JPH0114970B2 - - Google Patents

Info

Publication number
JPH0114970B2
JPH0114970B2 JP21705582A JP21705582A JPH0114970B2 JP H0114970 B2 JPH0114970 B2 JP H0114970B2 JP 21705582 A JP21705582 A JP 21705582A JP 21705582 A JP21705582 A JP 21705582A JP H0114970 B2 JPH0114970 B2 JP H0114970B2
Authority
JP
Japan
Prior art keywords
treatment
carbides
carburizing
diffusion treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21705582A
Other languages
Japanese (ja)
Other versions
JPS59107028A (en
Inventor
Kazuo Hoshino
Noryuki Nakajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21705582A priority Critical patent/JPS59107028A/en
Publication of JPS59107028A publication Critical patent/JPS59107028A/en
Publication of JPH0114970B2 publication Critical patent/JPH0114970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高炭素ステンレス鋼帯の全く新しい
製造方法に関し、より詳しくは、低炭素Cr系ス
テンレス鋼置を素材とし、該素材に浸炭し1次拡
散処理し焼なましした後、冷間圧延し2次拡散処
理と焼なまし処理をほどこすことによつて、均一
な炭素濃度分布と円相当径に換算した炭化物の最
大粒径(以下最大粒径)が1.5μ以下の炭化物が均
一に分布した組織とを有する高炭素スチレンス鋼
帯の製造方法に関するものである。 従来安全かみそり刃の製造に使用される材料は
(以下に単にかみそり刃材と呼ぶ)、0.65%C−13
%Crのマルテンサイト系ステンレス鋼が一般的
である。該鋼種は、凝固時の成分偏析によつて最
終凝固領域にCが濃縮されるため、粗大な共晶炭
化物が晶出し易い。共晶炭化物の存在はスラブ内
部割れ或いは鋼塊中の偏在部除去による分塊歩留
り低下を招く。また最大の問題点は熱間圧延冷間
圧延および熱処理によつて完全に破壊分散され
ず、板厚0.1mm程度のかみそり刃材となつても粒
径3〜10μの粗大炭化物として存在することであ
る。このように粗大炭化物が存在する材料から加
工されたかみそり刃では、刃に力が加わることに
よつて粗大炭化物が脱落し刃こぼれの原因とな
る。この現像が刃付け時に起こると刃付け性を阻
害し、かみそり刃使用時に起こると、切り味を著
しく損ね、その結果製品価値は低下する。このよ
うに、かみそり刃に良好な切れ味を持続させるた
めには、微細な炭化物を均一に析出させる必要が
ある。またかみそり刃は焼入れ焼戻し状態で使用
されるが、良好な焼戻し軟化抵抗を付与するため
にも、微細炭化物を均一に分散させる必要があ
る。 以上のように、かみそり刃材に要求される品質
特性は厳しく、粒径2±1μの炭化物が10±5μの
フエライトパスで均一に分布している必要があ
る。この要求を満たすための製造方法として、非
晶質炭化物の偏在した部分を屑として処理する
か、或いは鋼塊を1トン程度の小型にすることに
より凝固速度を早め、共晶炭化物の成長と偏在を
防止するか、さらに連鋳化することによつて凝固
条件を改善するなど種々対策がとられていたが、
いづれの方法も粗大炭化物を完全に消失するには
至つていない。このため安定した切り味を有する
かみそり刃用ステンレス鋼帯、言いかえれば、十
分な硬さと最大粒径1.5μ以下の炭化物が均一分布
した組織を有する鋼帯を容易に安定して製造する
必要があつた。 これを可能とする1つの方法として浸炭による
方法がある。特開昭57−126921に11.0〜18.0%の
クロムと0.25%までの炭素を含む冷鋼帯に浸炭処
理、拡散処理および焼なまし処理したのち、所定
板厚を得るため、および浸炭により得られた炭化
物を更に微細化するため、冷間圧延することによ
つて、微細炭化物を分散析出させ得ることが開示
されている。しかし、該発明方法にはいくつかの
欠点があり、浸炭後の全断面平均炭素濃度(以下
平均炭素濃度)が0.7%を越えるような場合には
炭化物が粗大化し易い。或いは拡散焼鈍温度と時
間の選択がまずいと炭化物が固溶消失したり粗大
化する。さらに一度析出させた炭化物は圧延率が
50%までは微細化できるが、それ以上圧延率を増
加させても微細炭化物は増加しないといつた問題
点があつた。 そこでこれらの問題点や欠点を調査、検討する
うちに、粗大炭化物が生成する原因として、浸炭
温度にさらされることによつて結晶粒の粗大な領
域が生じ、この領域に炭素原子が拡散してくるこ
とによつて、粗大な炭化物が生じ易いこと、拡散
処理温度が高いと微細炭化物は固溶消失し、炭化
物の凝集が起こつて粗大化し易いこと等を明らか
にし、これらの現象が生じない方法を見い出すこ
とによつて本発明を完成した。 本発明によればC:0.3%以下、Cr:11.0〜18.0
〜を含むFe−Cr系ステンレス鋼の0.3〜2.0mm厚冷
延鋼帯または冷延鋼板の素材に浸炭処理し、1次
拡散処理と焼なまし処理したのち、冷間圧延を実
施して炭化物を分散させるとともに、内部組織を
微細化し、その後2次拡散処理と焼なまし処理を
施すことによつて微細な炭化物を均一に分布させ
ることからなる高炭素ステンレス鋼帯の製造方法
が提供される。 ここに冷間圧延という場合。通常はその前に酸
洗が行なわれ、その後に焼鈍が行なわれるが、こ
れらは場合によつて省略してもよい。 本発明において、好ましくは、浸炭処理によつ
て平均炭素濃度0.4〜1.4%となるように浸炭し、
次に1次拡散処理によつて表層部の炭素濃度を低
下させて圧延性を向上させたのち冷間圧延によつ
て内部組織を微細化させ、2次拡散処理を実施す
ることによつて、表層部から板厚中心部まで微細
炭化物を均一析出させ得る点にある。 以下本発明方法の諸条件の限定理由を述べる。 素材鋼は11.0〜18.0%のクロムを含有する。鋼
に耐食性を与えるためには少なくとも11.0%のク
ロムが含有される必要があるが、一方その量が
18.0%を越えることは、使いずてのかみそり刃材
としては過度の高品質となる。これはかみそり刃
材のクロム含量としては極めて常識的な範囲であ
