JPH01147403A - Molded glass lens - Google Patents

Molded glass lens

Info

Publication number
JPH01147403A
JPH01147403A JP62306508A JP30650887A JPH01147403A JP H01147403 A JPH01147403 A JP H01147403A JP 62306508 A JP62306508 A JP 62306508A JP 30650887 A JP30650887 A JP 30650887A JP H01147403 A JPH01147403 A JP H01147403A
Authority
JP
Japan
Prior art keywords
lens
molded glass
glass lens
soft focus
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62306508A
Other languages
Japanese (ja)
Inventor
Yoshiki Matsui
松井 麗樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62306508A priority Critical patent/JPH01147403A/en
Publication of JPH01147403A publication Critical patent/JPH01147403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To properly scatter incident rays on an optical function surface so that a soft focus image is obtd. with simple constitution by specifying the surface roughness of the optical function surface. CONSTITUTION:The surface roughness of the optical function surface 3a of a molded glass lens 3 is specified to 0.05-1.00mum Rmax. The respective rays 4a-4c are changed in direction by the positions where the rays pass the optical function surface 3a formed with ruggedness and are not condensed at one point. The resulted image is not sharp and is blurred. The soft focus image is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形ガラスレンズに係り、特にラフ1フオー
カスレンズ用の成形ガラスレンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molded glass lens, and particularly to a molded glass lens for a rough 1 focus lens.

〔従来の技術〕[Conventional technology]

−fluに、加熱軟化されたガラス素材を所望の成形面
を具備したー・対の成形型によりプレス成形し、研り等
の後加工を施すことなく、所望の光学機能面を有した成
形ガラスレンズを得ることが行われており、この成形ガ
ラスレンズは、例えばカメラ等の光学機器に多く使用さ
れている。
-A molded glass with a desired optical function surface is formed by press-molding a heat-softened glass material into a flu with a pair of molds, without any post-processing such as polishing. Molded glass lenses are often used in optical devices such as cameras.

ところで、カメラ用のレンズとしては、ソフトな1m写
を得ることができるソフトフォーカスレンズが知られて
いる。従来、このソフトフォーカスレンズは、レンズ自
体がはじめから軟焦点になるように特殊な設計を行っζ
5!造されており、■、y面収差だけを故意に太き(残
すとともに他の収差をできるだけ補正するように設工1
されている。
By the way, as a lens for a camera, a soft focus lens that can obtain a soft 1 meter photograph is known. Conventionally, soft focus lenses have been specially designed so that the lens itself has a soft focus from the beginning.
5! ■, only the y-plane aberration is intentionally made thicker (while leaving it, other aberrations are corrected as much as possible).
has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来のソフトフォ−カスレンズにあ
っては、その設計が極めて難しく、またレンズ種類ごと
に設3目”る必要があって煩雑であった。また、ソフト
フォーカスレンズを用いずにソフIな描写をillる手
段として、特殊なブタン(−ソフトやフィルタ等を取付
けることが知られているが、この場合、ぼけた像がf5
°妙な形になったり、光計が減る等を生じ、使用上程々
の制限を受けてしま・)という問題があった。
However, with the above-mentioned conventional soft focus lenses, the design is extremely difficult, and it is complicated to design three lenses for each type of lens. It is known that a special butane (-) software or filter is installed as a means of illuminating the depiction, but in this case, the blurred image is
There were problems such as an odd shape and a decrease in the number of light meters, which resulted in moderate limitations in use.

本発明は、かかる問題点に鑑みてなされたもので、捲め
て前車な構成でソフトフォーカスな像をjすることがで
き、レンズ光学系を新たに設計ずろ必要のない成形ガラ
スレンズを提供すること4目的とする。
The present invention has been made in view of such problems, and provides a molded glass lens that can produce a soft-focus image with a fold-over structure that does not require a new design of the lens optical system. 4 objectives.

