JPH01149420A - Thin film formation - Google Patents

Thin film formation

Info

Publication number
JPH01149420A
JPH01149420A JP30750987A JP30750987A JPH01149420A JP H01149420 A JPH01149420 A JP H01149420A JP 30750987 A JP30750987 A JP 30750987A JP 30750987 A JP30750987 A JP 30750987A JP H01149420 A JPH01149420 A JP H01149420A
Authority
JP
Japan
Prior art keywords
film
phosphorus
heat treatment
temperature
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30750987A
Other languages
Japanese (ja)
Other versions
JP2690917B2 (en
Inventor
Takashi Kobayashi
孝 小林
Shinpei Iijima
飯島 晋平
Atsushi Hiraiwa
篤 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62307509A priority Critical patent/JP2690917B2/en
Publication of JPH01149420A publication Critical patent/JPH01149420A/en
Application granted granted Critical
Publication of JP2690917B2 publication Critical patent/JP2690917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form an Si film containing phosphorus, with which sufficient conductivity can be obtained by a low temperature heat treatment, and having excellent productivity and controllability by a method wherein, when silicon is formed on a substrate having a stepping using disilane and phosphine as raw gas, the temperature at the time when silicon, containing phosphorus, is formed is limited within the specific range. CONSTITUTION:A thermal oxide film 102 of 1mum in thickness is formed on an Si substrate 10, and then grooves 103 of 0.8mum in width are formed leaving the equal intervals using the widely known lithographic method and a dry etching method. Subsequently, an Si oxide film 104 of 100nm in thickness is formed using an LPCVD method, and impurities are doped. As a result, the wiring resistance on the stepped part, which is steep when compared with an ion-implanting method and a thermal diffusion method, can be reduced sharply by forming the Si film which phosphorus is being doped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜形成方法に係り1段差急峻部の配線あるい
は電極の低抵抗化を実現し、LSIデバイス製造工程の
簡略化、低温化に好適なリンを含むSi膜を形成する方
法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for forming a thin film, and achieves lower resistance of wiring or electrodes in a steep part with a single step difference, and is suitable for simplifying the LSI device manufacturing process and lowering the temperature. The present invention relates to a method of forming a Si film containing phosphorus.

〔従来の技術〕[Conventional technology]

モノシラン(SiH3)の熱分解を用い、低圧化学気相
成長法(LPCVD法)により形成した多結晶シリコン
(Si)膜は、広く半導体装置の電極や配線に利用され
ている。LPCVD法で形成した多結晶Si膜はそのま
までは抵抗が極めて大きいため、その後の工程で不純物
を周知の熱拡散法あるいはイオン打込み法により導入し
、導電性を得ている。尚、この種の薄膜形成方法として
関連するものには1例えばジャーナル オブ ジェレク
トロケミカル ソサイエテイ−127゜(1980年)
686頁から690頁(J。
Polycrystalline silicon (Si) films formed by low pressure chemical vapor deposition (LPCVD) using thermal decomposition of monosilane (SiH3) are widely used for electrodes and wiring of semiconductor devices. Since the polycrystalline Si film formed by the LPCVD method has extremely high resistance as it is, impurities are introduced in a subsequent step by a well-known thermal diffusion method or ion implantation method to obtain conductivity. Incidentally, related methods for forming thin films of this type include 1, for example, Journal of the Gelectrochemical Society-127゜ (1980).
pp. 686-690 (J.

Electrochem、 Soc、 127 (19
80) pp686−690)が挙げ゛られる。
Electrochem, Soc, 127 (19
80) pp686-690).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち、多結晶Si膜にイオン打込みを行
なった場合、急峻な段差側壁部では不純物濃度の不足す
る領域を生じ、電極あるいは配線が充分な導電性を得ら
れない場合があった。また、打込んだ不純物を拡散、活
性化するためには900℃以上での熱処理が必要であっ
た。
Among the above-mentioned conventional techniques, when ions are implanted into a polycrystalline Si film, regions with insufficient impurity concentration occur in steeply stepped sidewalls, and electrodes or wiring may not have sufficient conductivity. Furthermore, heat treatment at 900° C. or higher was required to diffuse and activate the implanted impurities.

一方、熱拡散法によるリンのドーピングにおいては、多
結晶Si上部にリンを含んだ酸化Si層が形成されるた
め、この酸化Si層を除去する工程が必要であること、
高温、長時間のリンの熱拡散を行なえば急峻な段差側壁
部へもドーピングが可能であるが、多結晶Si膜の下層
がSi基板の場合、基板にまでリンが拡散し、例えばM
OSトランジスタを構成するドレインの不純物分布を乱
すといった不都合があった。
On the other hand, when doping phosphorus by thermal diffusion, a Si oxide layer containing phosphorus is formed on top of polycrystalline Si, so a step of removing this Si oxide layer is required;
If thermal diffusion of phosphorus is carried out at high temperature and for a long period of time, it is possible to dope even the steeply stepped sidewalls, but if the lower layer of the polycrystalline Si film is a Si substrate, phosphorus will diffuse into the substrate, for example, M
This has the disadvantage of disturbing the impurity distribution in the drain constituting the OS transistor.

更に、溝型構造キャパシタにおいて溝内に埋め込まれた
電極を多結晶Siで形成し、不純物導入をイオン打込み
法あるいは熱拡散法いずれの方法で行なった場合も多結
晶Si膜全全体充分な量の不純物を導入することは困難
であった。
Furthermore, when the electrodes embedded in the trenches of a trench-type capacitor are formed of polycrystalline Si, and impurities are introduced by either ion implantation or thermal diffusion, a sufficient amount of impurity is implanted throughout the entire polycrystalline Si film. It was difficult to introduce impurities.

