it is conceivable to increase the thickness of the permalloy film to prevent magnetic saturation, but this is undesirable because it leads to a decrease in the resolution of the thin-film magnetic head. Therefore, the development of CO-based amorphous materials, Fe-based crystalline materials, and Fa-8i-AQ-based (Sendust) materials is underway as materials with higher saturation magnetic flux density than permalloy.

一方、書き込み、あるいは、読み出し等の磁界印加、誘
起電圧の検出は、上部及び下部磁性層との間に有機絶縁
層を介してCu等の導体コイルによってなされる。有機
絶縁層には従来一般には耐熱性に優れたprQ(ポリイ
ミド系樹脂)等の熱硬化性樹脂が用いられている。しか
し、PIQは。
On the other hand, magnetic field application for writing or reading and detection of induced voltage are performed by a conductor coil made of Cu or the like with an organic insulating layer interposed between the upper and lower magnetic layers. Conventionally, a thermosetting resin such as prQ (polyimide resin), which has excellent heat resistance, has been used for the organic insulating layer. However, P.I.Q.

感光性樹脂でないために、ウェットエツチング法により
高段差で、かつ、一定のテーパ角をもつ形状に仕上げて
いる。従って、マスク材の厚さ、及び、エツチング時間
などの僅かな違いによって、PIQの形状・寸法に微妙
な差が生じ、それがプロセス上のネックとなっていた。
Since it is not a photosensitive resin, it is finished in a shape with a high level difference and a constant taper angle using a wet etching method. Therefore, due to slight differences in the thickness of the mask material, etching time, etc., subtle differences occur in the shape and dimensions of the PIQ, which poses a bottleneck in the process.

そこで、耐熱性はPIQに比べて劣るがプロセス上有利
な感光性樹脂ホトレジストが広く使用されるようになっ
てきている。しかし、ホトレジストは耐熱性に難点があ
るため250℃〜300℃でキュアした後は、250℃
以上の温度にさらすと重量減少・変形等が生じるためそ
の上に形成する上部磁性膜は温度上昇のないめっき法に
広く使用されている。めっき法は膜の組成管理がスパッ
タリング法に比べて難しいこと、めっきできる磁性膜が
限定される等の問題があり高記録密度対応の薄膜磁気ヘ
ッド開発の障害となっていた。
Therefore, photosensitive resin photoresists, which are inferior in heat resistance to PIQ but are advantageous in terms of processing, have come to be widely used. However, photoresist has a drawback in heat resistance, so after curing at 250°C to 300°C,
Since weight loss, deformation, etc. occur when exposed to temperatures above this temperature, the upper magnetic film formed thereon is widely used in plating methods that do not cause temperature rise. The plating method has problems such as the difficulty in controlling the composition of the film compared to the sputtering method and the limitations on the magnetic films that can be plated, which have been obstacles to the development of thin-film magnetic heads compatible with high recording densities.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

パーマロイよりも飽和磁束密度の高い薄膜材料は、一般
には、Co系の非晶質材料が知られ−でいる。
Co-based amorphous materials are generally known as thin film materials having a higher saturation magnetic flux density than permalloy.

しかし、一般に、非晶質材料は基板を水冷しながらスパ
ッタリングするため、一般の結晶質材料のスパッタリン
グに比べ膜の温度上昇は小さいが。
However, since amorphous materials are generally sputtered while cooling the substrate with water, the temperature rise in the film is smaller than when sputtering ordinary crystalline materials.

スパッタリング後、300℃程度の温度で回転磁界中熱
処理を施こさないと異方性磁界が大きく高透磁率になら
ない。従って、ホトレジストの上。
After sputtering, unless heat treatment is performed in a rotating magnetic field at a temperature of about 300° C., the anisotropic magnetic field will be large and high magnetic permeability will not be achieved. Therefore, on top of the photoresist.

即ち、上部磁性膜にはホトレジストの耐熱温度を上まわ
るために非晶質材料を上部磁性膜に使用することは難し
い。
That is, it is difficult to use an amorphous material for the upper magnetic film because the upper magnetic film has a heat resistance temperature higher than that of the photoresist.