c問題点を547決するだめの手段〕 上記従来の問題点を解決するために、本発明は、成形ガ
ラスレンズの光学機能面の表面粗さをR11ax0.0
5〜1.00 it mとしたものである0本発明にお
いて、光学徒能面の表面1’llさをRmax0.05
〜1.00μmとしたのは、例えば通常の研階レンズの
ように表面粗さがllv+x=o、ol // m程度
でRmax =0.05 am未満であると滑らかすぎ
てソフトフォーカス機能を発揮できず、また表面t■さ
がRiax=1.00μmを越えるとあまりに粗ずぎて
光学累子として不適当だからでJうる6 通常、成形ガラスレンズの光学機能面に異物が埋め込ま
れたり、凹凸ができたりすることは好ましくないが、本
発明では、光学機能面に異物が埋め込まれていたり、凹
凸ができたりすることを逆に利用してソフトフォーカス
な像を得ようとするものである。すなわち、本発明では
、成形ガラスレンズの光学機能面に異物を埋め込んだり
、微細な凹凸を設けて表面オ■さをRmaxo、05〜
1.00μmとし、この成形ガラスレンズを光学系に組
込むことによってソフトフォーカスレンズを構成しよう
とするものである。
547 Means for Resolving Problems] In order to solve the above-mentioned conventional problems, the present invention improves the surface roughness of the optical functional surface of a molded glass lens by R11ax0.0.
5 to 1.00 it m In the present invention, the surface 1'll of the optical performance surface is set to Rmax0.05.
The reason for setting it to ~1.00 μm is that, for example, when the surface roughness is about llv + x = o, ol // m like a normal Tokenai lens, and Rmax = less than 0.05 am, it is too smooth and exhibits a soft focus function. Also, if the surface t exceeds Riax = 1.00 μm, it will be too rough and unsuitable as an optical lens.6 Usually, foreign matter is embedded in the optically functional surface of a molded glass lens, or unevenness occurs. However, the present invention attempts to obtain a soft-focus image by taking advantage of the fact that foreign matter is embedded in the optical functional surface or that the surface is uneven. That is, in the present invention, foreign matter is embedded in the optically functional surface of the molded glass lens, or fine irregularities are provided to increase the surface roughness to Rmaxo, 05~
The objective is to construct a soft focus lens by incorporating this molded glass lens into an optical system.

〔作用〕[Effect]

本発明の成形ガラスレンズを組込んだ光学系においては
、その成形ガラスレンズの光学機能面に設けた凹凸等に
よって光線の方向が微妙に変化し、結果として焦点位置
でのぼけが生じてソフトフォーカスな像を得ることがで
きる。ここで、光学系においては、特別に球面収差を増
大さゼるような設計は必要なく、通常の光学系のままで
その中のレンズの一面または複数面を本発明の成形ガラ
スレンズに置換えるだけでよい。
In an optical system incorporating the molded glass lens of the present invention, the direction of the light ray changes slightly due to the irregularities provided on the optically functional surface of the molded glass lens, resulting in blurring at the focal point and soft focus. You can get a good image. Here, in the optical system, there is no need for a special design that increases spherical aberration, and one or more surfaces of the lenses in the normal optical system can be replaced with the molded glass lens of the present invention. Just that is enough.

〔実施例] (第1実施例) ガラス素材としてSKI 1を使用し、外径25m1g
、厚さ2.5++uで両面を平面研磨したものを、窒素
ガス雰囲気中でガラス軟化点付近の温度(SK11の場
合には、639°C±50°Cが好ましい)まで、加熱
して軟化させ、ガラス転移点より低い温度(ガラス転移
点が535°Cの場合、515〜335°Cが好ましい
)の成形型で押圧成形し、成形ガラスレンズを得た。こ
の成形ガラスレンズの光学機能面表面用さは、Rraa
x−0,10μmで、凹凸周期は3〜15μmであった
[Example] (First example) SKI 1 was used as the glass material, outer diameter 25ml 1g
, with a thickness of 2.5++u and polished on both sides, is heated and softened in a nitrogen gas atmosphere to a temperature near the glass softening point (preferably 639°C ± 50°C in the case of SK11). A molded glass lens was obtained by press molding with a mold at a temperature lower than the glass transition point (if the glass transition point is 535°C, preferably 515 to 335°C). The optical functional surface of this molded glass lens is Rraa
x-0, 10 μm, and the uneven period was 3 to 15 μm.