上記の問題点を解決する1つの方法として、リンをドー
ピングしながら多結晶Si膜を形成する方法(i n−
5ituドーピング法)がある、すなわち、5iHaと
ともに不純物源となるフォスフインPH3)、ジボラン
(B 2 He ) pアルシン(AsH3)等を流し
、多結晶Si膜を形成しながら不純物を導入する方法で
ある。しかし、5iHaとPH8を用いてリンをドーピ
ングしながら形成した多結晶Si膜は、リンをドーピン
グしないで形成した多結晶Si膜に比べ、その成長速度
が1桁以上小さく、量産性に乏しいこと、複数のSi基
板上に同時に形成した場合、膜厚分布が著しく大きいと
いった欠点があった。
One method to solve the above problems is to form a polycrystalline Si film while doping phosphorus (in-
In other words, there is a method in which impurities are introduced while forming a polycrystalline Si film by flowing phosphine (PH3), diborane (B 2 He ) p-arsine (AsH3), etc., which serve as an impurity source together with 5iHa. However, the growth rate of a polycrystalline Si film formed using 5iHa and PH8 while doping with phosphorus is more than an order of magnitude lower than that of a polycrystalline Si film formed without doping with phosphorus, making it difficult to mass-produce. When formed simultaneously on a plurality of Si substrates, there was a drawback that the film thickness distribution was extremely large.

成長速−度を増大するためにSiH4のかわりに5iz
Heを用いる方法も試みられている。しかし、これまで
の技術では、5izHeとPHaを原料ガスとしても不
純物を活性化するためには900℃〜1000℃といっ
た高温の熱処理が必要であり。
5iz instead of SiH4 to increase growth rate
A method using He has also been attempted. However, in the conventional technology, heat treatment at a high temperature of 900° C. to 1000° C. is required in order to activate impurities even when 5izHe and PHa are used as raw material gases.

結局熱拡散法と同様に基板Si中への不純物の拡散を防
ぐことができない。
After all, like the thermal diffusion method, it is not possible to prevent impurities from diffusing into the Si substrate.

本発明の目的は、上記問題点を解決すべく、生産性及び
制御性に優れ、低温の熱処理で充分な導電性の得られる
リンを含むSi膜を形成することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an object of the present invention is to form a phosphorus-containing Si film that is excellent in productivity and controllability and can obtain sufficient conductivity through low-temperature heat treatment.

〔間″照点を解決するための手段〕[Means for resolving the gap]

上記目的は、 ■原料ガスとしてSi’zHaとP Hδを用いる■膜
形成温度範囲を450℃〜550℃とする■膜形成の圧
力範囲を50Pa以下、原料ガスの流量比(P Ha/
 S i 2H6)を5X10−2以下とする ことにより達成される。
The above objectives are as follows: ■ Using Si'zHa and P Hδ as source gases ■ Setting the film formation temperature range to 450°C to 550°C ■ Setting the film forming pressure range to 50 Pa or less, and adjusting the flow rate ratio of the source gases (P Ha/
This is achieved by setting S i 2H6) to 5X10-2 or less.

上記圧力範囲の混合量比が極度に小さくなると、膜の形
成速度が極度に小さくなり実用が困難になるので、実際
に半導体デバイスの形成が可能なように、それぞれの下
限を適宜設定すればよい。
If the mixture ratio in the above pressure range becomes extremely small, the film formation rate becomes extremely low, making it difficult to put it into practical use. Therefore, the lower limits of each should be set appropriately to make it possible to actually form semiconductor devices. .

〔作用〕[Effect]

本発明者は、上記条件によりリンをドーピングしなから
Si膜を形成することにより、Si膜の成長速度が低下
しないことウェハ内あるいはウェハ間で均一性のよい膜
が得られること、また膜中の不純物が650℃という低
温の熱処理で充分に活性化されることを見出した。成長
速度が低下しない理由は以下のように考えられる。
The present inventor has discovered that by forming a Si film without doping phosphorus under the above conditions, the growth rate of the Si film will not decrease, a film with good uniformity within a wafer or between wafers can be obtained, and that It has been found that the impurities in the above can be sufficiently activated by heat treatment at a low temperature of 650°C. The reason why the growth rate does not decrease is thought to be as follows.

PHaあるいはこれが解離したリンが基板表面(特にS
i表面)に吸着する確率(付着確率)はほぼ1であり、
PHaまたはリンは基板表面に容易に吸着して極めて安
定な層を形成する。これシこ対しSiH4の付着確率は
PHaのそれに比べがなり小さいため、原料ガスとして
SiH4とPHaを用い、リンをドーピングしながら多
結晶Si膜を形成する場合、PHaにより5iHaは表
面の吸着を阻害され、反応に寄与することができない。
PHa or phosphorus dissociated from it is deposited on the substrate surface (especially S
The probability of adsorption (adhesion probability) to i surface is approximately 1,
PHa or phosphorus easily adsorbs to the substrate surface and forms a very stable layer. On the other hand, the adhesion probability of SiH4 is much smaller than that of PHa, so when forming a polycrystalline Si film while doping phosphorus using SiH4 and PHa as source gases, PHa inhibits the adsorption of 5iHa on the surface. and cannot contribute to the reaction.