一方、パーマロイより飽和磁束密度の高い結晶質材料で
高透磁率の薄膜材料は飽和磁束密度が約2テスラと著し
く大きいFe系結晶質材料、飽和磁束密度が約1.1 
テスラを示すFe−8i−AQ系粘結晶質材料センダス
ト)等が知られているが、これらの材料はスパッタリン
グ後400〜600℃の温度で熱処理しないと高透磁率
を示さない欠点があるため、ホトレジスト上に形成する
上部磁性層に適用することは出来ない。従って、ホトレ
ジストを使用する薄膜磁気ヘッドのプロセスではこれら
の磁性膜と下部及び上部磁性膜として使用することは不
可能であり、高記録密度化が進む磁気ディスク装置開発
上のネックとなっている。
On the other hand, a crystalline material with a higher saturation magnetic flux density than permalloy and a thin film material with high magnetic permeability is an Fe-based crystalline material with a saturation magnetic flux density of approximately 2 Tesla, which is significantly higher than that of permalloy, and a saturation magnetic flux density of approximately 1.1.
The Fe-8i-AQ-based viscocrystalline material (Sendust) which exhibits Tesla is known, but these materials have the disadvantage that they do not exhibit high magnetic permeability unless they are heat-treated at a temperature of 400 to 600°C after sputtering. It cannot be applied to an upper magnetic layer formed on a photoresist. Therefore, in the thin-film magnetic head process using photoresist, it is impossible to use these magnetic films as the lower and upper magnetic films, and this has become a bottleneck in the development of magnetic disk devices with increasing recording density.

(課題を解決するための手段〕 そこで、発明者等が見い出した(25〜6゜wt%) 
Co −(14〜50 w t、%)Ni−(10〜2
4wt%) F e −(5〜30 w t%)Pd四
元系結晶質材料は飽和磁束密度が185テスラと高く、
スパッタリング時の基板温度を変えることにより他の磁
気特性を損うことなく磁歪定数を変えられること、また
、組成範囲内でPd量を調整することで低基板温度でも
他の磁気特性を損なうことなく磁歪定数を零付近にもっ
てこられることを見出した。従って、下部、及び、上部
磁性膜として組成、及び、基板温度を適当に選ぶことに
よって高透磁率で、かつ、高い飽和磁束密度の薄膜磁気
ヘッド用磁気コアの実現が可能となった。
(Means for solving the problem) Therefore, the inventors discovered (25-6゜wt%)
Co-(14-50 wt,%) Ni-(10-2
4wt%) Fe-(5-30wt%)Pd quaternary crystalline material has a high saturation magnetic flux density of 185 Tesla;
By changing the substrate temperature during sputtering, the magnetostriction constant can be changed without damaging other magnetic properties, and by adjusting the amount of Pd within the composition range, even at low substrate temperatures without damaging other magnetic properties. We discovered that it is possible to bring the magnetostriction constant to near zero. Therefore, by appropriately selecting the composition of the lower and upper magnetic films and the substrate temperature, it has become possible to realize a magnetic core for a thin film magnetic head with high magnetic permeability and high saturation magnetic flux density.

また、耐熱性に若干難点があるが飽和磁束密度が1.6
〜1.7テスラと高いCo−Ni−Fe三元系結晶質の
めっき膜はレジスト上の上部磁性膜として有効であるこ
とがわかった。
In addition, although there are some drawbacks in heat resistance, the saturation magnetic flux density is 1.6
It was found that a Co--Ni--Fe ternary crystalline plating film as high as ~1.7 Tesla is effective as an upper magnetic film on a resist.

このように、下部、及び、上部磁性層の間に形成するホ
トレジストの特性をにらみ、プロセスによる熱履歴を考
慮して下部磁性膜、及び、上部磁性膜共に、その磁気特
性を最大限に引き出せるような材料を選択することが高
記録密度化に対応した薄膜磁気ヘッドを開発するために
重要である。
In this way, we took into consideration the characteristics of the photoresist formed between the lower and upper magnetic layers, and took into consideration the thermal history caused by the process, in order to maximize the magnetic properties of both the lower and upper magnetic films. It is important to select suitable materials in order to develop thin-film magnetic heads compatible with higher recording densities.

即ち、下部磁性膜は (1)密着性の面から高い基板温度でスパッタリングし
た場合にも磁気特性が優れているとと、(2)スパッタ
リング後、更に、高い温度で熱処理することにより低保
磁力となり高透磁率を示すこと、 (3)ホトレジストのキュア温度に加熱(250〜30
0℃)されても磁気特性の劣化がないこと、などが挙げ
られる。
In other words, the lower magnetic film (1) has excellent magnetic properties even when sputtered at a high substrate temperature from the viewpoint of adhesion, and (2) has a low coercive force by further heat treatment at a high temperature after sputtering. (3) Heating to the curing temperature of the photoresist (250~300℃)
For example, there is no deterioration in magnetic properties even if the temperature is increased to 0°C.

一方、上部磁性膜は。On the other hand, the upper magnetic film.

(1)ホトレジストを損傷することなく低い基板温度で
スパッタリングしても優れた磁気特性を示すこと、 (2)スパッタリング後は低い温度で熱処理しても低保
磁力となり高透磁率を示すこと、 (3)めっき磁性膜でも優れた磁気特性を示すこと等が
挙げられる。
(1) Exhibits excellent magnetic properties even when sputtered at low substrate temperatures without damaging the photoresist; (2) Exhibits low coercive force and high magnetic permeability even after heat treatment at low temperatures after sputtering; ( 3) Even a plated magnetic film exhibits excellent magnetic properties.