本実施例で用いた成形型は、窒化アルミニウム(八〇N
 )製で、0.6μmのへIN微粒子をホットプレス法
で焼結した後、研にを行って製作したもので、型表面に
は結晶粒界に起因する微細な凹凸が形成されている。こ
の成形型の表面粗さは、第2L1に示すように、l1a
ax=0.12μmで、凹凸周期は3〜15μmであっ
た。ここで、成形ガラスレンズの光学機能面の方が成形
型の表面より滑らかなのは、成形型表面の微細な凹部に
はガラスが流入できないからである。なお、成形型の表
面の凹凸は、/IN粒径、焼結条件、研p方法等によっ
°ζ逍宜制御することができる。
The mold used in this example was aluminum nitride (80N
), which was produced by sintering 0.6 μm HEIN fine particles using a hot press method and then polishing, and the mold surface has fine irregularities caused by grain boundaries. The surface roughness of this mold is l1a as shown in 2nd L1.
ax=0.12 μm, and the uneven period was 3 to 15 μm. Here, the reason why the optically functional surface of the molded glass lens is smoother than the surface of the mold is that glass cannot flow into the minute recesses on the surface of the mold. Incidentally, the unevenness on the surface of the mold can be appropriately controlled by adjusting the /IN particle size, sintering conditions, polishing method, etc.

本実施例で17だ成形ガラスレンズを光′!7.系に組
込んだ場合のソフトフォーカスレンズのレンズ構成図を
第3図に示す、第3図において、l&!鏡枠で、鏡枠l
には、通常の研削・研磨によって表面が滑らかに形成さ
れたレンズ2が4枚と本実施例で得た成形ガラスレンズ
3が1枚組込まれ°ζおり、4m5枚R5成となってい
る。成形ガラスレンズ3の光学機能面3aには、前述の
如く微細な凹凸が形成されているので、光線の方向が微
妙に変化し、焦点位置でぼけを生じ、ソフトフォーカス
な性を111・ることができる。
In this example, a 17-inch molded glass lens is used for light! 7. Figure 3 shows a lens configuration diagram of the soft focus lens when it is incorporated into a system. In Figure 3, l&! With mirror frame, mirror frame l
The lens 2 has four lenses 2 with smooth surfaces formed by ordinary grinding and polishing and one molded glass lens 3 obtained in this example, and has a R5 configuration of 4 m5 lenses. As described above, the optical functional surface 3a of the molded glass lens 3 is formed with fine irregularities, so the direction of the light ray changes slightly, causing blurring at the focal point, resulting in soft focus. Can be done.

これに対し、5枚のレンズを全て通常の研削・rIIF
r=を施した滑らかな表面のレンズを用いれば、ソフト
フォーカスにはならず、シャープな1象をi′トること
になる。
On the other hand, all five lenses were ground by normal grinding and rIIF.
If you use a lens with a smooth surface given r=, you will not get a soft focus, but you will get a sharp image i'.

すなわち、第1図aおよびbに示すように、作用する。That is, it operates as shown in FIGS. 1a and 1b.

第1図aは、本実施例の成形ガラスし・ンズ3を用いた
場合で、各光線4a、4b’、4cは凹凸が形成された
光学機能面3aを通る位置によって方向が変わり、1点
に集光しない。したがって、f+1.られる16には、
シャープな像にならずにぼけを生じ5.ソフトフォーカ
スな像を17ることかできる。このぼけの量は、光学機
能面3aの凹凸の段差や周期によって制御することがで
き、通宜最逍な形状とすることができる。
FIG. 1a shows a case where the molded glass lens 3 of this embodiment is used, and the direction of each light ray 4a, 4b', 4c changes depending on the position where it passes through the optical functional surface 3a on which the unevenness is formed, and one point Does not focus light on Therefore, f+1. In the 16th,
5. The image is not sharp but blurred. It is possible to create 17 soft focus images. The amount of blur can be controlled by the level difference and period of the unevenness of the optical functional surface 3a, and can be made into the optimal shape as appropriate.

これに対し、通常の研削・研U)を施して表面を滑らか
にしたレンズ2にあっては、第1図aに示すように、各
光線5a、5b、5cは全て焦点Fに集光し、シャープ
な像となる。
On the other hand, with the lens 2 whose surface has been made smooth by ordinary grinding and polishing (U), each of the light rays 5a, 5b, and 5c are all focused at the focal point F, as shown in Figure 1a. , resulting in a sharp image.

(第2実施例) ガラス素材としてSF? (ガラス軟化点592゛C)
、@用い、光学機能面の表面粗さがRmaxo、05〜
1.00μmの成形ガラスレンズを(また。
(Second Example) SF as a glass material? (Glass softening point 592°C)
, @ used, the surface roughness of the optical functional surface is Rmaxo, 05 ~
1.00μm molded glass lens (also.