反応に寄与するのは S i H’4→S i Hx+ H2・・・(1)な
る反応により生成したシリレン(SiHz)などPHa
に吸着を妨げられない非常に活性な反応種であると考え
られる。しかし、(1)式の反応の起こる確率は小さい
ため、5iHaを用い、リンをドーピングしながら多結
晶Si膜を形成する場合、第3図に示したように、S 
iH4に対するPHaの流量が増大するほど膜の成長速
度は減少する。
What contributes to the reaction is PHa such as silylene (SiHz) produced by the reaction S i H'4 → S i Hx + H2...(1)
It is considered to be a very active reactive species that cannot be prevented from being adsorbed. However, since the probability of the reaction of formula (1) occurring is small, when forming a polycrystalline Si film using 5iHa while doping phosphorus, as shown in Fig. 3, S
As the flow rate of PHa to iH4 increases, the film growth rate decreases.

ところが、5iHaのかわりに5izH6を用いた場合
5izHeは、 5izHe→S i H4+ S i N2    ・
・・(2)のように分解する。(2)式の起こる確率は
(1)式に比べ非常に大きいため、容易に5iHzのよ
うな活性種を生成することが可能である。このため5i
zHeとPHaを原料ガスとすると、第3図に示した如
く、5izHeに対するPH3の流量が増加しても膜の
成長速度が減少することがない。
However, when 5izH6 is used instead of 5iHa, 5izHe becomes 5izHe→S i H4+ S i N2 ・
...Disassemble as shown in (2). Since the probability that equation (2) occurs is much greater than equation (1), it is possible to easily generate active species of 5 iHz. For this reason, 5i
When zHe and PHa are used as source gases, as shown in FIG. 3, the film growth rate does not decrease even if the flow rate of PH3 relative to 5izHe increases.

なお、第3図中のエラーバーは成長速度のウェハ間のば
らつきを示したものである。5iHa を原料ガスとし
て用いた場合のウェハ間の膜厚のばらつきが±10%以
上であるのに対し、5izHeを原料ガスとした場合は
ばらつきが±6%以下であり、SiH4のかわりに5i
zHeを用いることにより、ウェハ間の膜厚均一性が向
上することがわかる。
Note that the error bars in FIG. 3 indicate variations in growth rate between wafers. When 5iHa is used as the source gas, the variation in film thickness between wafers is more than ±10%, whereas when 5izHe is used as the source gas, the variation is less than ±6%.
It can be seen that the use of zHe improves the film thickness uniformity between wafers.

次に膜中の不純物の活性化については以下のように考え
られる。5iHaに比べ5izHeは低温で分解しやす
いため、5i2Heを原料ガスとして用いることにより
SiH4を用いた場合よりも低い温度で、リンをドーピ
ングしながらSi膜を形成することが可能である。57
5℃以下で形成した膜はそのままでは非晶質状態であり
、特定の結晶構造を有せず、かつ極めて平滑な表面が得
られる。
Next, the activation of impurities in the film can be considered as follows. Compared to 5iHa, 5izHe is easily decomposed at low temperatures, so by using 5i2He as a source gas, it is possible to form a Si film while doping phosphorus at a lower temperature than when using SiH4. 57
A film formed at 5° C. or lower is in an amorphous state as it is, does not have a specific crystal structure, and has an extremely smooth surface.

多結晶Siに不純物を導入した場合、既に結晶格子を形
成し、その格子点にあるSi原子を不純物原子が置換す
るためには大きなエネルギーが必要であり、不純物の活
性化のためには900℃以上の高温の熱処理を要する。
When impurities are introduced into polycrystalline Si, a large amount of energy is required to form a crystal lattice and allow the impurity atoms to replace the Si atoms at the lattice points. It requires heat treatment at higher temperatures.

しかし1本発明のように、Si原子とP原子が非晶質状
態で存在している場合には、Siが結晶格子を組む際に
P原子をその格子点に取り込むため、非晶質が結晶化す
る程度の温度の熱処理により、容易に不純物を活性化す
ることが可能であると考えられる。
However, when Si atoms and P atoms exist in an amorphous state as in the present invention, when Si forms a crystal lattice, it incorporates P atoms into its lattice points, so the amorphous state becomes crystalline. It is considered that impurities can be easily activated by heat treatment at a temperature that causes the impurities to become oxidized.

多結晶Si膜に熱拡散法あるいはイオン打込み法により
リンをドーピングした場合、また、リンをドーピングし
ながら多結晶のSi膜を形成した場合には、結晶粒は9
00℃以上の熱処理を行なわないと成長しないことは公
知の事実である。しかしながら、本発明者は、リンをド
ーピングしながら非晶質状態のSi膜を形成した場合に
は、650℃程度の熱処理によりSi膜が多結晶化した
段階で既に巨大な結晶粒が生成することを見出した。
When a polycrystalline Si film is doped with phosphorus by thermal diffusion or ion implantation, or when a polycrystalline Si film is formed while doping phosphorus, the crystal grains are
It is a well-known fact that growth will not occur unless heat treatment is performed at 00°C or higher. However, the present inventor discovered that when an amorphous Si film is formed while doping phosphorus, giant crystal grains are already generated when the Si film becomes polycrystalline through heat treatment at about 650°C. I found out.