そこで、これらの条件を勘案して材料を選択することが
重要である。
Therefore, it is important to select materials taking these conditions into consideration.

〔作用〕[Effect]

そこで、ホトレジストのキュア温度250〜300℃、
耐熱温度250℃程度を考慮して下部及び上部磁性膜の
作製条件を検討した。即ち、下部磁性膜はスパッタリン
グ後、ホトレジストのキュア温度の上限300℃の温度
にさらされても。
Therefore, the curing temperature of the photoresist is 250 to 300℃,
The manufacturing conditions of the lower and upper magnetic films were studied taking into account the heat resistance temperature of about 250°C. That is, even if the lower magnetic film is exposed to a temperature of 300° C., which is the upper limit of the photoresist curing temperature, after sputtering.

磁気特性の劣化が小さいこと、上部磁性膜はスパッタリ
ング時の温度上昇を見込んでも膜が250℃以上になら
ないこと、及び、250”C以上の熱処理を必要としな
くても磁気特性が優れていること等が必要である。
The deterioration of magnetic properties is small, the upper magnetic film does not exceed 250°C even if the temperature rises during sputtering, and the magnetic properties are excellent even without the need for heat treatment above 250"C. etc. are necessary.

第1図は本発明による薄膜磁気ヘッドの一素子の断面図
である。1はセラミック基板、2は下部磁性層でCo−
Ni−Fe−Pd四元系結晶質磁性薄膜である。3は非
磁性ギャップ材、4は有機絶縁層としてのホトレジスト
、5は導体コイル、6は下部磁性層と同じCo −N 
i −F e −P d四元系結晶質磁性薄膜である。
FIG. 1 is a sectional view of one element of a thin film magnetic head according to the present invention. 1 is a ceramic substrate, 2 is a lower magnetic layer made of Co-
It is a Ni-Fe-Pd quaternary crystalline magnetic thin film. 3 is a nonmagnetic gap material, 4 is a photoresist as an organic insulating layer, 5 is a conductor coil, and 6 is Co-N, which is the same as the lower magnetic layer.
It is an i-Fe-Pd quaternary crystalline magnetic thin film.

7は保護膜としてのAQtosである。第2図は第1図
に示した薄膜磁気ヘッドの上部、及び、下部磁性層に適
用するCo−Ni−Fe−Pd四元系結晶質のスパッタ
リング膜の実験結果である。Pd含有量を多少変えるこ
とによって保磁力をほとんど変えることなく磁歪定数を
±0.5 X 10″″Bの範囲に抑える基板温度が低
温側と高温側にあることがわかる。この時、異方性磁界
はいずれも5〜60eと優れた値を示した。このことか
ら、下部磁性膜は基板温度が高いところで磁歪定数がほ
ぼ零になる組成を選び、上部磁性膜は基板温度が低い所
で磁歪定数が零になる組成を選ぶことによって上部、及
び、下部磁性膜ともにパーマロイに比べ飽和磁束密度の
高い材料で構成することができ、高記録密度磁気ディス
ク装置対応の薄膜磁気ヘッドとして好適である。また、
レジスト上に形成する上部磁性膜はレジストの損傷を避
けるためにスパッタリングによる温度上昇を見込む必要
がある。第3図は薄膜磁気ヘッドのコアに必要な膜厚1
.5〜2.0μmスパッタリングした場合のスパッタリ
ング後の基板温度を測定した結果である。ホトレジスト
の耐熱温度の上限を250℃と見込めばスパッタリング
前の基板温度は約120℃が上限となる。
7 is AQtos as a protective film. FIG. 2 shows the experimental results of a Co--Ni--Fe--Pd quaternary crystalline sputtering film applied to the upper and lower magnetic layers of the thin-film magnetic head shown in FIG. It can be seen that by slightly changing the Pd content, the substrate temperatures at which the magnetostriction constant is suppressed within the range of ±0.5×10″B without substantially changing the coercive force exist on the low and high temperature sides. At this time, the anisotropic magnetic field showed an excellent value of 5 to 60 e. From this, the composition of the lower magnetic film is selected such that the magnetostriction constant is almost zero at high substrate temperatures, and the composition of the upper magnetic film is selected such that the magnetostriction constant is approximately zero at low substrate temperatures. Both magnetic films can be made of a material with a higher saturation magnetic flux density than permalloy, and are suitable as a thin film magnetic head compatible with high recording density magnetic disk devices. Also,
For the upper magnetic film formed on the resist, it is necessary to allow for a temperature rise due to sputtering in order to avoid damage to the resist. Figure 3 shows the film thickness 1 required for the core of a thin film magnetic head.
.. These are the results of measuring the substrate temperature after sputtering when sputtering was performed to a thickness of 5 to 2.0 μm. If the upper limit of the heat resistance temperature of photoresist is expected to be 250°C, the upper limit of the substrate temperature before sputtering will be about 120°C.