特に、本実施例においては、融点が十分に高温(350
0’C)のカーボン粉末を成形型の下型上にほぼ一様に
分布するように11シ布し、この成形型によって抑圧成
形することにより、成形ガラスレンズの光学機能面にカ
ーボン粉末からなる微粒子を押込んで付着させた。
In particular, in this example, the melting point is sufficiently high (350
0'C) carbon powder is distributed almost uniformly on the lower part of the mold, and is compressed by this mold, thereby forming the optically functional surface of the molded glass lens made of carbon powder. The microparticles were pushed in and attached.

すなわち、第4図に示すように、本実施例の成形ガラス
レンズ6の光学機能面6aには、凹部61と凸部62と
が形成されている。そして、凹部61には、カーボン粉
末7が付着されζいる。
That is, as shown in FIG. 4, a concave portion 61 and a convex portion 62 are formed on the optically functional surface 6a of the molded glass lens 6 of this embodiment. Carbon powder 7 is attached to the recess 61.

この成形ガラスレンズ6では、凸部62はカーボン粉末
マの影容を受けない正規の曲率のレンズ面であって、凸
部62を通る光線は、第1図すに示したものと同様に焦
点に集束する。一方、カーボン粉末7が押込まれること
によって形成された四部61を通る光線は、その位置に
よって方向が変化し、焦点には集光せずにぼけを生じさ
せる。このぼけによって、本実施例におい°ζもソフト
フォーカスな像を得ることができる。また、本実施例の
ように、ガラス素材と成形型との間に微粒子を介在させ
ることによって、通常の成形に比して離型が容易となっ
た。
In this molded glass lens 6, the convex portion 62 is a lens surface with a regular curvature that is not affected by the carbon powder, and the light ray passing through the convex portion 62 is focused as shown in FIG. focus on. On the other hand, the direction of the light rays passing through the four parts 61 formed by pushing the carbon powder 7 changes depending on the position, and the light rays are not focused on the focal point, but are blurred. Due to this blur, it is possible to obtain a soft-focus image with respect to °ζ in this embodiment. Furthermore, as in this example, by interposing fine particles between the glass material and the mold, mold release became easier than in normal molding.

なお、本実施例においては、微粒子とし゛ζカーボン粉
末を用いたが、これに限定されるものではなく、例えば
ガラス扮、カーボン(ずず)、(II′I!°り砥粒、
セラミック等でもよく、レンズ水付のガラス軟化点より
高い軟化点の微粒子であればよい。
In this example, ζ carbon powder was used as the fine particles, but the particles are not limited to this. For example, glass particles, carbon (Zuzu), (II'I!
It may be made of ceramic or the like, as long as it has a softening point higher than the softening point of the glass used for the lens.

また、微粒子は下型上に散布する方法によらず、例えば
電界を印加して電気力でよ型に(J”6させておいても
よい。
Moreover, the fine particles may be shaped into a shape (J"6) by electric force, for example, by applying an electric field, regardless of the method of scattering the fine particles onto the lower mold.

(第3実施例) ガラス素材として5FIIを使用し、粒径1500番の
ダイヤ砥粒をレジンに埋込んだ砥石で精研削したものを
用いた。素材形状は最終的なレンズ形状に近い形状に仕
上げ、これを一対の成形型間に挟持したまま、ガラス屈
伏点まで加熱し、lOkgr/(・イの圧力を加えて成
形を行い、その後ガラス転移点以下の温度まで徐冷を行
った後、成形型間から成形ガラスレンズを取出した。
(Third Example) 5FII was used as the glass material, which was finely ground with a grindstone in which diamond abrasive grains with a grain size of No. 1500 were embedded in resin. The shape of the material is finished to be close to the final lens shape, and while it is held between a pair of molds, it is heated to the glass yield point, and molded by applying a pressure of lOkgr/(・I. After slow cooling to a temperature below 100 mL, the molded glass lens was taken out from between the molds.

この成形ガラスレンズの光学機能面の表面■さはR+n
IIx=0.2μmであり、このレンズを光学系に組込
んだところ、光線が適度に11′i乱し、ソフトフォー
カスな像をjすることができた。
The surface size of the optically functional surface of this molded glass lens is R+n
IIx=0.2 μm, and when this lens was incorporated into an optical system, the light rays were appropriately disturbed by 11′i, and a soft focus image could be obtained.