以上述べたように、5izHeとPH8を原料ガスとし
てリンをドーピングしながら非晶質状態でSi膜を形成
すると、650℃程度の熱処理により膜中の不純物の活
性化と結晶粒の成長が完了する。このため従来法のよう
な高温の熱処理を行なわなくても充分に抵抗の低いリン
を含むSi膜が得られる。従って、不純物の下層Si層
への拡散や界面への偏析を防ぐことができる。
As mentioned above, when a Si film is formed in an amorphous state while doping phosphorus using 5izHe and PH8 as raw material gases, the activation of impurities in the film and the growth of crystal grains are completed by heat treatment at approximately 650°C. . Therefore, a Si film containing phosphorus with sufficiently low resistance can be obtained without performing high-temperature heat treatment as in the conventional method. Therefore, it is possible to prevent impurities from diffusing into the lower Si layer and segregation at the interface.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

実施例1 第4図に実験に用いた装置の概略図を示す。本装置の石
英管10の内径は180mmであり、石英管中央に治具
40ti−置き、これに18+nmの間隔で直径160
mmの石英製ウェハホルダ50を立てた。
Example 1 FIG. 4 shows a schematic diagram of the apparatus used in the experiment. The inner diameter of the quartz tube 10 of this device is 180 mm, and a jig 40ti- is placed in the center of the quartz tube, and a diameter 160
A wafer holder 50 made of quartz with a diameter of 1 mm was set up.

このホルダに試料基板60を装着した。基板にはSi上
に熱酸化膜1100nを形成したものを用いた。
A sample substrate 60 was attached to this holder. The substrate used was Si with a thermal oxide film 1100n formed thereon.

基板60を装着し、石英管内を排気した後、バルブ70
及びバルブ80を開けて、5izHeを50 c c 
/win、 P Haを1 c c /win同時に流
した。5izHeとPHaを流している間の石英管内圧
力は30Paに保持した。所定時間ガスを導入して膜形
成を行なった後、試料を取り出した。その後、650℃
、800℃、900℃、1000℃のN2雰囲気中で2
0分間熱処理を行なった後。
After mounting the substrate 60 and evacuating the inside of the quartz tube, the valve 70
Open the valve 80 and add 50 cc of 5izHe.
/win, P Ha was flowed at the same time at 1 c c /win. The pressure inside the quartz tube was maintained at 30 Pa while 5izHe and PHa were flowing. After gas was introduced for a predetermined period of time to form a film, the sample was taken out. After that, 650℃
, 2 in N2 atmosphere at 800℃, 900℃, 1000℃
After heat treatment for 0 minutes.

比抵抗を四探針法により、また、キャリア濃度と移動度
をファン・デル・パラ法を用いたホール測定により評価
した。
The resistivity was evaluated by the four-probe method, and the carrier concentration and mobility were evaluated by Hall measurements using the van der Para method.

第1図は、横軸に膜形成温度、縦軸に膜の比抵抗をとっ
たもので°ある。いずれの膜形成温度及び膜形成後の熱
処理温度においても充分な導電性が得られている。第1
図より、膜形成温度が550℃以下では、比抵抗は熱処
理温度に依存していない。
In FIG. 1, the horizontal axis shows the film formation temperature and the vertical axis shows the specific resistance of the film. Sufficient conductivity was obtained at any film formation temperature and post-film formation heat treatment temperature. 1st
From the figure, when the film formation temperature is 550° C. or lower, the specific resistance does not depend on the heat treatment temperature.

第2図は、横軸に膜形成温度、左縦軸に膜中のキャリア
濃度、右縦軸に膜中のキャリアの移動度をとったもので
ある。第1図の比抵抗と同様、550℃以下の膜形成温
度では、キャリア濃度。
In FIG. 2, the horizontal axis shows the film formation temperature, the left vertical axis shows the carrier concentration in the film, and the right vertical axis shows the carrier mobility in the film. Similar to the specific resistance in Figure 1, at a film formation temperature of 550°C or less, the carrier concentration.

移動度は膜形成後の熱処理温度に依存していない。The mobility does not depend on the heat treatment temperature after film formation.

第1図及び第2図から、550℃以下でリンをドーピン
グしながら形成したSi膜は650℃という低温の熱処
理で活性化が完了し、それ以上の高温の熱処理を行なっ
ても膜の構造ならびに特性の変化しないことがわかる。
From Figures 1 and 2, it can be seen that activation of the Si film formed while doping phosphorus at a temperature below 550°C is completed by heat treatment at a low temperature of 650°C, and even if heat treatment is performed at a higher temperature, the structure of the film remains unchanged. It can be seen that the characteristics do not change.

比較のため、従来法である5iHaとPHaを原料ガス
として用い、石英管内温度を630℃、圧力を80Pa
に維持してSiH4を200cc/win、PHaを1
c c /win流してリンをドーピングしながら多結
晶Si膜を形成した。続いて5izHeを用いた場合と
同様の温度のN2雰囲気中で熱処理した後、比抵抗、キ
ャリア濃度、移動度を測定した。650℃の熱処理後の
比抵抗、キャリア濃度、移動度はそれぞれ1.lX10
−”Ωcm、 7.2 X 10”3−’、 6.5c
J/V @ S 。
For comparison, using the conventional method of 5iHa and PHa as source gases, the temperature inside the quartz tube was 630°C and the pressure was 80Pa.
Maintain SiH4 at 200cc/win and PHa at 1
A polycrystalline Si film was formed while doping phosphorus by flowing c c /win. Subsequently, after heat treatment was performed in an N2 atmosphere at the same temperature as when using 5izHe, specific resistance, carrier concentration, and mobility were measured. The specific resistance, carrier concentration, and mobility after heat treatment at 650°C are each 1. lX10
-"Ωcm, 7.2 x 10"3-', 6.5c
J/V @S.