る。 素材鋼は0.30%以下の炭素を含む。本発明方法
を実施する上での1つの要点は素材鋼をいかに安
く製造するかにある。従つて、大量生産方式によ
つて全く困難なく製造でき、しかも大型連鋳スラ
ブの製造時に後工程で消失させ得ない粗大炭化物
の生成がなく、高強度により熱間圧延や冷間圧延
などの負荷の増大することがない限度の炭素量は
0.30%であると判断された。また下限について
は、特に発明構成要件として限定されないが、通
常の製鋼法での常織が数値としては0.01%であ
る。その他のいわゆる不可避的不純物としては、
この種の鋼の通常の製鋼法で混入してくる許容量
即ち、Si:1.0%以下、Mn:1.0%以下、P:0.04
%以下、S:0.03%以下、Ni:0.60%以下が含ま
れていても支障ない。また微量のMo、Nb、V、
Wが単独または複合して含まれてもよい。これら
の成分は耐食性を増強し、また焼入れ性を向上
し、および焼入れ後の焼戻しによる硬度低下を小
さくする。 素材の板厚は0.3mm以上、2.0mm以下と限定され
る。その理由は、板厚が2mmを越えると、所望の
平均炭素濃度を得るための浸炭処理時間が長くな
るなどの浸炭能率の低下を招くことと、浸炭処理
後の後工程での負荷が増大するためである。一方
板厚が0.3mm未満では冷間圧延での圧下量が少な
いため、内部組織を十分微細化することが出来ず
に、炭化物の微細析出を困難にする。 浸炭処理および1次拡散処理温度は850℃以上
1050℃以下とする。浸炭処理にあつては850℃よ
り低い温度では浸炭効率が悪く、また1050℃を超
えると結晶率が粗大化し板の変形も大きくなると
いつた幣害がある。一次拡散処理にあつては、
850℃より低い温度では炭素原子の拡散速度が遅
く長時間を要し、1050℃を超えると、炭化物が凝
集粗大化し、微細炭化物が固溶消失するため好ま
しくない。 1次拡散処理時間を限定したのは、結晶粒が粗
大化した領域への炭化物析出を防止しつつ、表層
部の炭素濃度を低下させて圧延性を改善すること
を目的としている。 2次拡散処理温度の上限を950℃としたのは、
処理時間が長いので炭化物が凝集粗大化し、或い
は再固溶するのを防止するためである。また800
℃より低い温度では炭素原子の拡散にあまりに長
時間を要してしまうため好ましくない。 1次拡散処理後の冷間圧延において総圧延率R
(%)を限定したのは、結晶粒粗大領域の炭化物
を微細にし、かつ浸炭層に析出した炭化物を破壊
分散させる効果を得るためで、Rは少なくとも50
%を必要とした。 焼なまし処理は650〜800℃の温度で30分間以上
の時間実施すれば、冷却後十分に軟化させること
ができる。 第1図は本発明方法の工程図でこれを参照し本
発明方法を具体的に説明する。 まず板厚0.3〜2.0mmの素材鋼帯又は鋼板を素材
とし、850〜1050℃の温度範囲で、平均炭素濃度
が0.4〜1.4%、かみそり刃材として好ましくは0.6
〜1.0%の範囲となるよう浸炭処理を実施する。 浸炭方法は、浸炭性ガスを用いて実施する方法
であれば、いづれの方法であつても差し支えな
い。例えば、変成炉ガスを用いるガス浸炭、有機
溶剤を滴注し発生するガスにより行なう滴注式浸
炭、炭化水素系ガスをN2ガスで稀釈したガスに
よるガス浸炭、減圧下で行なう真空浸炭、更にイ
オン浸炭等から選択される。その選択は浸炭の専
門家が自身の利用し得る設備等を考慮して適宜定
め得るところであるから、ここに選択の条件を詳
述する必要はない。浸炭時間は浸炭方法に固有な
値として、目標炭素量、温度、素材成分及び板厚
により決定できる。 浸炭処理完了後、1次拡散処理を850〜1050℃
の温度範囲で、脱炭を防止するため、不活性ガ
ス、非酸化性ガス又は真空中で実施する。1次拡
散処理の目的は、浸炭により表層部に生じた、浸
炭層の炭素濃度を低下させ、後工程である冷間圧
延工程での圧延性を向上させることにある。しか
し板厚中心部は浸炭時に受ける熱によつて結晶粒
が粗大化しており、この領域に炭素が拡散すると
粗大炭化物が析出する。従つて1次拡散処理時間
の上限は炭素が板厚中心部まで拡散しない時間と
する必要があり、この時間をt1(分)とし、次式
により与えられる。 t1=4.4×10-12x2 1exp(37200/T1) −tcexp{37200(Tc−T1)/TcT1} ………(1) 但し、 x1:浸炭および1次拡散処理時の板厚(mm)、 tc:浸炭処理時間(分)、 Tc:浸炭温度(〓)、 T1:1次拡散処理温度(〓) この式は拡散理論の式と実験データから導かれた
ものである。 1次拡散処理後は、650〜800℃の温度範囲で30
分間以上焼なまし処理をする。これらの熱処理に
よつて該浸炭材は十分に軟化されているので、冷
間圧延を実施することができる。 ここで(1)式の背景について述べる。 第2図は本発明方法を実施した時の浸炭層の厚
みを浸炭時間の平方根に対して整理した図であ
る。これより浸炭層厚みD(mm)、浸炭温度Tc
(〓)、浸炭時間tc(分)の間には次の関係がある。 D2=5.7×1010・tc・exp(−37200/Tc) ………(2) (2)式は、炭素の拡散律速に依存するから、浸炭処
理のみならず拡散処理においても一般式として適
用することができる。ここで板厚をx1(mm)とす
ると、1次拡散処理によつて炭素が拡散できる深
さはx1/2−Dである。従つて、1次拡散処理時
間を求めると前述した(1)式 t1=4.4×10-12x1 2exp(37200/T1) −tcexp{37200(Tc−T1)/TcT1} となる。これらの熱処理によつて該浸炭材は表層
部での炭素濃度が浸炭時よりも低下しており、か
つ板厚中心部の結晶粒粗大領域には粗大炭化物は
全く析出しておらず、更に十分に軟化されてお
り、冷却後直ちに冷間圧延を実施することができ
る。冷間圧延は1回ないし2回の冷間圧延によつ
て、次式で示される総圧延率R(%)以上となる
ように実施する。 0.5≦t≦2.0のとき R=0.9t−0.2/t×100(%) ………(3) 0.3≦t<0.5のときR=50% ただし、t:冷間圧延時の板厚(mm) これは実験的に導き出された式である。 浸炭処理及び1次拡散された材料は、浸炭層と
浸炭層の間に浸炭温度にさらされることにより結
晶粒の粗大化した領域が狭まれた3層構造を呈し
ている。これに冷間圧延を施すことにより、結晶
粒粗大領域では結晶粒が変形破壊され、浸炭層内
では炭化物が破壊分散される。引き続き2次拡散
焼鈍を行なうと、板厚が減少している結果炭素原
子の拡散距離は短縮されており短時間で板厚中心
部まで拡散することができ、しかも結晶粒は微細
化されているため、炭化物は微細かつ均一に分散
析出する。 2次拡散焼鈍は上述したように、炭素濃度分布
を均一化し、かつ炭化物を微細かつ均一に析出さ
せる必要があり、またさらに微細炭化物の固溶消
失と炭化物の凝集粗大化を防止する必要があるこ
とから、温度は800〜950℃とし、次式で示される