以上のように、第1〜3実施例の各成形ガラスレンズを
用いれば、シャープな像を得られる光学系と同じ光学系
(レンズ構成)であっても節単にソフトフォーカスレン
ズを構成することができる。
As described above, by using each of the molded glass lenses of Examples 1 to 3, it is possible to easily construct a soft focus lens even if the optical system (lens configuration) is the same as the optical system that can obtain a sharp image. can.

ここで、光学系の中のどのレンズを本発明の成形ガラス
レンズに置換えればよいかという点は、限定されるもの
ではない。それは、レンズタイプによって、効果的な面
と非効果的な面とが異なる1らである。
Here, there is no limitation as to which lens in the optical system should be replaced with the molded glass lens of the present invention. Effective aspects and ineffective aspects differ depending on the lens type.

(発明の効果〕 以上のように、本発明の成形ガラスレンズによれば、光
学機能面の表面粗さをR+aax0.05〜1.00μ
rnとしているので、入射光線は光学機能面において適
宜散乱し、極め′ζ節単な171成でソフ)フォーカス
な像を1?)ることができ、またレンズ光学系を新たに
設計することなくソフトフォーカスレンズとすることが
できる。
(Effects of the Invention) As described above, according to the molded glass lens of the present invention, the surface roughness of the optical functional surface can be reduced to R+aax0.05 to 1.00μ.
rn, the incident light ray is scattered appropriately on the optical functional surface, and a soft) focused image is created with a simple 171 composition in the extremely 'ζ section. ), and it can also be made into a soft focus lens without designing a new lens optical system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の第1実施例の成形ガラスレンズを通
過した光線の方向を示す側面図、第1図すは通常のレン
ズを通過した光!、9の方向を示すUni面図、第2図
は本発明の第1実施例で用いた成形型の表面粗さを示す
グラフ、第3図は本発明の第1実施例の成形ガラスレン
ズを光学系にSJI込んだ状態を示す縦断面図、第4r
Aは本発明の第2実施例の成形ガラスレンズの要部を示
す縦断面図である。 3.6・・・成形ガラスレンズ 3a、Ga・・・光′7機能面 7・・・カーボン粉末 61・・・四部 62・・・凸部 °17許出1+A人  オリンパス光学工業株式会社第
3図 第4図
Fig. 1a is a side view showing the direction of light rays passing through a molded glass lens according to the first embodiment of the present invention, and Fig. 1A shows light passing through a normal lens! , Figure 2 is a graph showing the surface roughness of the mold used in the first embodiment of the present invention, and Figure 3 is a diagram showing the molded glass lens of the first embodiment of the present invention. Vertical sectional view showing the state where SJI is included in the optical system, No. 4r
A is a vertical sectional view showing the main parts of a molded glass lens according to a second embodiment of the present invention. 3.6... Molded glass lens 3a, Ga... Optical '7 Functional surface 7... Carbon powder 61... Fourth part 62... Convex portion °17 Allowance 1 + Person A Olympus Optical Industry Co., Ltd. No. 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)光学機能面の表面粗さがRmax0.05〜1.
00μmであることを特徴とする成形ガラスレンズ。
(1) The surface roughness of the optical functional surface is Rmax0.05-1.
A molded glass lens characterized by having a diameter of 00 μm.
JP62306508A 1987-12-03 1987-12-03 Molded glass lens Pending JPH01147403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306508A JPH01147403A (en) 1987-12-03 1987-12-03 Molded glass lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306508A JPH01147403A (en) 1987-12-03 1987-12-03 Molded glass lens

Publications (1)

Publication Number Publication Date
JPH01147403A true JPH01147403A (en) 1989-06-09

Family

ID=17957869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306508A Pending JPH01147403A (en) 1987-12-03 1987-12-03 Molded glass lens

Country Status (1)

Country Link
JP (1) JPH01147403A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107063A1 (en) * 2002-06-14 2003-12-24 Schott Glas Optical lens with soft-focus effect
DE102007035025A1 (en) 2007-07-26 2009-01-29 Docter Optics Gmbh Motor vehicle e.g. car, headlight lens producing method, involves producing light diffusing structure in transparent body of headlight lens in accordance with measured gradient of light-dark boundary produced by headlight lens
DE102007037204A1 (en) 2007-08-07 2009-02-26 Docter Optics Gmbh Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
DE102007049835A1 (en) 2007-10-18 2009-04-23 Docter Optics Gmbh Method for producing headlamp lens for vehicle headlamp, particularly for motor-vehicle headlamp, involves measuring gradient of light-dark boundary projected by headlamp lens
DE102011100071A1 (en) 2011-04-29 2012-10-31 Docter Optics Gmbh Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
US8556482B2 (en) 2007-07-26 2013-10-15 Docter Optics Se Method for producing a headlamp lens for a motor-vehicle headlamp
WO2014060058A1 (en) 2012-10-18 2014-04-24 Docter Optics Se Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
DE102012021921A1 (en) 2012-11-09 2014-05-15 Docter Optics Se Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
DE102017009441A1 (en) 2017-10-10 2019-04-11 DOCTER OPTlCS SE Method for producing an optical element made of glass
DE102017009440A1 (en) 2017-10-10 2019-04-11 DOCTER OPTlCS SE Method for producing an optical element made of glass
WO2019179571A1 (en) 2018-03-20 2019-09-26 Docter Optics Se Method for producing a lens element
DE102018002267A1 (en) 2018-03-20 2019-09-26 Docter Optics Se Method for producing an automotive lens element
DE102019102521A1 (en) 2019-01-31 2020-08-06 Docter Optics Se Method for manufacturing an automotive lens element
WO2021008647A1 (en) 2019-07-13 2021-01-21 Docter Optics Se Method for producing an optical element from glass
WO2021104558A1 (en) 2019-11-28 2021-06-03 Docter Optics Se Method for producing an optical element from glass
US11079576B2 (en) 2017-02-24 2021-08-03 Fujifilm Corporation Lens, zoom lens, and imaging lens
DE102021103188A1 (en) 2020-02-17 2021-08-19 Docter Optics Se Method of manufacturing a lens element
DE102020127638A1 (en) 2020-10-20 2022-04-21 Docter Optics Se Glass optical element
DE102020127639A1 (en) 2020-10-20 2022-04-21 Docter Optics Se Process for manufacturing an optical element from glass
WO2022083828A1 (en) 2020-10-20 2022-04-28 Docter Optics Se Method for producing an optical element made of glass
DE102021130715A1 (en) 2020-12-03 2022-06-09 Docter Optics Se Process for manufacturing an optical element from glass
DE102022101728A1 (en) 2021-02-01 2022-08-04 Docter Optics Se Process for manufacturing an optical element from glass
DE102022100705A1 (en) 2022-01-13 2023-07-13 Docter Optics Se motor vehicle

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712831B1 (en) * 2002-06-14 2007-05-02 쇼오트 아게 Optical lens with soft-focus effect
CN100349021C (en) * 2002-06-14 2007-11-14 肖特股份有限公司 Optical lens with soft-focus effect
WO2003107063A1 (en) * 2002-06-14 2003-12-24 Schott Glas Optical lens with soft-focus effect
US8556482B2 (en) 2007-07-26 2013-10-15 Docter Optics Se Method for producing a headlamp lens for a motor-vehicle headlamp
DE102007035025A1 (en) 2007-07-26 2009-01-29 Docter Optics Gmbh Motor vehicle e.g. car, headlight lens producing method, involves producing light diffusing structure in transparent body of headlight lens in accordance with measured gradient of light-dark boundary produced by headlight lens
DE102007037204A1 (en) 2007-08-07 2009-02-26 Docter Optics Gmbh Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
US9421706B2 (en) 2007-08-07 2016-08-23 Docter Optics Gmbh Method for producing an optical lens element, particularly a headlight lens for a motor vehicle headlight
DE102007049835A1 (en) 2007-10-18 2009-04-23 Docter Optics Gmbh Method for producing headlamp lens for vehicle headlamp, particularly for motor-vehicle headlamp, involves measuring gradient of light-dark boundary projected by headlamp lens
DE102011100071A1 (en) 2011-04-29 2012-10-31 Docter Optics Gmbh Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
WO2012146328A1 (en) 2011-04-29 2012-11-01 Docter Optics Gmbh Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
WO2014060058A1 (en) 2012-10-18 2014-04-24 Docter Optics Se Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
DE102012020378A1 (en) 2012-10-18 2014-04-24 Docter Optics Se Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
US9421718B2 (en) 2012-10-18 2016-08-23 Docter Optics Se Process for manufacturing a headlight lens
DE102012021921A1 (en) 2012-11-09 2014-05-15 Docter Optics Se Method for producing an optical lens element, in particular a headlight lens for a motor vehicle headlight
WO2014072002A1 (en) 2012-11-09 2014-05-15 Docter Optics Se Method for producing an optical lens element, more particularly a headlamp lens for a motor vehicle headlamp
US11860346B2 (en) 2017-02-24 2024-01-02 Fujifilm Corporation Lens, zoom lens, and imaging lens
US11079576B2 (en) 2017-02-24 2021-08-03 Fujifilm Corporation Lens, zoom lens, and imaging lens
WO2019072326A1 (en) 2017-10-10 2019-04-18 Docter Optics Se Method for producing an optical element from glass
DE102017009441A1 (en) 2017-10-10 2019-04-11 DOCTER OPTlCS SE Method for producing an optical element made of glass
DE102017009440A1 (en) 2017-10-10 2019-04-11 DOCTER OPTlCS SE Method for producing an optical element made of glass
WO2019072325A1 (en) 2017-10-10 2019-04-18 Docter Optics Se Method for producing an optical element from glass
WO2019179571A1 (en) 2018-03-20 2019-09-26 Docter Optics Se Method for producing a lens element
DE102018002267A1 (en) 2018-03-20 2019-09-26 Docter Optics Se Method for producing an automotive lens element
DE102019102521A1 (en) 2019-01-31 2020-08-06 Docter Optics Se Method for manufacturing an automotive lens element
WO2021008647A1 (en) 2019-07-13 2021-01-21 Docter Optics Se Method for producing an optical element from glass
WO2021104558A1 (en) 2019-11-28 2021-06-03 Docter Optics Se Method for producing an optical element from glass
WO2021104583A1 (en) 2019-11-28 2021-06-03 Docter Optics Se Method for producing an optical element made of glass
DE102021103188A1 (en) 2020-02-17 2021-08-19 Docter Optics Se Method of manufacturing a lens element
DE102020127639A1 (en) 2020-10-20 2022-04-21 Docter Optics Se Process for manufacturing an optical element from glass
WO2022083828A1 (en) 2020-10-20 2022-04-28 Docter Optics Se Method for producing an optical element made of glass
DE102020127638A1 (en) 2020-10-20 2022-04-21 Docter Optics Se Glass optical element
DE102021130715A1 (en) 2020-12-03 2022-06-09 Docter Optics Se Process for manufacturing an optical element from glass
DE102022101728A1 (en) 2021-02-01 2022-08-04 Docter Optics Se Process for manufacturing an optical element from glass
DE102022102113A1 (en) 2021-02-01 2022-08-04 Docter Optics Se PROCESS FOR MAKING AN OPTICAL ELEMENT FROM GLASS
DE102022100705A1 (en) 2022-01-13 2023-07-13 Docter Optics Se motor vehicle
WO2023134814A1 (en) 2022-01-13 2023-07-20 Docter Optics Se Motor vehicle headlamp

Similar Documents

Publication Publication Date Title
JPH01147403A (en) Molded glass lens
JP4686426B2 (en) Optical lens, lens group, optical image collection device, and manufacturing method thereof
EP2482103A1 (en) Diffractive optical element
JP2008181075A (en) Micro high-definition compound imaging lens
US7622181B2 (en) Resin-cemented optical element, mold therefor, fabrication process thereof, and optical article
CN108710194B (en) Projection lens
CN109991716A (en) Camera lens and its manufacturing method
CN106569321A (en) Three-surface wide field-of-view lens system
US7586694B2 (en) Lens assembly
CA2357254A1 (en) Method and lens system for modifying the modulation transfer function of light for a camera
CN108345090A (en) A kind of full HD projection lens of L-type short focus of F numbers
US11409083B2 (en) Composite optical element, optical apparatus and imaging apparatus
JP7142539B2 (en) Optical element with antireflection structure, mold for manufacturing, method for manufacturing optical element with antireflection structure, and imaging device
JPS58219507A (en) One-dimensional lens
JP4107559B2 (en) Imaging optics
KR20220134297A (en) Optical Imaging System
TWM600851U (en) Optical image capturing system
JP2020071361A5 (en)
JPS62196613A (en) Aspheric lens
CN217156975U (en) Long wave-pass filtering blue-light-proof lens
JPH10301024A (en) Infrared optical system
JPS63149602A (en) Glass lens
JP2002062416A (en) Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same
KR102365339B1 (en) Lens device for photography with multilayer uv resin lens structure
TWI261685B (en) Microlens arrays