800℃の熱処理後は1.8X10″″8Ω■、1.2
Xi()”Ωexa−”、12.2  a#/V−8,
900℃の熱処理後は8.4 X 10″″盛Ωcn、
 2.6 X 1020Ωam−’、28.8 a#/
V−8,1000℃の熱処理後は8.OX 10″″4
Ω個、 2.8 X 1020cn−”。
After heat treatment at 800℃, 1.8X10″″8Ω■, 1.2
Xi()"Ωexa-", 12.2 a#/V-8,
After heat treatment at 900℃, 8.4 x 10'' Ωcn,
2.6 x 1020Ωam-', 28.8 a#/
V-8, 8. after heat treatment at 1000°C. OX 10″″4
Ω pieces, 2.8 x 1020cn-”.

29.1. a1/V −Sであり、活性化のためには
900℃以上の熱処理を要した。尚、多結晶Si膜にリ
ンを熱拡散あるいはイオン打込みした場合、不純物の活
性化のためには900℃程度以上の熱処理が必要なこと
は公知の事実である。
29.1. a1/V -S, and required heat treatment at 900° C. or higher for activation. It is a well-known fact that when phosphorous is thermally diffused or ion-implanted into a polycrystalline Si film, heat treatment at about 900° C. or higher is required to activate the impurities.

本実施例によれば、原料ガスとして5izHeとPHa
を用いて550℃以下の温度でリンをドーピングしなか
らSi膜を形成することにより、SiH4とPHaを原
料ガスとしてリンをドーピングしながら多結晶Si膜を
形成した場合、あるいは多結晶Si膜にリンを熱拡散法
やイオン打込み法でドーピングした場合よりもはるかに
低温(650℃程度)の熱処理で不純物を活性化できる
という効果がある。
According to this embodiment, 5izHe and PHa are used as raw material gases.
When a polycrystalline Si film is formed while doping with phosphorus using SiH4 and PHa as raw material gases, or when a polycrystalline Si film is formed without doping with phosphorus at a temperature of 550°C or less using This method has the effect that impurities can be activated by heat treatment at a much lower temperature (about 650° C.) than when phosphorus is doped by thermal diffusion or ion implantation.

また、膜形成後の熱処理温度が変動しても膜の比抵抗が
変化しないという効果がある。
Further, there is an effect that the specific resistance of the film does not change even if the heat treatment temperature after film formation changes.

更に、550℃以下の膜形成温度ではキャリアの移動度
が30d/V−8以上と大きいため、小さな不純物濃度
でも充分な導電性を得ることが可能であり、下地Si基
板への不純物の拡散量を低減できるという効果もある。
Furthermore, since the carrier mobility is as high as 30d/V-8 or higher at a film formation temperature of 550°C or lower, sufficient conductivity can be obtained even with a small impurity concentration, and the amount of impurity diffused into the underlying Si substrate can be reduced. It also has the effect of reducing the

実施例2 本実施例では、急峻な段差部の配線に多結晶Siを用い
た場合、不純物の導入法により配線抵抗がどの程度具な
るかを測定した例について述べる。
Example 2 In this example, an example will be described in which, when polycrystalline Si is used for wiring in a steep stepped portion, the degree of wiring resistance is measured by an impurity introduction method.

第5図に示す手順で試料1〜3を作成した。まずSi基
板101に厚さ1μmの熱酸化膜102を形成した(第
5図(3))、次いで周知のりソグラフイとドライエツ
チング法により幅0.8μmの溝103を等間隔になる
ように形成した(第5図(b))、続いてLPCvD法
で酸化Si膜104を1100n形成した(第5図<a
>> 。
Samples 1 to 3 were prepared according to the procedure shown in FIG. First, a thermal oxide film 102 with a thickness of 1 μm was formed on a Si substrate 101 (FIG. 5 (3)), and then grooves 103 with a width of 0.8 μm were formed at equal intervals by well-known lamination and dry etching methods. (Fig. 5(b)), and then a 1100nm Si oxide film 104 was formed by LPCvD method (Fig. 5<a
>>.

次いで以下の方法でSi膜形成及び不純物ドーピングを
行なった。試料1では5izHs50cc/winとP
 Ha 1 c c /winを石英管内温度525℃
、圧力30Paで同時に流し、リンをドーピングしなが
ら200nmのSi膜を形成した。試料2及び試料3に
ついてはS i H4を原料ガスとし630℃で200
nmの多結晶Si膜を形成した後、試料2についてはリ
ンイオンを打込みエネルギー800KeV、打込み量5
X101δ0m−”で打込んだ、試料3については87
5℃で20分間リン拡散を行なった。続いて試料1は6
50℃、試料2及び試料3は900℃のN2雰囲気で6
0分間熱処理を行なった。
Next, a Si film was formed and impurity doping was performed using the following method. For sample 1, 5izHs50cc/win and P
Ha 1 c c /win at quartz tube internal temperature 525℃
, and simultaneously flowed at a pressure of 30 Pa to form a 200 nm Si film while doping with phosphorus. For samples 2 and 3, SiH4 was used as the raw material gas and the temperature was 200°C at 630°C.
After forming a polycrystalline Si film of 5 nm thick, for Sample 2, phosphorus ions were implanted at an energy of 800 KeV and an implant amount of 5.
87 for sample 3, which was implanted with
Phosphorus diffusion was performed at 5°C for 20 minutes. Next, sample 1 is 6
50℃, Sample 2 and Sample 3 were heated at 900℃ in N2 atmosphere.
Heat treatment was performed for 0 minutes.