時間t2(時間)処理する。 t2=3.33x2(−0.02T2+27.5) (時間)
………(4) ただし、 x2:2次拡散処理時の板厚(mm)、 T2:2次拡散処理温度(〓) 炉内雰囲気は脱炭を防止するため、非酸化性ガ
ス、不活性ガス又は真空とする。2次拡散処理後
は650〜800℃で30分間以上焼なまし処理を実施す
る。 以上の処理によつて、粗大炭化物が全く存在せ
ず、最大粒径1.5μ以下の微細な炭化物が均一に析
出したかみそり刃用ステンレス鋼帯を製造するこ
とが可能である。 以下実施例に従つて詳述する。
The present invention relates to a completely new manufacturing method for high carbon stainless steel strips. More specifically, the present invention relates to a completely new manufacturing method for high carbon stainless steel strips. By performing secondary diffusion treatment and annealing treatment, a uniform carbon concentration distribution and a uniform carbide with a maximum particle size (hereinafter referred to as maximum particle size) converted to a circular equivalent diameter of 1.5μ or less are achieved. The present invention relates to a method for manufacturing a high carbon styrene steel strip having a distributed structure. The material conventionally used to manufacture safety razor blades (hereinafter simply referred to as razor blade material) is 0.65% C-13.
%Cr martensitic stainless steel is common. In this steel type, coarse eutectic carbides tend to crystallize because C is concentrated in the final solidification region due to component segregation during solidification. The presence of eutectic carbides causes cracking inside the slab or removal of unevenly distributed parts in the steel ingot, resulting in a decrease in the blooming yield. The biggest problem is that it is not completely broken and dispersed by hot rolling, cold rolling and heat treatment, and even when it is made into razor blade material with a thickness of about 0.1 mm, it remains as coarse carbide with a grain size of 3 to 10 μm. be. In a razor blade machined from a material in which coarse carbides are present, the coarse carbides fall off when force is applied to the blade, causing the blade to chip. If this development occurs during sharpening, it will impede sharpness, and if it occurs during use of a razor blade, it will significantly impair the sharpness of the razor blade, resulting in a decrease in product value. In this way, in order to maintain good sharpness in a razor blade, it is necessary to uniformly precipitate fine carbides. Razor blades are used in a quenched and tempered state, and in order to provide good temper softening resistance, it is necessary to uniformly disperse fine carbides. As mentioned above, the quality characteristics required for razor blade materials are strict, and carbide particles with a grain size of 2±1μ must be uniformly distributed in a ferrite pass of 10±5μ. As a manufacturing method to meet this requirement, the solidification rate is accelerated by disposing of the unevenly distributed portions of amorphous carbide as scrap, or by making the steel ingot into a size of about 1 ton, which increases the growth and uneven distribution of eutectic carbides. Various measures have been taken to prevent this, or to improve solidification conditions by continuous casting.