従って、第2図に示した破線の組成の膜で基板温度10
0’Cで膜の磁歪定数はほぼ零を示し、ホトレジスト上
の磁性層として十分使用可能であることがわかる。一方
、非晶質材料はホトレジストのキュア時に結晶質化し磁
気特性の劣化が小さいことが重要となる。第4図は非晶
質材料としてC0−Hf−Ta−Pd四元系を選定し加
熱温度と磁気特性との関係を調べたものである。困難軸
方向の保磁力は加熱温度380’Cを越えると急激に増
大し、結晶質化していることを示している。従って、ホ
トレジストのキュア温度の上限値300’Cでは磁気特
性は全く劣化せず、下部磁性層として使用可能であるこ
とがわかる。
Therefore, with a film having the composition indicated by the broken line shown in FIG.
At 0'C, the magnetostriction constant of the film is almost zero, indicating that it can be used satisfactorily as a magnetic layer on photoresist. On the other hand, it is important that the amorphous material undergoes little deterioration in magnetic properties due to crystallization during curing of the photoresist. FIG. 4 shows an investigation of the relationship between heating temperature and magnetic properties by selecting a C0-Hf-Ta-Pd quaternary system as the amorphous material. The coercive force in the hard axis direction increases rapidly when the heating temperature exceeds 380'C, indicating crystallization. Therefore, it can be seen that at the upper limit of the photoresist curing temperature of 300'C, the magnetic properties do not deteriorate at all and it can be used as a lower magnetic layer.

〔実施例〕〔Example〕

以下1本発明の実施例について図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

〈実施例−1〉 第1図は本発明による磁性層の組み合わせによる薄膜磁
気ヘッドの一断面を示したものである。
<Example 1> FIG. 1 shows a cross section of a thin film magnetic head formed by a combination of magnetic layers according to the present invention.

下部磁性層2は43Co−23Ni−13Fe −21
Pdの四元ターゲットを用いてスパッタリング法により
形成したものである。スパッタリング法はRFマグネト
ロンスパッタリングでRF出力は1.5KW 、基板温
度は280℃である。得られた膜の困難軸方向の保磁力
は1.5エルステツド、異方性磁界は6エルステツド、
磁歪定数は−0,I X I Q”’8であり、飽和磁
束密度は1.4テスラであった。スパッタリングの過程
では異方性磁界を低減する目的で基板面に水平に直交す
る磁界を印加した。それをイオンミリング法により所望
の形状・寸法の磁気コアパターンにパターニングし、次
いでホトレジスト4(OFPR−800)を介して導体
コイル5を形成し、その上に上部磁性層6を形成する。
The lower magnetic layer 2 is 43Co-23Ni-13Fe-21
It was formed by sputtering using a Pd quaternary target. The sputtering method is RF magnetron sputtering, with an RF output of 1.5 KW and a substrate temperature of 280°C. The coercive force of the obtained film in the hard axis direction was 1.5 Oersteds, the anisotropic magnetic field was 6 Oersteds,
The magnetostriction constant was -0, I This is patterned into a magnetic core pattern of desired shape and dimensions by ion milling, and then a conductor coil 5 is formed through a photoresist 4 (OFPR-800), and an upper magnetic layer 6 is formed thereon. .

この時、ホトレジストのキュア温度は250℃とした。At this time, the curing temperature of the photoresist was 250°C.

上部磁性膜はホトレジストの損傷を防ぐために低温でス
パッタリングした。即ち、下部磁性膜と同様の方法で、
ターゲット組成を43Co−25Ni−14Fe−18
Pdとし基板温度を100℃としてスパッタリングした
。膜厚は2.0μmである。その磁気特性は困難軸方向
の保磁力1.2エルステツド、異方性磁界6.5エルス
テツド、磁歪定数−〇、5×10″″8であり、飽和磁
束密度は1.5テスラであった。スパッタリングによる
ホトレジストの損傷は認められなかった。
The upper magnetic film was sputtered at low temperature to prevent damage to the photoresist. That is, in the same manner as the lower magnetic film,
Target composition is 43Co-25Ni-14Fe-18
Sputtering was performed using Pd at a substrate temperature of 100°C. The film thickness is 2.0 μm. Its magnetic properties were a coercive force in the hard axis direction of 1.2 Oersteds, an anisotropic magnetic field of 6.5 Oersteds, a magnetostriction constant of -0, 5 x 10''''8, and a saturation magnetic flux density of 1.5 Tesla. No damage to the photoresist due to sputtering was observed.

上部磁性層6を下部磁性層と同様にイオンミリング法に
より所望の寸法・形状の磁気コアにパタニング後、保護
膜7を形成し薄膜磁気ヘッドとした。
Similar to the lower magnetic layer, the upper magnetic layer 6 was patterned into a magnetic core of desired size and shape by ion milling, and then a protective film 7 was formed to form a thin film magnetic head.

それらを加工して一個の薄膜磁気ヘッド素子とし電気特
性を評価した。第5図はその結果を111で示す。従来
のパーマロイを用いた薄膜磁気ヘッドの電気特性121
と比較した。再生出力特性は透磁率が従来のパーマロイ
と大差ないのでほぼ同じような傾向を示すが、記録電流
が大きくなっても再生出力の低下は見られず、飽和磁束
密度が高くなった効果が現れている。この飽和磁束密度
が高くなった効果はオーバライド特性に顕著に現われ、
本発明による薄膜磁気ヘッド111は従来のパーマロイ
を用いた薄膜磁気ヘッド121に比べ約30〜40%向
上している。
They were processed into a single thin film magnetic head element and their electrical characteristics were evaluated. FIG. 5 shows the result at 111. Electrical characteristics of thin film magnetic heads using conventional permalloy 121
compared with. The reproduction output characteristics show almost the same tendency as the magnetic permeability is not much different from that of conventional permalloy, but even when the recording current increases, there is no decrease in the reproduction output, and the effect of the increased saturation magnetic flux density appears. There is. The effect of this increased saturation magnetic flux density is noticeable in the override characteristics,
The thin film magnetic head 111 according to the present invention has an improvement of about 30 to 40% compared to the conventional thin film magnetic head 121 using permalloy.

〈実施例−2〉 第1図において、下部磁性層2のみ非晶質磁性薄膜を用
いて薄膜磁気ヘッドを作製した。即ち、基板1を水冷方
式の基板ホルダに設置し、ターゲットとしてC0111
−Hf+−Taa−Pdz(a t、%)を用いてスパ
ッタリングした。膜厚は1.5μmである。その後、3
50”Cの温度で一時間の回転磁界中熱処理を施して異
方性磁界を低減し高透磁率化を図った。その膜の磁気特
性は困難軸方向の保磁力0.4エルステツド、異方性磁
界2.6エルステツド、磁歪定数−〇、3 X 10−
8であり、飽和磁束密度は1.3テスラであった。以後
の工程は実施例−1と同様の方法で行ない、上部磁性層
は低基板温度でスパッタリング可能な実施例−1と同様
の43Co−25Ni−14Fe−18Pd(wt%)
の磁性薄膜を形成した。このようにして作製した薄膜磁
気ヘッドの電気特性は、第5図に示した実施例−1の場
合と同様、従来のパーマロイ薄膜を用いた磁気ヘッドに
比べてオーバライト性能が向上している。
<Example 2> In FIG. 1, a thin film magnetic head was fabricated using an amorphous magnetic thin film only for the lower magnetic layer 2. That is, the substrate 1 is placed in a water-cooled substrate holder, and C0111 is used as a target.
Sputtering was performed using -Hf+-Taa-Pdz (at, %). The film thickness is 1.5 μm. After that, 3
Heat treatment was performed in a rotating magnetic field at a temperature of 50"C for one hour to reduce the anisotropic magnetic field and increase the magnetic permeability. The magnetic properties of the film were as follows: coercive force in the difficult axis direction 0.4 oersted, anisotropic. Magnetic field 2.6 oersted, magnetostriction constant -〇, 3 x 10-
8, and the saturation magnetic flux density was 1.3 Tesla. The subsequent steps were performed in the same manner as in Example-1, and the upper magnetic layer was made of 43Co-25Ni-14Fe-18Pd (wt%) similar to Example-1, which can be sputtered at a low substrate temperature.
A magnetic thin film was formed. The electrical characteristics of the thin film magnetic head thus produced are similar to those of Example 1 shown in FIG. 5, and the overwrite performance is improved compared to the conventional magnetic head using a permalloy thin film.

〈実施例−3〉 第1図において、基板1、下部磁性層2、ギャップ材3
、ホトレジスト4、導体コイル5は実施例−1と全く同
様の方法で形成した。上部磁性層を最もホトレジストに
与えるダメージの少ないめっき法により形成した。先ず
、ホトレジストを露光、現像により所望の形状にバター
ニングした後。
<Example 3> In FIG. 1, a substrate 1, a lower magnetic layer 2, a gap material 3
, photoresist 4, and conductor coil 5 were formed in exactly the same manner as in Example-1. The upper magnetic layer was formed using a plating method that causes the least damage to the photoresist. First, the photoresist is patterned into a desired shape by exposure and development.