試料1の多結晶Si膜の平坦部におけるシート抵抗は3
5Ω10であり、段差10個を横切る幅0.8μmの配
線抵抗は1.6にΩで充分な導電性が得られた。試料2
の多結晶Si膜の平坦部におけるシート抵抗は90Ω/
口であったが、段差10個を横切る幅0.8μmの配線
の抵抗は100にΩと非常に高抵抗であった。試料3に
ついては、多結晶Si膜の平坦部におけるシート抵抗は
74Ω/ロ9段差10個を横切る幅0.8  μmの配
線の抵抗は4.5にΩであった。
The sheet resistance in the flat part of the polycrystalline Si film of sample 1 is 3
5Ω10, and the wiring resistance across the 10 steps with a width of 0.8 μm was 1.6Ω, and sufficient conductivity was obtained. Sample 2
The sheet resistance at the flat part of the polycrystalline Si film is 90Ω/
However, the resistance of the 0.8 μm wide wiring that crossed the 10 steps was extremely high at 100Ω. For sample 3, the sheet resistance in the flat part of the polycrystalline Si film was 74 Ω/Ω, and the resistance of the wiring with a width of 0.8 μm crossing 10 9-level differences was 4.5 Ω.

本実施例によれば、リンをドーピングしなからSi1%
を形成することにより、イオン打込み法や熱拡散法に比
べ急峻な段差部分の配線抵抗を大幅に低減できる効果が
ある。
According to this example, Si1% is not doped with phosphorus.
By forming this method, it is possible to significantly reduce the wiring resistance at steep step portions compared to the ion implantation method or the thermal diffusion method.

実施例3 本実施例では、不純物ドーピング法の違いが基板Si中
への不純物の拡散深さに与える影響を測定した例につい
て述べる。
Example 3 In this example, an example will be described in which the influence of different impurity doping methods on the depth of diffusion of impurities into a Si substrate is measured.

第5図(b)に示した基板を試料として用いた。The substrate shown in FIG. 5(b) was used as a sample.

試料4は基板上に、石英管内温度525℃、圧力30P
aでS 1zHa 50 c c、/+in、 PHa
 1cc/winを同時に流し、リンを含むSi膜を形
成した後、650℃のN2雰囲気中で60分間熱処理し
た。試料5は石英管内温度630℃で5iHa を原料
ガスとして基板上に200nmの多結晶SiHを形成し
た後、875℃で20分間リン拡散を行ない、続いて9
00℃のNZ雰囲気中で60分間熱処理を行なった。
Sample 4 was placed on the substrate at a temperature of 525°C in a quartz tube and a pressure of 30P.
S in a 1zHa 50 c c, /+in, PHa
After simultaneously flowing 1 cc/win to form a Si film containing phosphorus, heat treatment was performed in an N2 atmosphere at 650° C. for 60 minutes. In sample 5, polycrystalline SiH of 200 nm was formed on the substrate using 5iHa as a raw material gas at a temperature inside the quartz tube of 630°C, and then phosphorus was diffused at 875°C for 20 minutes, followed by 9
Heat treatment was performed for 60 minutes in a NZ atmosphere at 00°C.

N2雰囲気中で熱処理した試料4及び5は溝と垂直な平
面に沿って臂関し、フッ酸・硝酸混合溶液でエツチング
した後、断面を走査型電子顕微鏡で観察し、第5図(d
)の拡散層幅Xを拡散深さとして評価した。
Samples 4 and 5, which had been heat-treated in a N2 atmosphere, were placed along a plane perpendicular to the grooves, etched with a hydrofluoric acid/nitric acid mixed solution, and then their cross sections were observed with a scanning electron microscope.
) was evaluated as the diffusion depth.

試料5の拡散深さが0.3 μmと大きな値を示したの
に対し、試料4の拡散深さは0.01 μm以下と無視
できる程小さかった。
While the diffusion depth of Sample 5 was as large as 0.3 μm, the diffusion depth of Sample 4 was as small as 0.01 μm or less, which was negligible.

本実施例によれば、原料ガスとして5izesとPHa
を用い、リンをドーピングしながらSi膜を非晶質状態
で形成することにより、活性化のための熱処理が大幅に
低温化できるので、基板中への不純物の拡散深さを無視
できるほど小さくできるという効果がある。
According to this embodiment, 5izes and PHa are used as raw material gases.
By forming the Si film in an amorphous state while doping it with phosphorus, the temperature of the heat treatment for activation can be significantly lowered, making the depth of impurity diffusion into the substrate negligible. There is an effect.

実施例4 本実施例では、Si膜の形成方法と膜表面の凹凸の関係
について測定した例について述べる。
Example 4 In this example, an example will be described in which the relationship between the method of forming a Si film and the unevenness of the film surface was measured.

実施例3で走査型電子顕微鏡により断面を[察した試料
4及び5について、Si表面の凹凸を同じく走査型電子
顕微鏡により観察した。
Regarding Samples 4 and 5, whose cross sections were observed using a scanning electron microscope in Example 3, the unevenness of the Si surface was also observed using a scanning electron microscope.

S i zHa、 P Haを用いて非晶質状態で形成
したSi膜(試料4)の表面は、5万倍の倍率でも凹凸
″は全く観察されず、極めて平滑であった。これに対し
、多結晶Si膜膜形後後リン拡散行なった試料5の表面
には0.125  μm程度の凹凸がm察された。尚、
試料4及び5の表面状態は熱処理を行なっても変化しな
かった。
The surface of the Si film (sample 4) formed in an amorphous state using Si zHa and P Ha was extremely smooth with no unevenness observed even at a magnification of 50,000 times. Roughness of approximately 0.125 μm was observed on the surface of sample 5, which was subjected to phosphorus diffusion after forming the polycrystalline Si film.
The surface conditions of Samples 4 and 5 did not change even after the heat treatment.