None of these methods completely eliminates coarse carbides. For this reason, it is necessary to easily and stably manufacture stainless steel strips for razor blades that have a stable cutting quality, in other words, steel strips that have sufficient hardness and a structure in which carbides with a maximum grain size of 1.5μ or less are evenly distributed. It was hot. One method that makes this possible is carburization. In JP-A No. 57-126921, a cold steel strip containing 11.0 to 18.0% chromium and up to 0.25% carbon was carburized, diffused and annealed, and then the steel strip was carburized to obtain a predetermined thickness. In order to further refine the carbides, it is disclosed that the fine carbides can be dispersed and precipitated by cold rolling. However, the method of the invention has several drawbacks, and when the average carbon concentration of the entire cross section after carburizing (hereinafter referred to as average carbon concentration) exceeds 0.7%, carbides tend to become coarse. Alternatively, if the diffusion annealing temperature and time are improperly selected, carbides disappear into solid solution or become coarse. Furthermore, once the carbides are precipitated, the rolling rate is
Although finer grains can be refined up to 50%, there was a problem in that fine carbides did not increase even if the rolling rate was increased further. As we investigated and considered these problems and drawbacks, we discovered that the reason for the formation of coarse carbides is that exposure to carburizing temperatures creates coarse regions of crystal grains, and carbon atoms diffuse into these regions. We have clarified that coarse carbides are likely to be formed when the diffusion treatment temperature is high, and that fine carbides disappear into solid solution when the diffusion treatment temperature is high, and that carbides tend to aggregate and become coarse, and we have developed methods to prevent these phenomena from occurring. The present invention was completed by discovering the following. According to the present invention, C: 0.3% or less, Cr: 11.0 to 18.0
A 0.3-2.0 mm thick cold-rolled steel strip or cold-rolled steel sheet material of Fe-Cr stainless steel containing ~ is carburized, subjected to primary diffusion treatment and annealing treatment, and then cold rolled to form carbides. Provided is a method for producing a high carbon stainless steel strip, which comprises dispersing carbides, refining the internal structure, and then uniformly distributing fine carbides by performing a secondary diffusion treatment and an annealing treatment. . When we say cold rolling here. Usually, pickling is carried out before that, and then annealing is carried out, but these may be omitted depending on the case. In the present invention, preferably carburization is carried out to give an average carbon concentration of 0.4 to 1.4%,
Next, by performing a primary diffusion treatment to reduce the carbon concentration in the surface layer and improve rolling properties, the internal structure is refined by cold rolling, and by performing a secondary diffusion treatment, The advantage is that fine carbides can be uniformly precipitated from the surface layer to the center of the plate thickness. The reasons for limiting the conditions of the method of the present invention will be described below. The material steel contains 11.0-18.0% chromium. To give steel corrosion resistance, it must contain at least 11.0% chromium;
If it exceeds 18.0%, the quality is too high for a disposable razor blade material. This is an extremely common range for the chromium content of razor blade materials. Material steel contains less than 0.30% carbon. One key point in carrying out the method of the present invention is how to cheaply produce steel material. Therefore, it can be manufactured without any difficulty using a mass production method, and there is no formation of coarse carbides that cannot be eliminated in subsequent processes when manufacturing large continuous cast slabs, and its high strength allows it to withstand loads such as hot rolling and cold rolling. The limit of carbon content that does not increase is
It was determined to be 0.30%. As for the lower limit, although it is not particularly limited as a component of the invention, the numerical value of ordinary weave in a normal steel manufacturing method is 0.01%. Other so-called inevitable impurities include:
Tolerable amounts of this type of steel that are mixed in with the normal steel manufacturing method are: Si: 1.0% or less, Mn: 1.0% or less, P: 0.04
% or less, S: 0.03% or less, Ni: 0.60% or less, there is no problem. Also, trace amounts of Mo, Nb, V,
W may be contained alone or in combination. These components enhance corrosion resistance, improve hardenability, and reduce decrease in hardness due to tempering after hardening. The thickness of the material is limited to 0.3 mm or more and 2.0 mm or less. The reason for this is that if the plate thickness exceeds 2 mm, the carburizing process time to obtain the desired average carbon concentration will become longer, leading to a decrease in carburizing efficiency, and the load in the subsequent process after carburizing process will increase. It's for a reason. On the other hand, if the sheet thickness is less than 0.3 mm, the amount of reduction in cold rolling is small, and the internal structure cannot be made sufficiently fine, making it difficult to finely precipitate carbides. Carburizing treatment and primary diffusion treatment temperature is 850℃ or higher
The temperature shall be 1050℃ or less. In carburizing, if the temperature is lower than 850°C, the carburizing efficiency will be poor, and if it exceeds 1050°C, the crystallinity will become coarser and the plate will become more deformed, resulting in damage to the plate. For primary diffusion processing,
If the temperature is lower than 850°C, the diffusion rate of carbon atoms is slow and it takes a long time, and if it exceeds 1050°C, the carbides will aggregate and become coarse, and the fine carbides will disappear as a solid solution, which is not preferable. The purpose of limiting the primary diffusion treatment time is to improve rollability by reducing the carbon concentration in the surface layer while preventing carbide precipitation in regions where crystal grains have become coarse. The upper limit of the secondary diffusion treatment temperature was set at 950℃ because
This is to prevent the carbide from coagulating and coarsening or re-dissolving since the treatment time is long. 800 again
Temperatures lower than °C are not preferable because it takes too long for carbon atoms to diffuse. Total rolling ratio R in cold rolling after primary diffusion treatment
(%) was limited to obtain the effect of making the carbides in the coarse grain region fine and breaking and dispersing the carbides precipitated in the carburized layer, and R is at least 50
% was required. If the annealing treatment is carried out at a temperature of 650 to 800°C for 30 minutes or more, sufficient softening can be achieved after cooling. FIG. 1 is a process diagram of the method of the present invention, and the method of the present invention will be specifically explained with reference to this drawing. First, a steel strip or steel plate with a thickness of 0.3 to 2.0 mm is used as a material, and the average carbon concentration is 0.4 to 1.4% at a temperature range of 850 to 1050°C, preferably 0.6 as a razor blade material.
Carburizing is carried out so that the content is within the range of ~1.0%. The carburizing method may be any method as long as it is carried out using a carburizing gas. For example, gas carburizing using shift furnace gas, drip carburizing using gas generated by dripping organic solvent, gas carburizing using hydrocarbon gas diluted with N2 gas, vacuum carburizing under reduced pressure, and Selected from ion carburizing, etc. The selection can be determined by a carburizing expert as appropriate, taking into account the equipment available to him/her, so there is no need to detail the selection conditions here. The carburizing time is a value specific to the carburizing method and can be determined based on the target carbon content, temperature, material composition, and plate thickness. After carburizing treatment is completed, primary diffusion treatment is performed at 850 to 1050℃.
The process is carried out in an inert gas, non-oxidizing gas or vacuum to prevent decarburization. The purpose of the primary diffusion treatment is to reduce the carbon concentration of the carburized layer produced in the surface layer due to carburization, and to improve the rollability in the subsequent cold rolling step. However, the crystal grains in the central part of the plate thickness have become coarse due to the heat received during carburizing, and when carbon diffuses into this region, coarse carbides precipitate. Therefore, the upper limit of the primary diffusion treatment time must be set to a time during which carbon does not diffuse to the center of the plate thickness, and this time is defined as t 1 (minutes) and is given by the following equation. t 1 = 4.4×10 -12 x 2 1 exp (37200/T 1 ) −t c exp {37200 (T c −T 1 )/T c T 1 } ………(1) However, x 1 : Carburizing and Plate thickness during primary diffusion treatment (mm), t c : carburizing treatment time (minutes), T c : carburizing temperature (〓), T 1 : primary diffusion treatment temperature (〓) This equation is similar to the diffusion theory equation. It was derived from experimental data. After the primary diffusion treatment, the temperature range of 650 to 800℃ is
Anneal for at least 1 minute. Since the carburized material is sufficiently softened by these heat treatments, cold rolling can be performed. Here we will discuss the background of equation (1). FIG. 2 is a diagram illustrating the thickness of the carburized layer when the method of the present invention is carried out in relation to the square root of the carburizing time. From this, carburized layer thickness D (mm), carburizing temperature T c
The relationship between (〓) and carburizing time t c (min) is as follows. D 2 = 5.7×10 10・t c・exp (−37200/T c ) ………(2) Equation (2) depends on the diffusion rate of carbon, so it is generally applicable not only to carburizing treatment but also to diffusion treatment. It can be applied as Eq. Here, if the plate thickness is x 1 (mm), the depth to which carbon can be diffused by the primary diffusion treatment is x 1 /2-D. Therefore, to find the primary diffusion processing time, the above equation (1) t 1 = 4.4×10 -12 x 1 2 exp (37200/T 1 ) −t c exp{37200 (T c −T 1 )/T c T 1 }. As a result of these heat treatments, the carbon concentration in the surface layer of the carburized material is lower than that during carburization, and no coarse carbides are precipitated in the coarse grain region at the center of the plate thickness. It has been softened to a point where cold rolling can be carried out immediately after cooling. Cold rolling is performed once or twice so that the total rolling ratio R (%) or more is achieved as expressed by the following formula. When 0.5≦t≦2.0 R=0.9t−0.2/t×100(%) ………(3) When 0.3≦t<0.5 R=50% However, t: plate thickness at cold rolling (mm ) This is an experimentally derived formula. The material subjected to the carburizing treatment and the primary diffusion has a three-layer structure in which the regions where crystal grains have become coarse due to exposure to the carburizing temperature are narrowed between the carburized layers. By subjecting this to cold rolling, crystal grains are deformed and fractured in coarse grain regions, and carbides are fractured and dispersed within the carburized layer. When secondary diffusion annealing is subsequently performed, as the plate thickness is reduced, the diffusion distance of carbon atoms is shortened, allowing them to diffuse to the center of the plate thickness in a short time, and the crystal grains are refined. Therefore, carbides are finely and uniformly dispersed and precipitated. As mentioned above, in secondary diffusion annealing, it is necessary to make the carbon concentration distribution uniform and to precipitate carbides finely and uniformly, and it is also necessary to prevent the solid solution disappearance of fine carbides and the agglomeration and coarsening of carbides. Therefore, the temperature is set to 800 to 950°C, and the treatment is performed for a time t 2 (hours) shown by the following formula. t 2 = 3.33x 2 (−0.02T 2 +27.5) (time)
………(4) However, x 2 : Plate thickness during secondary diffusion treatment (mm), T 2 : Secondary diffusion treatment temperature (〓) In order to prevent decarburization, the atmosphere in the furnace is non-oxidizing gas, Use inert gas or vacuum. After the secondary diffusion treatment, annealing treatment is performed at 650 to 800°C for 30 minutes or more. By the above treatment, it is possible to produce a stainless steel strip for razor blades in which there are no coarse carbides and in which fine carbides with a maximum grain size of 1.5 μm or less are uniformly precipitated. A detailed explanation will be given below based on examples.

【表】 実施例 第1表に本発明を実施するのに用いた素材鋼の
化学成分を示す。素材鋼A、B、C、Dのうち
A、Bはマルテンサイト系ステンレス鋼
SUS410、Cはフエライト系ステンレス鋼
SUS430、Dは中炭素のマルテンサイト系ステン
レス鋼である。Eは比較鋼として用いた高炭素の
マルテンサイト系ステンレス鋼である。これら
A、B、C、D及びEの鋼は通常の製鋼熱延冷延
の工程により製造されており、それぞれ0.5、
1.0、1.0、1.4、0.25〜0.30mmの板厚に冷間圧延し、
焼鈍酸洗されたものを用いた。 実施例 1 A鋼の0.5mm厚素材をN2:45%、H2:25%、
CO:20%、CH4:10%の混合ガス雰囲気中で950
℃で17分間の浸炭処理、およびN2ガス雰囲気中
で950℃で20分間の1次拡散処理と700℃で30分間
の焼なまし処理をおこない、冷間圧延によつて板
厚を0.25mmとした後、N2ガス雰囲気中で900℃で
4時間の2次拡散処理と700℃で30分間の焼なま
し処理をしたとき、平均炭素濃度は0.693%、全
炭化物量に占める最大粒径1.5μ以下の炭化物割合
は100%であつた。 比較例 実施例1で製造された材料と同一板厚に圧延し
た比較鋼Eの板材を焼入れし、各種温度で1時間
焼戻したときの硬さを第3図に示した。曲線1で
示される実施例1の材料は、曲線eで示される比
較材eよりも良好な焼戻し軟化抵抗を示し、かみ
そり刃の場合に実施される350℃の焼戻しにおい
てHv680を示す。 実施例 2 B鋼の1.0mm厚素材をN2:50%、CH4:50%の
混合ガス雰囲気中で980℃で25分間の浸炭処理お
よびN2ガス雰囲気中で950℃で60分間の1次拡散
処理と700℃で30分間の軟化処理を行ない、冷間
圧延によつて板厚を0.3mmとしたのち、N2ガス雰
囲気中で850℃で5時間の2次拡散処理と700℃で
120分間の軟化処理を実施した。このとき平均炭
素分析値は0.702%で全炭化物量に占める最大粒
径1.5μ以下の炭化物割合は100%であつた。本実
施材および同一板厚に圧延した比較鋼Eの厚み方
向に平行な面での炭化物分布状態を第4図a,b
に示す。aは本実施材の1000倍の顕微鏡写真であ
り最大粒径1.5μ以下の炭化物が均一に分散してお
る。(b)は比較材eの同様の顕微鏡写真であるが粗
大炭化物が観察される。 実施例 3 実施例2における1次拡散処理の時間のみを
120分とした。平均炭素濃度は0.700%と同様であ
るが全炭化物量に占める最大粒径1.5μ以下の炭化
物割合は65%であり、残りの炭化物の粒径は1.5
〜2.0μの範囲内にあつた。1.5μを越える炭化物
は、板厚中心部周辺に多く存在したが、1次拡散
処理時間が長いため、結晶粒粗大領域に粗大炭化
物が析出したことを示している。 実施例 4 実施例2における冷間圧延率を70%から0%に
変更し、同様の処理を行なつた。このとき、全炭
化物量に占める最大粒径1.5μ以下の炭化物割合
は、45%となつた。これは冷間圧延率が低いた
め、結晶粒及び浸炭層内の炭化物が十分に微細化
されなかつたことを示している。 実施例 5 実施例2において、2次拡散処理の温度を1050
℃とし5時間実施した。このとき全炭化物量に占
める最大粒径1.5μ以下の炭化物割合は12%であつ
た。これは、2次拡散処理の温度が高いため、微
細炭化物の固溶消失と凝集粗大化が起こつたこと
を示している。 実施例2〜5について第2表に整理した。
[Table] Examples Table 1 shows the chemical composition of the steel material used to carry out the present invention. Of the steel materials A, B, C, and D, A and B are martensitic stainless steel.
SUS410, C is ferrite stainless steel
SUS430, D is medium carbon martensitic stainless steel. E is a high carbon martensitic stainless steel used as a comparative steel. These A, B, C, D, and E steels are manufactured by the normal steelmaking hot-rolling and cold-rolling process, and are 0.5 and 0.5, respectively.
Cold rolled to plate thickness of 1.0, 1.0, 1.4, 0.25~0.30mm,
The one that had been annealed and pickled was used. Example 1 A 0.5 mm thick material of A steel was treated with N 2 : 45%, H 2 : 25%,
950 in a mixed gas atmosphere of CO: 20%, CH4 : 10%
After carburizing at ℃ for 17 minutes, primary diffusion treatment at 950℃ for 20 minutes in N2 gas atmosphere, and annealing at 700℃ for 30 minutes, the plate thickness was reduced to 0.25mm by cold rolling. After that , the average carbon concentration was 0.693%, and the maximum particle size relative to the total carbide amount was The proportion of carbides with a diameter of 1.5μ or less was 100%. Comparative Example FIG. 3 shows the hardness of comparative steel E plates rolled to the same thickness as the material produced in Example 1, which were quenched and tempered at various temperatures for 1 hour. The material of Example 1, shown by curve 1, exhibits better resistance to temper softening than the comparative material e, shown by curve e, exhibiting a H v 680 in the 350° C. tempering carried out in the case of razor blades. Example 2 A 1.0 mm thick material of B steel was carburized at 980°C for 25 minutes in a mixed gas atmosphere of N 2 : 50% and CH 4 : 50%, and carburized for 60 minutes at 950°C in an N 2 gas atmosphere. After performing a secondary diffusion treatment and a softening treatment at 700℃ for 30 minutes, the plate thickness was reduced to 0.3 mm by cold rolling, and then a secondary diffusion treatment at 850℃ for 5 hours in a N2 gas atmosphere and a softening treatment at 700℃ for 5 hours.
A softening treatment was performed for 120 minutes. At this time, the average carbon analysis value was 0.702%, and the proportion of carbides with a maximum particle size of 1.5 μm or less in the total amount of carbides was 100%. Figures 4a and b show the carbide distribution state in the plane parallel to the thickness direction of this example material and comparative steel E rolled to the same thickness.
Shown below. A is a micrograph of this example material magnified 1000 times, and carbides with a maximum particle size of 1.5μ or less are uniformly dispersed. (b) is a similar micrograph of comparative material e, but coarse carbides are observed. Example 3 Only the time for the primary diffusion process in Example 2
It was set as 120 minutes. The average carbon concentration is the same as 0.700%, but the proportion of carbides with a maximum particle size of 1.5μ or less in the total amount of carbides is 65%, and the particle size of the remaining carbides is 1.5%.
It was within the range of ~2.0μ. Many carbides with a diameter exceeding 1.5μ were present around the center of the plate thickness, but this indicates that coarse carbides were precipitated in areas with coarse grains because the primary diffusion treatment time was long. Example 4 The same treatment as in Example 2 was performed except that the cold rolling rate was changed from 70% to 0%. At this time, the proportion of carbides with a maximum particle size of 1.5μ or less in the total amount of carbides was 45%. This indicates that the crystal grains and carbides in the carburized layer were not sufficiently refined due to the low cold rolling rate. Example 5 In Example 2, the temperature of the secondary diffusion treatment was set to 1050℃.
It was carried out for 5 hours at ℃. At this time, the proportion of carbides with a maximum particle size of 1.5 μm or less in the total amount of carbides was 12%. This indicates that because the temperature of the secondary diffusion treatment was high, the fine carbides disappeared as a solid solution and became agglomerated and coarsened. Examples 2 to 5 are summarized in Table 2.

【表】 実施例 6 C鋼の1.4mm厚素材を300mmHgの圧力のCH4
ス中で950℃で100分間の浸炭処理およびN2ガス
雰囲気中で930℃で40分間の1次拡散処理と680℃
で40分間の軟化処理をおこない、冷間圧延によつ
て板厚0.7mmとし、760℃で5分間中間焼鈍後冷間
圧延によつて板厚0.34mmとしたのち、N2ガス雰
囲気中で880℃で5.0時間の2次拡散処理と680℃
で60分間の焼なまし処理をしたときの圧延方向に
垂直な断面での炭化物分布を第5図に示す。(a)は
1000倍、(b)は400倍の顕微鏡写真である。平均炭
素分析値が0.918%であるにも拘らず、粗大炭化
物は全く存在せず粒径2μ以下の炭化物が均一分
布している。 実施例 7 D鋼の1.0mm厚素材を300mmHgの圧力のCH4
ス雰囲気中で1000℃で15分間の浸炭処理および
N2ガス雰囲気中で900℃で60分間の1次拡散処理
と720℃で30分間の軟化処理をおこない、冷間圧
延によつて板厚を0.3mmとした後N2ガス雰囲気中
で920℃で3.6時間の2次拡散処理と720℃で60分
間の軟化処理をしたとき、平均炭素分析値は
0.627%であつた。また全炭化物量に占める最大
粒径1.5μ以下の炭化物割合は100%であつた。 実施例 8 第6図は、A鋼の1.0厚素材を用いて平均炭素
濃度0.65%となるよう、本発明方法により製造し
た場合aと特開昭57−126921に開示された方法に
より製造した場合bの、円換算した最大炭化物粒
径(μ)を各冷間圧延率に対して示した。本発明
方法では、冷間圧延率50%以上で最大粒径1.5μ以
下となる。一方従来方法では、冷間圧延率50%以
上としても最大粒径1.7μより微細化できない。
[Table] Example 6 A 1.4 mm thick material of C steel was carburized at 950 °C for 100 minutes in CH 4 gas at a pressure of 300 mmHg, and primary diffusion treatment was performed at 930 °C for 40 minutes in N 2 gas atmosphere. ℃
The plate was softened for 40 minutes, cold rolled to a thickness of 0.7 mm, intermediately annealed at 760°C for 5 minutes, cold rolled to a thickness of 0.34 mm, and then rolled to a thickness of 0.34 mm in a N2 gas atmosphere. Secondary diffusion treatment for 5.0 hours at 680°C
Figure 5 shows the carbide distribution in a cross section perpendicular to the rolling direction when the specimen was annealed for 60 minutes. (a) is
1000x, (b) a 400x micrograph. Despite the average carbon analysis value being 0.918%, there are no coarse carbides at all, and carbides with a particle size of 2μ or less are uniformly distributed. Example 7 A 1.0 mm thick material of D steel was carburized at 1000°C for 15 minutes in a CH 4 gas atmosphere at a pressure of 300 mmHg.
First diffusion treatment at 900°C for 60 minutes in N2 gas atmosphere and softening treatment at 720°C for 30 minutes, and after cold rolling to a plate thickness of 0.3mm, at 920°C in N2 gas atmosphere. After 3.6 hours of secondary diffusion treatment and 60 minutes of softening treatment at 720℃, the average carbon analysis value was
It was 0.627%. Furthermore, the proportion of carbides with a maximum particle size of 1.5μ or less in the total amount of carbides was 100%. Example 8 Figure 6 shows a case manufactured by the method of the present invention using a 1.0 thick material of A steel and an average carbon concentration of 0.65%, and a case manufactured by the method disclosed in JP-A-126921-1983. The maximum carbide grain size (μ) converted to yen in b is shown for each cold rolling ratio. In the method of the present invention, the maximum grain size is 1.5 μ or less at a cold rolling rate of 50% or more. On the other hand, in the conventional method, even if the cold rolling rate is 50% or more, the maximum grain size cannot be made finer than 1.7μ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の工程図である。第2図
は、各浸炭温度での浸炭層厚みを時間の平方根に
対してプロツトした図である。第3図は実施例1
で製造した材料と比較材eの焼入れ−焼戻し硬さ
曲線を示す図である。第4図は、a実施例2で製
造した材料とb比較材eの焼なまし状態での炭化
物分布を示す顕微鏡写真である。第5図は実施例
6の焼なまし状態での炭化物分布を示す顕微鏡写
真である。第6図は本発明方法と特開昭57−
126921の方法により製造したかみそり刃材の炭化
物最大粒径の変化を示す図である。
FIG. 1 is a process diagram of the method of the present invention. FIG. 2 is a diagram in which the carburized layer thickness at each carburizing temperature is plotted against the square root of time. Figure 3 shows Example 1
It is a figure which shows the quenching-tempering hardness curve of the material manufactured in and comparative material e. FIG. 4 is a micrograph showing the carbide distribution in the annealed state of the material produced in Example 2 (a) and Comparative material (b). FIG. 5 is a micrograph showing the carbide distribution in the annealed state of Example 6. Figure 6 shows the method of the present invention and JP-A-57-
126921 is a diagram showing changes in the maximum grain size of carbide in razor blade materials manufactured by the method of No. 126921. FIG.

Claims (1)

【特許請求の範囲】 1 C:0.3%以下、Cr:11.0〜18.0%を含むFe
−Cr系ステンレス鋼の0.3〜2.0mm厚冷延鋼帯また
は冷延鋼板の素材に浸炭処理し、1次拡散処理と
焼なまし処理したのち、冷間圧延を実施して炭化
物を分散させるとともに、内部組織を微細化し、
その後2次拡散処理と焼なまし処理を施すことに
よつて微細な炭化物を均一に分布させることから
なる高炭素ステンレス鋼帯の製造方法。 2 特許請求の範囲第1項に記載の方法であつ
て、浸炭処理後の全断面平均炭素濃度が0.4〜1.4
%となるよう実施することを特徴とする方法。 3 特許請求の範囲第1項に記載の方法であつ
て、1次拡散処理後の冷間圧延において、総圧延
率R(%)を次式に示す値となるように実施する
ことを特徴とする方法。 0.5≦t≦2.0のときR=0.9t−0.2/t ×100(%) 0.3≦t<0.5のときR=50(%) ただし t:冷間圧延時の板厚(mm) 4 特許請求の範囲第1項、第2項または第3項
に記載の方法であつて、浸炭処理を850〜1050℃
の温度とし、1次拡散処理を処理温度850〜1050
℃、処理時間0〜t1分とし、2時拡散処理を処理
温度800〜1000℃、処理時間t2時間とする、こと
を特徴とする方法。ただし、t1及びt2は次式に基
づく。 t1=4.4×10-12x1 2exp(37200/T1) −tcexp{37200(Tc−T1)/TcT1}(分) t2=3.33x2(−0.02T2+27.5)(時間) ただし、 x1:1次拡散処理時の板厚(mm) x2:2次拡散処理時の板厚(mm) Tc:浸炭処理温度(〓) T1:1次拡散処理温度(〓) T2:2次拡散処理温度(〓) tc:浸炭処理時間(分)
[Claims] 1 Fe containing C: 0.3% or less, Cr: 11.0 to 18.0%
- After carburizing 0.3 to 2.0 mm thick cold-rolled steel strip or cold-rolled steel plate material of Cr-based stainless steel, performing primary diffusion treatment and annealing treatment, cold rolling is performed to disperse carbides. , refine the internal structure,
A method for producing a high carbon stainless steel strip, which comprises uniformly distributing fine carbides by subsequently performing a secondary diffusion treatment and an annealing treatment. 2. The method according to claim 1, wherein the average carbon concentration of the entire cross section after carburizing treatment is 0.4 to 1.4.
%. 3. The method according to claim 1, characterized in that the cold rolling after the primary diffusion treatment is carried out so that the total rolling ratio R (%) becomes the value shown in the following formula: how to. When 0.5≦t≦2.0, R=0.9t−0.2/t ×100 (%) When 0.3≦t<0.5, R=50 (%) where t: plate thickness during cold rolling (mm) 4. The method according to the range 1, 2 or 3, wherein the carburizing treatment is carried out at 850 to 1050°C.
The temperature of the primary diffusion treatment is 850 to 1050.
℃, the treatment time is 0 to t 1 minute, and the 2-hour diffusion treatment is performed at the treatment temperature 800 to 1000℃, and the treatment time t is 2 hours. However, t 1 and t 2 are based on the following formula. t 1 = 4.4×10 -12 x 1 2 exp (37200/T 1 ) −t c exp {37200 (T c −T 1 )/T c T 1 } (min) t 2 = 3.33x 2 (−0.02T 2 +27.5) (hours) However, x 1 : Plate thickness at primary diffusion treatment (mm) x 2 : Plate thickness at secondary diffusion treatment (mm) T c : Carburizing temperature (〓) T 1 : Primary diffusion treatment temperature (〓) T 2 : Secondary diffusion treatment temperature (〓) t c : Carburizing treatment time (minutes)
JP21705582A 1982-12-13 1982-12-13 Manufacture of high carbon stainless steel strip Granted JPS59107028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21705582A JPS59107028A (en) 1982-12-13 1982-12-13 Manufacture of high carbon stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21705582A JPS59107028A (en) 1982-12-13 1982-12-13 Manufacture of high carbon stainless steel strip

Publications (2)

Publication Number Publication Date
JPS59107028A JPS59107028A (en) 1984-06-21
JPH0114970B2 true JPH0114970B2 (en) 1989-03-15

Family

ID=16698117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21705582A Granted JPS59107028A (en) 1982-12-13 1982-12-13 Manufacture of high carbon stainless steel strip

Country Status (1)

Country Link
JP (1) JPS59107028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105363A (en) * 2012-11-28 2014-06-09 Kunitomo Nekko Kk Ferritic surface-modified metal member and method of producing ferritic surface-modified metal member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525786B2 (en) * 1986-11-14 1996-08-21 泰二 西沢 Method for producing steel with ultrafine grain structure
JP6565842B2 (en) 2016-09-12 2019-08-28 株式会社デンソー Manufacturing method of ferritic stainless steel products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105363A (en) * 2012-11-28 2014-06-09 Kunitomo Nekko Kk Ferritic surface-modified metal member and method of producing ferritic surface-modified metal member

Also Published As

Publication number Publication date
JPS59107028A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
JP3354163B2 (en) Stainless steel for razor and method for producing the same
KR20020013442A (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
EP0050356B1 (en) Method for producing ferritic stainless steel sheets or strips containing aluminum
CN108977726A (en) A kind of the martensite super-high strength cold rolled steel band and its manufacturing method of anti-delayed fracture
JPS6410564B2 (en)
EP0390142A2 (en) Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JPH0114970B2 (en)
US5496514A (en) Stainless steel sheet and method for producing thereof
US3653981A (en) Method for making ferritic stainless steel sheet having excellent workability
US3444011A (en) Low-temperature tough steel
JP2003013144A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability
KR970003642B1 (en) Alloy sheet and method for manufacturing thereof
KR970009092B1 (en) Stainless steel sheet and method for producing thereof
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPS58221263A (en) Special steel with superior workability and heat treatability and its manufcture
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JP3839090B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
EP0537398B2 (en) Method of making regular grain oriented silicon steel without a hot band anneal
JPS58120720A (en) Production of tempered steel
JPH058256B2 (en)
JP2003073740A (en) Method for manufacturing high-carbon cold rolled steel sheet with high hardenability
JPH0813030A (en) Production of steel plate for metal saw base plate
JPH10298646A (en) Production of stainless steel plate
JP4380194B2 (en) Manufacturing method of martensitic stainless steel plate excellent in punching workability and martensitic stainless steel plate for disc brake