めっきの下地膜として0.02μmのパーマロイを蒸着
法により基板全面に形成し、次いで、CoSO4・7H
zO:45g/Q、N1CQ2・6H20:  60g
/Q 、 N15Oi・6HzO:  25g / Q
 、 F e S 04 ・7 H2O: 20 g 
/ Q、硼酸:25g/Q、サッカリンナトリウム:L
5g/Q、ラウリル硫酸ナトリウム:0.15g/Qの
めつき洛中に浸漬しCo−Ni−Fe三元系めっきを行
なった。PH:3.O,浴温:30℃に調整し、めっき
電流密度:17mA/afをかけてめっきを施した。め
っきの間中はスパッタリング法の場合と同様に基板面内
に水平に直交する磁界を印加させた。膜厚は2.0μm
である。その時の膜の組成は78Co−16Ni−6F
e (wt%)で、困難方向の保磁力1.0 エルステ
ッド、異方性磁界6.0エルステツド、磁歪定数0.8
X10′″Bであり、飽和磁束密度は1.6テスラであ
った。その後、実施例1と同様の方法により磁気コア形
状にパターニングし保護[7を形成した。切り出した一
ケの薄膜磁気ヘッドの電気特性は第5図の112で示す
ように優れたオーバーライド性能を示す。
As a base film for plating, 0.02 μm permalloy was formed on the entire surface of the substrate by vapor deposition, and then CoSO4.7H
zO: 45g/Q, N1CQ2・6H20: 60g
/Q, N15Oi・6HzO: 25g/Q
, F e S 04 ・7 H2O: 20 g
/ Q, boric acid: 25g/Q, saccharin sodium: L
Co--Ni--Fe ternary plating was performed by immersing the sample in a plating solution containing 5 g/Q of sodium lauryl sulfate and 0.15 g/Q of sodium lauryl sulfate. PH:3. Plating was performed by adjusting the bath temperature to 30° C. and applying a plating current density of 17 mA/af. During the plating, a magnetic field perpendicular to the plane of the substrate was applied in the same manner as in the sputtering method. Film thickness is 2.0μm
It is. The composition of the film at that time was 78Co-16Ni-6F
e (wt%), coercive force in difficult direction 1.0 Oe, anisotropic magnetic field 6.0 Oe, magnetostriction constant 0.8
X10'''B, and the saturation magnetic flux density was 1.6 Tesla. Thereafter, it was patterned into a magnetic core shape by the same method as in Example 1 to form a protection [7]. As shown by 112 in FIG. 5, the electrical characteristics of the device exhibit excellent override performance.

〈実施例−4〉 第1図において、基板1の上に下部磁性層としてセンダ
ストスパッタリング薄膜を用いた。
<Example 4> In FIG. 1, a sendust sputtered thin film was used as the lower magnetic layer on the substrate 1.

即ち、5.5AQ、−9,5Si−85Fe (wt%
)のターゲットを用いて薄膜1.5μmの下部磁性膜を
スパッタリング法により形成し、次いで、600℃、工
時間の熱処理を施し低保磁力、高透磁化を図った。得ら
れた膜の磁気特性は保磁力0.6 エルステッド、異方
性磁界3エルステツド、磁歪定数2XIO−Bであった
。また、飽和磁束密度は1.1 テスラであった。この
下部磁性層の上に実施例−1と同様の方法でホトレジス
ト4、導体コイル6、Co−Ni−Fe−Pd四元系結
晶材料からなる上部磁性層6をスパッタリングにより形
成し、更に、保護膜7としてのAl2zOaを形成した
。切り出した一個の簿膜磁気ヘッド素子の電気特性を評
価した。結果は第5図に示す結果とほぼ同様の性能を示
したが、下部磁性層の飽和磁束密度が他の結晶質、ある
いは、非晶質の材料に比べて若干低いのでオーバライド
特性は若干下まわった。ただし、下部磁性層は、一般に
、上部磁性層に比べ磁気コア面積が大きいので飽和磁束
密度が若干低くても磁気ヘッドとしての電気特性への影
響は少ないものと考える。また、下部磁性層として飽和
磁束密度の高いFe−8i系、あるいは、Fe系の結晶
質材料を使うことによって磁気ヘッドとしての性能はさ
らに向上されることが期待できる。
That is, 5.5AQ, -9,5Si-85Fe (wt%
) A thin 1.5 μm lower magnetic film was formed by sputtering using a target, and then heat treated at 600° C. for a processing time to achieve low coercive force and high magnetic permeability. The magnetic properties of the obtained film were a coercive force of 0.6 Oe, an anisotropic magnetic field of 3 Oe, and a magnetostriction constant of 2XIO-B. Moreover, the saturation magnetic flux density was 1.1 Tesla. On this lower magnetic layer, a photoresist 4, a conductive coil 6, and an upper magnetic layer 6 made of Co-Ni-Fe-Pd quaternary crystal material are formed by sputtering in the same manner as in Example-1, and furthermore, a protective A film 7 of Al2zOa was formed. The electrical characteristics of one cut out film magnetic head element were evaluated. The results showed almost the same performance as the results shown in Figure 5, but the override characteristics were slightly lower because the saturation magnetic flux density of the lower magnetic layer was slightly lower than that of other crystalline or amorphous materials. Ta. However, since the lower magnetic layer generally has a larger magnetic core area than the upper magnetic layer, it is considered that even if the saturation magnetic flux density is slightly lower, it will have little effect on the electrical characteristics of the magnetic head. Furthermore, it is expected that the performance of the magnetic head will be further improved by using a Fe-8i-based or Fe-based crystalline material with a high saturation magnetic flux density for the lower magnetic layer.