試料4では525℃でSi膜を形成したが、膜形成温度
は575℃以下であれば平滑な表面を得る二とができる
。5i2Heのかわりに5iHa を原料ガスとして用
い、630℃でリンをドーピングしながら形成した多結
晶Si膜の表面では0.05μm程度の細かい凹凸がm
察された。
In Sample 4, the Si film was formed at 525°C, but a smooth surface can be obtained if the film formation temperature is 575°C or lower. The surface of a polycrystalline Si film formed using 5iHa as a source gas instead of 5i2He and doping with phosphorus at 630°C has fine irregularities of about 0.05 μm.
It was noticed.

本実施例によれば、原料ガスとして5izH6とPHa
を用い、リンをドーピングしながら非晶質状態でSi膜
を形成することにより、極めて平滑なSi表面を得られ
る効果がある。
According to this embodiment, 5izH6 and PHa are used as raw material gases.
By forming a Si film in an amorphous state while doping phosphorus using phosphorus, an extremely smooth Si surface can be obtained.

5iHiを用いて形成した多結晶Siに熱拡散法により
リンのドーピングを行なった多結晶Siの熱酸化膜の耐
圧は約3MV/m以下と小さかったが、5izHa、P
Hsを原料ガスとし、リンをドーピングしながら形成し
たSiの熱酸化膜の耐圧は6 M V / cmと単結
晶Siの熱酸化膜と同等の極めて良好な値が得られた。
The breakdown voltage of the thermal oxide film of polycrystalline Si formed using 5iHi was doped with phosphorus by thermal diffusion method, which was as low as about 3 MV/m or less.
The Si thermal oxide film formed using Hs as a raw material gas and doping with phosphorus had a breakdown voltage of 6 MV/cm, which was an extremely good value equivalent to that of a single crystal Si thermal oxide film.

上記の実施例1ないし実施例4では条件を限定して実験
を行なった。石英管内の温度が450℃より低い場合に
は膜の成長速度がlnm/win以下と極めて小さくな
り、スループットの低さという点で実際のLSIデバイ
ス製造に適さない0石英管内温度が550℃より大きい
場合には、第1図あるいは第2図に示した如く、熱処理
温度により膜の比抵抗、キャリア濃度、移動度が大きく
変化するため、制御性が悪くなる。石英管内圧力が50
Paより大きくなると、ウェハ間へのガスの流入が悪く
なる結果、膜の成長速度が著しく低下するm P Hs
と5izHeの流量比(PHa/5i2H6)が5x1
o−z程度でシート抵抗は飽和に達するため、 P H
a/ S i z)(eを5X10−”より大きくする
ことは膜中の不活性な不純物の濃度を増すこととなり好
ましくない1石英管内温度が450℃から550℃、圧
力50Pa以下、PHsと5izHeの流量比(P H
s/ S i 2H6)が5×10″″2以下の条件範
囲内であれば、いずれの実施例においても所望の効果を
得ることができる。
In Examples 1 to 4 described above, experiments were conducted under limited conditions. If the temperature inside the quartz tube is lower than 450°C, the film growth rate will be extremely low, less than lnm/win, and the throughput will be low, making it unsuitable for actual LSI device manufacturing.0 The temperature inside the quartz tube is higher than 550°C. In this case, as shown in FIG. 1 or 2, the resistivity, carrier concentration, and mobility of the film vary greatly depending on the heat treatment temperature, resulting in poor controllability. The pressure inside the quartz tube is 50
When it is larger than Pa, the gas flow between the wafers becomes poor, resulting in a significant decrease in the film growth rate m P Hs
and 5izHe flow rate ratio (PHa/5i2H6) is 5x1
Since the sheet resistance reaches saturation at around oz, P H
a/S i z) (Increasing e to more than 5X10-" increases the concentration of inert impurities in the film, which is undesirable. 1) The temperature inside the quartz tube is 450 to 550 °C, the pressure is 50 Pa or less, PHs and 5izHe The flow rate ratio (PH
As long as s/S i 2H6) is within the condition range of 5×10″″2 or less, the desired effect can be obtained in any of the examples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、膜厚方向で均一な不純物分布を有する
リンを含むSi膜を形成することができる。このSi膜
中の不純物は、従来法よりはるかに低い温度の熱処理で
活性化することが可能なので、基板の不純物分布を乱す
ことなく急峻な段差の側壁部や深い溝内の多結晶Si膜
へ不純物をドーピングすることができ、電極、配線の低
抵抗化が図れる。また5本発明によれば、従来法に比ベ
ウエハ間の膜厚均一性を向上することが可能である。
According to the present invention, a Si film containing phosphorus having a uniform impurity distribution in the film thickness direction can be formed. Since the impurities in this Si film can be activated by heat treatment at a much lower temperature than conventional methods, it is possible to activate the impurities in the polycrystalline Si film on the side walls of steep steps and in deep grooves without disturbing the impurity distribution of the substrate. Impurities can be doped, and the resistance of electrodes and wiring can be lowered. Furthermore, according to the present invention, it is possible to improve the film thickness uniformity between wafers compared to the conventional method.