なお、下部磁性層にパーマロイを用いた場合は、膜厚を
厚くすることにより分解能は低下するがオーバライド性
能は向上すると考えられる。
Note that when permalloy is used for the lower magnetic layer, it is thought that increasing the film thickness will reduce the resolution but improve the override performance.

〈実施例−5〉 第6図は上・下部磁性層を多層構造とした場合の一例を
示したものである。多層構造とすることにより保磁力が
低減できるので電気特性としては。
<Example-5> FIG. 6 shows an example in which the upper and lower magnetic layers have a multilayer structure. In terms of electrical properties, the coercive force can be reduced by having a multilayer structure.

若干、再生出力が向上した。Playback output has improved slightly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プロセス上高精度で、かつ、低コスト
なホトレジスト上にめっき磁性膜は勿論のこと1組成管
理が容易なスパッタリング法により高飽和磁束密度材料
が形成可能となり、高記録密度対応の薄膜磁気ヘッドの
製造に大きな効果がある。
According to the present invention, it is possible to form a high saturation magnetic flux density material not only by plating a magnetic film on photoresist with high process precision and low cost, but also by a sputtering method that allows easy composition control, and is compatible with high recording density. This has a great effect on the production of thin-film magnetic heads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜磁気ヘッドの断面図、
第2図ないし第4図は本発明に至る実験結果の説明図、
第5図は本発明の薄膜磁気ヘッドの特性図、第6図は本
発明の他の実施例の断面図である。 1・・・基板、2・・・下部磁性層、3・・・ギャップ
材、4・・・ホトレジスト、 5・・・導体コイル、 6・・・上部磁性 層、 7・・・保護膜。 第 図 第 因 基 不及 温度 (0C) 第 図 基板温度 (″Cン 第 図 第 図 託配電流 (fn、4)
FIG. 1 is a sectional view of a thin film magnetic head according to an embodiment of the present invention.
Figures 2 to 4 are explanatory diagrams of experimental results that led to the present invention;
FIG. 5 is a characteristic diagram of the thin film magnetic head of the present invention, and FIG. 6 is a sectional view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Lower magnetic layer, 3... Gap material, 4... Photoresist, 5... Conductor coil, 6... Upper magnetic layer, 7... Protective film. Figure 1. Temperature (0C) Figure Substrate temperature

Claims (1)

【特許請求の範囲】 1、非磁性セラミック基板上に下部磁性層と上部磁性層
からなる磁気回路を設け、前記上部磁性層および前記下
部磁性層間に有機絶縁層を挟んで導体コイルを備えた薄
膜磁気ヘッドにおいて、前記下部磁性層が非晶質材料で
前記上部磁性層が結晶質材料からなり、かつ、パーマロ
イに比べ飽和磁束密度が高い材料からなることを特徴と
する薄膜磁気ヘッド構造体。 2、特許請求の範囲第1項において、 前記上部磁性層がCo−Ni−Fe−Pd四元系、ある
いは、Co−Ni−Fe三元系の結晶質材料からなるこ
とを特徴とする薄膜磁気ヘッド構造体。 3、特許請求の範囲第2項において、 前記下部磁性層がCo−Hf−Ta−Pd四元系非晶質
材料からなり、前記上部磁性層がCo−Ni−Fe−P
d四元系、あるいは、Co−Ni−Fe三元系結晶質材
料からなることを特徴とする薄膜磁気ヘッド構造体。 4、特許請求の範囲第1項において、 前記下部磁性層がセンダスト薄膜からなり、前記上部磁
性層がCo−Ni−Fe−Pd四元系あるいはCo−N
i−Fe三元系結晶質材料からなることを特徴とする薄
膜磁気ヘッド構造体。 5、特許請求の範囲第1項または第2項において、前記
下部磁性層及び前記上部磁性層が多層構造からなること
を特徴とする薄膜磁気ヘッド構造体。 6、特許請求の範囲第1項、第2項または第5項で示し
た薄膜磁気ヘッド構造体を搭載しトラック密度2000
トラック/インチ以上、線記録密度30キロビット/イ
ンチ以上の磁気ディスクを一つの回転軸に複数個備え、
かつ、前記磁気ディスクを26m/s以上の速度で回転
する前記磁気ディスクの回転手段を具備したことを特徴
とする磁気ディスク装置。
[Claims] 1. A thin film comprising a magnetic circuit consisting of a lower magnetic layer and an upper magnetic layer on a non-magnetic ceramic substrate, and a conductor coil with an organic insulating layer sandwiched between the upper magnetic layer and the lower magnetic layer. 1. A thin film magnetic head structure in a magnetic head, wherein the lower magnetic layer is made of an amorphous material, the upper magnetic layer is made of a crystalline material, and the material has a higher saturation magnetic flux density than permalloy. 2. The thin film magnetic layer according to claim 1, wherein the upper magnetic layer is made of a Co-Ni-Fe-Pd quaternary system or a Co-Ni-Fe ternary system crystalline material. head structure. 3. Claim 2, wherein the lower magnetic layer is made of Co-Hf-Ta-Pd quaternary amorphous material, and the upper magnetic layer is made of Co-Ni-Fe-P.
A thin film magnetic head structure characterized by being made of a quaternary system or a Co-Ni-Fe ternary system crystalline material. 4. In claim 1, the lower magnetic layer is made of a Sendust thin film, and the upper magnetic layer is made of a Co-Ni-Fe-Pd quaternary system or a Co-N
A thin film magnetic head structure comprising an i-Fe ternary crystalline material. 5. A thin film magnetic head structure according to claim 1 or 2, wherein the lower magnetic layer and the upper magnetic layer have a multilayer structure. 6. A thin film magnetic head structure according to claim 1, 2 or 5 is mounted and the track density is 2000.
Equipped with multiple magnetic disks with tracks/inch or more and linear recording density of 30 kilobits/inch or more on one rotating shaft,
A magnetic disk device further comprising: a means for rotating the magnetic disk at a speed of 26 m/s or more.
JP27926188A 1988-11-07 1988-11-07 Thin film magnetic head structure Pending JPH02126410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27926188A JPH02126410A (en) 1988-11-07 1988-11-07 Thin film magnetic head structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27926188A JPH02126410A (en) 1988-11-07 1988-11-07 Thin film magnetic head structure

Publications (1)

Publication Number Publication Date
JPH02126410A true JPH02126410A (en) 1990-05-15

Family

ID=17608699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27926188A Pending JPH02126410A (en) 1988-11-07 1988-11-07 Thin film magnetic head structure

Country Status (1)

Country Link
JP (1) JPH02126410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590008A (en) * 1991-04-25 1996-12-31 Hitachi, Ltd. Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
US6101068A (en) * 1997-09-22 2000-08-08 Hitachi Metals, Ltd. MR composite-type thin-film magnetic head having an upper pole with a high saturation magnetic flux density and an intermediate pole with a high resistivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590008A (en) * 1991-04-25 1996-12-31 Hitachi, Ltd. Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
US6101068A (en) * 1997-09-22 2000-08-08 Hitachi Metals, Ltd. MR composite-type thin-film magnetic head having an upper pole with a high saturation magnetic flux density and an intermediate pole with a high resistivity

Similar Documents

Publication Publication Date Title
US6221218B1 (en) Method of forming an inductive write head for magnetic data storage media
US3908194A (en) Integrated magnetoresistive read, inductive write, batch fabricated magnetic head
JPH10199726A (en) Soft magnetic thin-film based on co-ni-fe, manufacturing the same, and magnetic head and magnetic memory using the same
JPS6117052B2 (en)
JPH0778858B2 (en) Thin film magnetic head
JPH04366411A (en) Thin-film magnetic head
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JP2000235911A (en) Magnetic material, magnetic head using the same and magnetic recording device
JPH02126410A (en) Thin film magnetic head structure
US4641213A (en) Magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH0283809A (en) Production of thin-film magnetic head
JPS5933613A (en) Magnetic pole of thin film magnetic head and its production
JP2816150B2 (en) Composite magnetic head
JPH04188418A (en) Manufacture of composite thin-film magnetic head
JP2702997B2 (en) Thin film magnetic head and magnetic disk device
JP2747216B2 (en) Thin film magnetic head
JPH01201812A (en) Thin-film magnetic head
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device
JPS5880118A (en) Production of thin film magnetic head
JP2861080B2 (en) Method for forming pattern of amorphous alloy magnetic film
JPH0198110A (en) Production of thin film magnetic head
JPH02308408A (en) Thin-film magnetic head
JPH01109506A (en) Thin film magnetic head