更にLSIデバイスの製造において大幅な工程の簡略化
、低温化を図ることができ、歩留りの向上、生産コスト
の低減にも大きな効果がある。
Furthermore, in manufacturing LSI devices, it is possible to significantly simplify the process and lower the temperature, which is also highly effective in improving yield and reducing production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜の形成温度と比抵抗の関係を示す曲線図、第
2図は膜の形成温度とキャリア濃度ならびに移動度の関
係を示す曲線図、第3図はPH8とSiH4あるいは5
izHeの流量比と膜の成長速度の関係を曲線図、第4
図は本発明を実施するにあたり用いた装置の一例を示す
模式図、第5図は本発明の詳細な説明するための工程図
である。 10・・・石英管、20・・・ヒータ、30・・・電気
炉、40・・・治具、50・・・ホルダー、60・・・
基板、70゜80.90・・・バルブ、100・・・排
気系。
Figure 1 is a curve diagram showing the relationship between film formation temperature and resistivity, Figure 2 is a curve diagram showing the relationship between film formation temperature, carrier concentration and mobility, and Figure 3 is a curve diagram showing the relationship between film formation temperature and carrier concentration and mobility.
Curve diagram showing the relationship between the flow rate ratio of izHe and the film growth rate, No. 4
The figure is a schematic diagram showing an example of an apparatus used to carry out the present invention, and FIG. 5 is a process diagram for explaining the present invention in detail. DESCRIPTION OF SYMBOLS 10... Quartz tube, 20... Heater, 30... Electric furnace, 40... Jig, 50... Holder, 60...
Board, 70° 80.90... Valve, 100... Exhaust system.

Claims (1)

【特許請求の範囲】 1、段差を有する基板上に、原料ガスとしてジシラン(
Si_2H_6)とフオスフイン(PH_3)を用いて
化学気相成長法によりリンを含むシリコンを形成する方
法において、リンを含むシリコン形成時の温度を450
℃〜550℃、圧力50Pa以下の条件範囲とすること
を特徴とする薄膜形成方法。 2、特許請求の範囲第1項記載のリンを含むシリコンの
形成は、フオスフインとジシランの流量化(PH_3/
Si_2H_6)が5×10^−^2以下で行なうこと
を特徴とする特許請求の範囲第1項記載の薄膜形成方法
[Claims] 1. Disilane (
In a method of forming silicon containing phosphorus by chemical vapor deposition using Si_2H_6) and phosphine (PH_3), the temperature during formation of silicon containing phosphorus is set at 450°C.
A method for forming a thin film, characterized in that the conditions range from °C to 550 °C and a pressure of 50 Pa or less. 2. Formation of silicon containing phosphorus according to claim 1 is achieved by changing the flow rate of phosphine and disilane (PH_3/
2. The thin film forming method according to claim 1, wherein the thin film forming method is carried out at a Si_2H_6) of 5×10^-^2 or less.
JP62307509A 1987-12-07 1987-12-07 Thin film forming method and semiconductor device manufacturing method Expired - Fee Related JP2690917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307509A JP2690917B2 (en) 1987-12-07 1987-12-07 Thin film forming method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307509A JP2690917B2 (en) 1987-12-07 1987-12-07 Thin film forming method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH01149420A true JPH01149420A (en) 1989-06-12
JP2690917B2 JP2690917B2 (en) 1997-12-17

Family

ID=17969932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307509A Expired - Fee Related JP2690917B2 (en) 1987-12-07 1987-12-07 Thin film forming method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2690917B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640269A (en) * 1979-09-11 1981-04-16 Toshiba Corp Preparation of semiconductor device
JPS59100561A (en) * 1982-11-12 1984-06-09 ゼネラル・エレクトリック・カンパニイ Semiconductor device and method of producing same
JPS60128612A (en) * 1983-12-15 1985-07-09 Ricoh Co Ltd Plasma cvd apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640269A (en) * 1979-09-11 1981-04-16 Toshiba Corp Preparation of semiconductor device
JPS59100561A (en) * 1982-11-12 1984-06-09 ゼネラル・エレクトリック・カンパニイ Semiconductor device and method of producing same
JPS60128612A (en) * 1983-12-15 1985-07-09 Ricoh Co Ltd Plasma cvd apparatus

Also Published As

Publication number Publication date
JP2690917B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP4117914B2 (en) Process for controlling dopant diffusion in a semiconductor layer and semiconductor layer formed thereby
JP2947828B2 (en) Method for manufacturing semiconductor device
JPH05343316A (en) Manufacture of semiconductor device
Hsieh et al. Silicon homoepitaxy by rapid thermal processing chemical vapor deposition (RTPCVD)—A review
US20140299056A1 (en) Low temperature migration enhanced Si-Ge epitaxy with plasma assisted surface activation
US7947552B2 (en) Process for the simultaneous deposition of crystalline and amorphous layers with doping
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
JPH01149420A (en) Thin film formation
JPH0786515A (en) Formation of polycrystalline silicon resistor
KR20230132455A (en) Method for manufacturing epitaxial wafers
US5464795A (en) Method of forming polycrystalline silicon thin films for semiconductor devices
KR19990013304A (en) How to crystallize amorphous membrane
TW202130845A (en) Epitaxial wafer manufacturing method and epitaxial wafer
US8158495B2 (en) Process for forming a silicon-based single-crystal portion
KR19990023052A (en) How to crystallize amorphous membrane
EP4174209A1 (en) Method of forming a doped polysilicon layer
RU2817080C1 (en) Method of producing locally doped silicon film with given characteristics for microelectronic devices
JP2876414B2 (en) Manufacturing method of diffusion resistance element
CN110010445B (en) Method for manufacturing support substrate for bonded wafer and method for manufacturing bonded wafer
JPH0653491A (en) Fabrication of semiconductor device
JP3064363B2 (en) Method of forming Si thin film
US20070254450A1 (en) Process for forming a silicon-based single-crystal portion
JP3112796B2 (en) Chemical vapor deposition method
KR100472855B1 (en) Polycrystalline silicon thin film manufacturing method of semiconductor device
JPH0786601A (en) Polycrystalline silicon mos transistor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees