JP2002062416A - Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same - Google Patents
Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the sameInfo
- Publication number
- JP2002062416A JP2002062416A JP2000250023A JP2000250023A JP2002062416A JP 2002062416 A JP2002062416 A JP 2002062416A JP 2000250023 A JP2000250023 A JP 2000250023A JP 2000250023 A JP2000250023 A JP 2000250023A JP 2002062416 A JP2002062416 A JP 2002062416A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- manufacturing
- pattern
- optical element
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/082—Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/41—Profiled surfaces
- C03B2215/412—Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光学素子の製造方
法または素子の製造方法、これらの素子を有する光学
系、撮影装置、観察装置に関し、例えば、型に入れたガ
ラス素材を加熱して軟化させ、軟化したガラス素材をプ
レス成形することにより微細な回折格子パターンをガラ
スに転写する工程を含む回折光学素子等の製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical element or a method for manufacturing an element, an optical system having these elements, a photographing apparatus, and an observation apparatus. The present invention relates to a method for manufacturing a diffractive optical element or the like including a step of transferring a fine diffraction grating pattern to glass by press-molding a softened glass material.
【0002】[0002]
【従来の技術】今日において、研磨工程を必要としない
でガラス素材のプレス成形によりレンズを製造する技術
は、従来の製造において必要とされた複雑な工程を無く
し、簡単にかつ安価にレンズを製造する事を可能にし
た。特に、最近は、非球面レンズなどの光学素子のみな
らず、プリズム、その他の、種々の光学素子の製造にも
プレス成形法が採用されるようになってきた。2. Description of the Related Art At present, a technique of manufacturing a lens by pressing a glass material without a polishing step eliminates the complicated steps required in the conventional manufacturing and easily and inexpensively manufactures a lens. Made it possible to do In particular, in recent years, a press molding method has come to be used not only for manufacturing optical elements such as an aspherical lens but also for prisms and other various optical elements.
【0003】このようなプレス成形法は、一般に成形用
の上型部材と下型部材を有する型内にガラス素材を挿入
し、型の酸化防止のために雰囲気を非酸化性雰囲気、例
えば窒素雰囲気として成形に適した所定温度、すなわち
ガラス素材が108〜1012dPaSとなるまで加熱し
て、所定圧力でガラス素材に対してプレス成形を行い、
型の成形面の形状をガラス素材の表面に転写する。そし
て型と成形済みガラス光学素子をガラス素材の転移温度
に十分近い温度まで冷却し、その後プレス圧力を除去し
型を開いて成形済みガラス光学素子を取り出す。In such a press molding method, generally, a glass material is inserted into a mold having an upper mold member and a lower mold member for molding, and the atmosphere is changed to a non-oxidizing atmosphere such as a nitrogen atmosphere in order to prevent oxidation of the mold. As a predetermined temperature suitable for molding, that is, until the glass material becomes 10 8 to 10 12 dPaS, press molding is performed on the glass material at a predetermined pressure,
The shape of the molding surface of the mold is transferred to the surface of the glass material. Then, the mold and the molded glass optical element are cooled to a temperature sufficiently close to the transition temperature of the glass material. Thereafter, the pressing pressure is removed and the mold is opened to take out the molded glass optical element.
【0004】つぎに、プレス成形法による光学素子の製
造方法の例を挙げると、特開昭62−203101号公
報には耐熱性金属やセラミックやサーメットの表面に凹
凸状の微細パターンを有する型で光学素子をプレス成形
する方法が開示されている。また、特開昭62−303
1号公報にはダイヤモンドバイトで切削した型を使った
ガラスの成形方法が開示されており、該型によって微細
なパターンを加工することも開示は無いが推測できる。
また、稜線を持つ光学素子の成形方法としては、実開昭
62−191837号公報には組み合わせた型によって
プリズムの稜線を形成する方法が開示されている。Next, as an example of a method for manufacturing an optical element by a press molding method, Japanese Patent Application Laid-Open No. Sho 62-203101 discloses a mold having an irregular fine pattern on the surface of a heat-resistant metal, ceramic or cermet. A method for press forming an optical element is disclosed. Also, JP-A-62-303
No. 1 discloses a method of forming glass using a mold cut with a diamond tool, and it is presumed that there is no disclosure of processing a fine pattern using the mold.
As a method of forming an optical element having a ridge line, Japanese Utility Model Application Laid-Open No. 62-191837 discloses a method of forming a ridge line of a prism using a combined mold.
【0005】[0005]
【発明が解決しようとする課題】さて、回折光学素子に
は鋸歯状の微細パターン(回折格子)を有する素子(ブ
レーズド素子)がある。特開昭62−3031号公報に
示される型を切削加工してその作用面に微細な鋸歯状パ
ターンを形成し、この型を用いてブレーズド素子を成形
することが考えられる。因みに、ブレーズド素子の微細
パターンにはその用途によって輪帯パターンやストレー
トの帯パターンがある。The diffractive optical element includes an element (blazed element) having a sawtooth-shaped fine pattern (diffraction grating). It is conceivable to cut a mold shown in Japanese Patent Application Laid-Open No. Sho 62-3031 to form a fine saw-tooth pattern on its working surface, and to form a blazed element using this mold. Incidentally, the fine pattern of the blazed element includes an annular pattern and a straight band pattern depending on the application.
【0006】ブレーズド素子の微細パターンは、素子に
入射する光線に対して平行な非機能面と光線が回折現象
を起こす機能面の繰り返しで形成される。機能面と非機
能面で形成される稜線はシャープ(鋭利)であることが
望ましい。なぜならば、稜線の先端形状の曲率半径Rが
大きくなるほど回折効率が低下し、光学機能を満足しな
くなるからである。型を切削するためのダイヤモンドバ
イトの刃先は先端のRが50nm程度のものでも製作可
能であり、ブレーズド素子の回折格子(微細パターン)
の製作にとっては十分なものである。しかしこのような
鋭利な刃先で型に溝を形成し、そこに軟化したガラスを
プレスして稜線を形成しようとすると、きわめて型離れ
が悪く、場合によっては溝の底の部分(最深部)にガラ
スが融着してしまうこととなり、稜線の形がかえって悪
くなることがわかった。The fine pattern of a blazed device is formed by repeating a non-functional surface parallel to a light beam incident on the device and a functional surface where the light beam causes a diffraction phenomenon. It is desirable that the ridge line formed by the functional surface and the non-functional surface be sharp. This is because the diffraction efficiency decreases as the radius of curvature R of the tip of the ridge increases, and the optical function is not satisfied. The cutting edge of a diamond cutting tool for cutting a mold can be manufactured even if the tip R has a radius of about 50 nm, and the diffraction grating (fine pattern) of a blazed element can be manufactured.
Is enough for the production of. However, if a groove is formed in the mold with such a sharp edge, and softened glass is pressed there to form a ridge, the mold separation is extremely poor, and in some cases the bottom (deepest) of the groove It was found that the glass was fused, and the shape of the ridgeline was rather worse.
【0007】そこで、本発明は、離型性の良い光学素子
の製造方法または素子の製造方法、これらの素子を有す
る光学系、撮影装置、観察装置を提供することを目的と
する。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for manufacturing an optical element having good releasability, a method for manufacturing an element, an optical system having these elements, a photographing apparatus, and an observation apparatus.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を達
成するため、つぎの(1)〜(13)のように構成した
光学素子の製造方法または素子の製造方法、これらの素
子を有する光学系、撮影装置、観察装置を提供するもの
である。 (1)型で素材に稜線を持つパターンを成形する段階を
含む光学素子の製造方法であって、前記素材を軟化状態
にし、該軟化状態の素材に対して前記型の前記稜線に対
応する最深部に前記素材が入り込まない程度の圧力を加
えて前記パターンを成形することを特徴とする光学素子
の製造方法。 (2)前記パターンの前記稜線は、その断面の曲率半径
が0.2μm以上〜2.0μm以下であることを特徴と
する上記(1)に記載の光学素子の製造方法。 (3)前記光学素子が、回折光学素子であることを特徴
とする上記(1)または上記(2)に記載の光学素子の
製造方法。 (4)前記パターンがブレーズド型回折格子であること
を特徴とする上記(3)に記載の光学素子の製造方法。 (5)前記圧力は成形後の前記パターンの光学性能を実
質的に低下させない圧力であることを特徴とする上記
(1)〜(4)のいずれかに記載の光学素子の製造方
法。 (6)前記成形時に所定の成形温度で圧力を加えること
を特徴とする上記(1)〜(5)のいずれかに記載の光
学素子の製造方法。 (7)型で素材に稜線を持つパターンを成形する段階を
有する素子の製造方法であって、前記素材に対して前記
型の前記稜線に対応する最深部に前記素材が入り込まな
い程度の圧力を加えて前記パターンを成形することを特
徴とする素子の製造方法。 (8)型で素材に稜線を持つパターンを成形する段階を
含む素子の製造方法であって、前記素材に対して前記型
の前記稜線に対応する最深部に前記素材が入り込まず且
つ前記パターンの機能を実質的に低下させない程度の圧
力を加えて前記パターンを成形することを特徴とする素
子の製造方法。 (9)前記素子は光学素子であることを特徴とする上記
(7)または上記(8)に記載の素子の製造方法。 (10)前記成形時に所定の成形温度で圧力を加えるこ
とを特徴とする上記(7)〜(9)のいずれかに記載の
素子の製造方法。 (11)上記(1)〜(6)のいずれかに記載の光学素
子の製造方法によっで製造された光学素子または上記
(7)〜(10)のいずれかに記載の素子の製造方法に
よっで製造された素子を有することを特徴とする光学
系。 (12)上記(11)に記載の光学系を有することを特
徴とする撮影装置。 (13)上記(11)に記載の光学系を有することを特
徴とする観察装置。According to the present invention, there is provided a method for manufacturing an optical element or a method for manufacturing an element having the following constitutions (1) to (13). An optical system, a photographing device, and an observation device are provided. (1) A method for manufacturing an optical element, comprising a step of forming a pattern having a ridge line on a material with a mold, wherein the material is in a softened state, and a deepest portion corresponding to the ridge line of the mold with respect to the material in the softened state. And forming the pattern by applying a pressure that does not allow the material to enter the portion. (2) The method for manufacturing an optical element according to (1), wherein the ridge line of the pattern has a curvature radius of a cross section of 0.2 μm or more and 2.0 μm or less. (3) The method for manufacturing an optical element according to (1) or (2), wherein the optical element is a diffractive optical element. (4) The method for manufacturing an optical element according to (3), wherein the pattern is a blazed diffraction grating. (5) The method for manufacturing an optical element according to any one of (1) to (4), wherein the pressure is a pressure that does not substantially lower the optical performance of the pattern after molding. (6) The method for producing an optical element according to any one of (1) to (5), wherein a pressure is applied at a predetermined molding temperature during the molding. (7) A method for manufacturing an element, comprising a step of forming a pattern having a ridge line on a material using a mold, wherein a pressure is applied to the material such that the material does not enter the deepest portion corresponding to the ridge line of the mold. In addition, a method for manufacturing an element, wherein the pattern is formed. (8) A method for manufacturing an element, comprising forming a pattern having a ridge line on a material by a mold, wherein the material does not enter the deepest portion corresponding to the ridge line of the mold with respect to the material, and A method for manufacturing an element, comprising applying a pressure that does not substantially lower the function to form the pattern. (9) The method for manufacturing an element according to (7) or (8), wherein the element is an optical element. (10) The method according to any one of the above (7) to (9), wherein a pressure is applied at a predetermined molding temperature during the molding. (11) An optical element manufactured by the method for manufacturing an optical element according to any one of (1) to (6) or a method for manufacturing an element according to any one of (7) to (10). An optical system comprising an element manufactured by the above method. (12) An imaging device comprising the optical system according to (11). (13) An observation device comprising the optical system according to (11).
【0009】[0009]
【発明の実施の形態】上記構成を適用することにより、
前述した本発明の課題を達成することが可能となるが、
それは本発明者らのつぎのような知見に基づくものであ
る。すなわち、型を使ったブレーズド回折格子の成形に
おいては、回折格子の稜線部分に融着が発生しやすいこ
とに着目し、軟化状態の素材に加える圧力を工夫した。DESCRIPTION OF THE PREFERRED EMBODIMENTS By applying the above configuration,
Although it is possible to achieve the object of the present invention described above,
It is based on the following findings of the present inventors. That is, in forming a blazed diffraction grating using a mold, attention was paid to the fact that fusion is likely to occur at the ridge portion of the diffraction grating, and the pressure applied to the softened material was devised.
【0010】例えばガラスに型で稜線を持つパターンを
成形する場合、型における前記稜線に対応する最深部に
ガラスが充填されると離型性が悪くなったり、融着が発
生したりする。この理由としては、成形するときにその
部分に圧力が集中して型とガラスの密着力が高くなる、
また最深部のような狭い溝部分では離型時のガラスと型
の熱膨張係数の差に基づく熱応力が小さく、なかなか離
型しない、などの理由が考えられる。そこで、稜線部分
に融着を発生させないためには、稜線部分を形成する型
の溝部の形状に関し幅の狭い部分が存在しないような形
状にするか、もしくは型の溝部の形状はシャープ(鋭
利)でも圧力や温度などの成形条件で完全にガラスが溝
部形状を転写しないように制御すればよいという知見を
得た。For example, when a pattern having a ridge line is formed on a glass with a mold, if the glass is filled in the deepest portion corresponding to the ridge line in the mold, the mold releasability deteriorates or fusion occurs. The reason for this is that when molding, pressure concentrates on that part and the adhesion between the mold and the glass increases,
Further, it is considered that the thermal stress based on the difference in the thermal expansion coefficient between the glass and the mold at the time of mold release is small in a narrow groove portion such as the deepest part, and the mold is not easily released. Therefore, in order to prevent fusion from occurring at the ridge line portion, the shape of the groove portion of the mold forming the ridge line portion should be such that there is no narrow portion or the shape of the groove portion of the mold should be sharp. However, it has been found that it is sufficient to control the glass completely so as not to transfer the groove shape under molding conditions such as pressure and temperature.
【0011】このようなことから、シャープエッジの稜
線部分を形成する型の溝部へ完全にガラスが充填すると
離型性が悪化しやすいので、本発明では、溝の底の部分
に完全にガラスを充填せず、型とガラスに互いに非接触
の部分を存在させることにより離型性を良くした。その
際、回折格子パターン稜線部分を形成するための成形型
中の幅の狭いパターン領域(以下、回折格子パターン稜
線部分の自由表面と記す。)の曲率半径をR0.2μm
〜R2.0μmの範囲内とすることにより、より良好な
結果を得ることが可能となる。すなわち、上記曲率半径
が0.2μm未満では型の溝部の狭い部分にガラスが入
り込むため、離型性が悪化したり融着が発生したりす
る。また2.0μmを越えると回折効率が低下して光学
機能を満足しなくなる。[0011] From the above, if the glass is completely filled in the groove of the mold forming the ridge portion of the sharp edge, the releasability is likely to be deteriorated. Therefore, in the present invention, the glass is completely filled in the bottom of the groove. The mold releasability was improved by making the mold and the glass non-contacting with each other without filling. At this time, the radius of curvature of a narrow pattern region (hereinafter referred to as a free surface of the diffraction grating pattern ridge portion) in the mold for forming the diffraction grating pattern ridge portion is R0.2 μm.
By setting it within the range of -R2.0 µm, it is possible to obtain better results. That is, if the radius of curvature is less than 0.2 μm, the glass enters the narrow portion of the groove of the mold, so that the releasability is deteriorated or fusion occurs. On the other hand, if the thickness exceeds 2.0 μm, the diffraction efficiency is lowered and the optical function is not satisfied.
【0012】ところで、回折効率とは、回折素子からで
ていく回折光の中で結像に寄与する1次の回折光の強度
の割合を示すものである。上記曲率半径が2.0μmを
越えるとブレーズド形状が崩れるために崩れた部分から
の散乱光の影響が大きくなり、回折効率が低下して光学
機能を満足しなくなる。ここで定義する曲率半径の範囲
について補足すれば、R=0.2μmというのは、稜線
先端部分の自由表面の断面形状がR=0.2μmの真円
である場合と、曲線のカーブが真円から鈍い方向にはず
れる場合も含むものである。The diffraction efficiency indicates the ratio of the intensity of the first-order diffracted light that contributes to the image formation in the diffracted light coming out of the diffraction element. If the radius of curvature exceeds 2.0 μm, the blazed shape collapses, so the influence of scattered light from the collapsed portion increases, and the diffraction efficiency decreases, and the optical function is not satisfied. Supplementing the range of the radius of curvature defined here, R = 0.2 μm means that the cross-sectional shape of the free surface at the tip of the ridge is a perfect circle with R = 0.2 μm, and that the curve is true. This includes the case where it deviates from the circle in a dull direction.
【0013】また、本発明の実施の形態においては、上
記した光学素子の製造方法を適用するに際しては、成形
温度によってガラスの流動性は変化するため適当な成形
温度におけるプレス圧力と型の溝部へのガラスの充填状
態の関係から所望のプレス圧力を設定することが望まし
い。その際、型の微細な部分への転写状態を左右させる
方法として、ガラスの温度を変化させてガラスの粘性を
コントロールする事で転写状態を左右することができ
る。しかし温度を変化させると高すぎる場合には、型と
ガラスの界面での反応によって鏡面性が悪化するし、低
すぎる場合にはガラスが破砕したり変形が不可能であっ
たりして悪影響がある。また、別の方法としてガラスの
容量で転写状態を左右させることもできる。しかしガラ
ス素材の容量はばらつきが避けられないので、安定して
所望の転写状態を得る上では、上記した一定の温度で、
圧力調整による方法がより好ましい。In the embodiment of the present invention, when the above-described method for manufacturing an optical element is applied, the fluidity of the glass changes depending on the molding temperature. It is desirable to set a desired press pressure from the relation of the state of filling of the glass. At this time, as a method of changing the transfer state to the fine part of the mold, the transfer state can be changed by controlling the viscosity of the glass by changing the temperature of the glass. However, if the temperature is changed too high, the specularity deteriorates due to the reaction at the interface between the mold and the glass, and if the temperature is too low, the glass is crushed or impossible to deform and has an adverse effect. . As another method, the transfer state can be influenced by the capacity of the glass. However, since the capacity of the glass material is unavoidable, in order to obtain a desired transfer state stably, at the above-mentioned constant temperature,
The method by pressure adjustment is more preferable.
【0014】また、本発明においては、上記した手段か
ら得られる光学素子、例えばブレーズド回折格子成形品
が、単体として機能させるだけでなく、複数の素子を接
合させて成る複合素子の一部として使用できることは言
うまでもない。また、複数個の光学素子よりなる光学系
の一光学素子として使用できることもできるので、本発
明によれば、改良された光学系、この改良された光学系
を有する撮影装置、改良された光学系を有する観察装置
など種種の光学機器が提供される。In the present invention, the optical element obtained from the above-described means, for example, a blazed diffraction grating molded product is used not only as a single element but also as a part of a composite element formed by joining a plurality of elements. It goes without saying that you can do it. Further, according to the present invention, an improved optical system, a photographing apparatus having the improved optical system, and an improved optical system can be used as one optical element of an optical system including a plurality of optical elements. Various optical devices such as an observation device having
【0015】[0015]
【実施例】以下に、本発明の実施例について説明する。 [実施例1]図1は本発明の実施例1における型構造を
示す図である。図1において、1は下面の機能面が平面
である上型、2は上面の機能面がブレーズド回折格子を
形成するための微細パターンである下型、3aはその中
に上型が入る上胴型、3bはその中に下型が入る下胴
型、4はリング状枠体で、5は図示する型でプレス成形
された回折光学素子を示す。図2に回折光学素子5を示
す。図3は回折光学素子5の任意の稜線部分の拡大図で
あり、図3において、7が非機能面、8が機能面、9が
自由表面を示す。Embodiments of the present invention will be described below. [Embodiment 1] FIG. 1 is a view showing a mold structure according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes an upper die whose lower functional surface is a plane, 2 denotes a lower die whose upper functional surface is a fine pattern for forming a blazed diffraction grating, and 3a denotes an upper body into which the upper die enters. The mold, 3b is a lower body mold in which the lower mold is inserted, 4 is a ring-shaped frame, and 5 is a diffractive optical element press-molded with the mold shown. FIG. 2 shows the diffractive optical element 5. FIG. 3 is an enlarged view of an arbitrary ridge line portion of the diffractive optical element 5. In FIG. 3, 7 denotes a non-functional surface, 8 denotes a functional surface, and 9 denotes a free surface.
【0016】本実施例においては、素子5の成形用ガラ
スとして、nd=1.56911、Tg=368℃とい
う比較的低温度で成形可能なガラスを用い、このガラス
を加熱することによってプリフォームとして直径25.
8mm、肉厚2.03mmの円板を作成した。上記ガラ
ス素材から一方の面が平面で、他方の面nがブレーズド
回折格子パターンを持つ回折光学素子を成形する。成形
すべき回折光学素子5は直径26mm、肉厚2mm、回
折格子パターンの有効径はφ24mm、回折格子は深さ
h=0.92μm、ピッチp1=946μm、p2=3
93μm、p3=302μm、……、p133=42μ
mとなっている。図1の下型2は機能面をダイヤモンド
バイトによる切削加工でブレーズド回折格子状微細パタ
ーンに仕上げている。In this embodiment, a glass which can be formed at a relatively low temperature of nd = 1.56911 and Tg = 368 ° C. is used as a glass for forming the element 5, and this glass is heated to form a preform. Diameter 25.
A disk having a thickness of 8 mm and a thickness of 2.03 mm was prepared. A diffractive optical element having one surface flat and the other surface n having a blazed diffraction grating pattern is formed from the glass material. The diffractive optical element 5 to be formed has a diameter of 26 mm, a thickness of 2 mm, an effective diameter of the diffraction grating pattern of 24 mm, a depth of the diffraction grating h = 0.92 μm, a pitch p1 = 946 μm, and p2 = 3.
93 μm, p3 = 302 μm,..., P133 = 42 μ
m. The lower mold 2 of FIG. 1 has a functional surface finished with a blazed diffraction grating fine pattern by cutting with a diamond tool.
【0017】図1に示す型にガラス素材を投入し、真空
雰囲気に保った成形装置内で型温度が430℃に成るま
で加熱した。次にプレス圧力をかけプレスを行い、下型
2の回折格子状パターンをガラスに転写した。所定の時
間後プレス圧力を減少させた状態で型の冷却を行い、ガ
ラスの転移点以下に冷却されてから型を離型させて成型
品を取り出した。この操作を種々のプレス圧力で行いブ
レーズド回折格子パターンのガラスへの転写状態を調べ
た。表1にその結果を示す。A glass material was put into the mold shown in FIG. 1 and heated until the mold temperature reached 430 ° C. in a molding apparatus kept in a vacuum atmosphere. Next, pressing was performed by applying a pressing pressure to transfer the diffraction grating pattern of the lower mold 2 to glass. After a predetermined time, the mold was cooled in a state where the press pressure was reduced. After the mold was cooled to a temperature lower than the glass transition point, the mold was released and the molded product was taken out. This operation was performed at various press pressures, and the state of transfer of the blazed diffraction grating pattern to glass was examined. Table 1 shows the results.
【0018】[0018]
【表1】 表1において、「曲率半径」は成形された回折格子の稜
線の自由表面の曲率である。NO.1〜2の成形品は離
型性は良いが、散乱光が多く回折効率が低下して光学機
能を満足しなかった。NO.9は転移点以下で離型しよ
うとしたが離型できず、室温まで冷却してから取り出し
た。NO.10はブレーズド回折格子の稜線(先端部)
が融着し、型の最深部に素材であるガラスが残ってしま
った。これに対し本発明の実施例1に係るNO.3〜9
の成形品は回折格子パターンの稜線部分に型と非接触の
部分が存在しており、光学性能は良好であった。[Table 1] In Table 1, "radius of curvature" is the curvature of the free surface of the ridge of the formed diffraction grating. NO. The molded products of Nos. 1 and 2 had good releasability, but the amount of scattered light was large and the diffraction efficiency was lowered, and the optical functions were not satisfied. NO. Sample No. 9 tried to release at or below the transition point, but could not release, and was taken out after cooling to room temperature. NO. 10 is the ridgeline of the blazed diffraction grating (tip)
Were fused, and the glass as a material remained at the deepest part of the mold. On the other hand, the NO. 3-9
The molded product of No. had a portion that was not in contact with the mold at the ridge portion of the diffraction grating pattern, and the optical performance was good.
【0019】[実施例2]図4は、本発明における実施
例2の型構造を示す図である。同図において10は下面
である機能面が球面の上型、11は上面である機能面が
球面上にブレーズド回折格子を形成するための微細パタ
ーンである下型、12aはその中に上型10が入る上胴
型、12bはその中に下型11が入る下胴型、13はリ
ング状枠体、14は成形された回折光学素子を示す。図
5に回折光学素子14を示す。図6は回折光学素子14
の任意の稜線部分の拡大図であり、図6において、16
は非機能面、17は機能面、18は自由表面を示す。[Embodiment 2] FIG. 4 is a diagram showing a mold structure according to Embodiment 2 of the present invention. In the figure, reference numeral 10 denotes an upper mold having a lower functional surface which is a spherical surface, 11 denotes a lower mold whose upper functional surface is a fine pattern for forming a blazed diffraction grating on a spherical surface, and 12a denotes an upper mold 10 therein. , A lower body mold 12b into which the lower mold 11 enters, a ring frame 13 and a molded diffractive optical element 14. FIG. 5 shows the diffractive optical element 14. FIG. 6 shows the diffractive optical element 14.
FIG. 7 is an enlarged view of an arbitrary ridge portion of FIG.
Indicates a non-functional surface, 17 indicates a functional surface, and 18 indicates a free surface.
【0020】本実施例でも回折光学素子の成形用ガラス
として実施例1に示すガラスと同じ素材を用い、このガ
ラスを加工することによってプリフォームとして0.5
ccのガラスゴブを作成した。上記材料から片側がR1
6.8の球面、片側がR16.4の球面上にブレーズド
回折格子パターンを持つ回折光学素子を成形する。成形
すべき回折光学素子は直径14mm、中心厚4.5m
m、回折パターン有効径φ12mmの両凸回折レンズで
ある。図4の下型11は機能面をダイヤモンドバイトに
よる切削加工でブレーズド回折格子状微細パターンを仕
上げている。Also in this embodiment, the same material as the glass shown in Embodiment 1 is used as a glass for forming a diffractive optical element, and this glass is processed to obtain a preform of 0.5%.
A cc glass gob was made. One side is R1 from the above material
A diffractive optical element having a blazed diffraction grating pattern is formed on a spherical surface of 6.8 and a spherical surface on one side of R16.4. The diffractive optical element to be molded has a diameter of 14 mm and a center thickness of 4.5 m.
m, a biconvex diffraction lens having a diffraction pattern effective diameter of 12 mm. The lower mold 11 in FIG. 4 has a blazed diffraction grating-like fine pattern finished by cutting the functional surface with a diamond tool.
【0021】図4に示す型にガラス素材を投入し、真空
雰囲気に保った成形装置内で型温度が430℃に成るま
で加熱した。次にプレス圧力をかけプレスを行い、下型
11の回折格子状微細パターンをガラスに転写した。所
定の時間プレス圧力を減少させた状態で型の冷却を行
い、ガラスの転移点以下に冷却されてから型を離型させ
て成型品を取り出した。この操作を種々のプレス圧力で
行いブレーズドパターンのガラスへの転写状態を調べ
た。表2にその結果を示す。The glass material was put into the mold shown in FIG. 4 and heated until the mold temperature reached 430 ° C. in a molding apparatus kept in a vacuum atmosphere. Next, pressing was performed by applying a pressing pressure, and the diffraction grating-like fine pattern of the lower mold 11 was transferred to glass. The mold was cooled in a state where the press pressure was reduced for a predetermined time, and after the mold was cooled below the glass transition point, the mold was released and the molded product was taken out. This operation was performed at various press pressures, and the state of transfer of the blazed pattern to glass was examined. Table 2 shows the results.
【0022】[0022]
【表2】 表2において、「曲率半径」は成形された回折格子の稜
線の自由表面の曲率である。NO.1〜2の成形品は離
型性は良いが、散乱光が多く回折効率が低下して光学機
能を満足しなかった。NO.9は転移点以下で離型しよ
うとしたが離型できず、室温まで冷却してから取り出し
た。NO.10は稜線の先端部が融着し、型にガラスが
残ってしまった。これに対し本発明の実施例2に係るN
O.3〜9の成形品は回折格子パターンの稜線部分に型
と非接触の部分が存在しており、光学性能は良好であっ
た。[Table 2] In Table 2, “radius of curvature” is the curvature of the free surface of the ridge of the formed diffraction grating. NO. The molded products of Nos. 1 and 2 had good releasability, but the amount of scattered light was large and the diffraction efficiency was lowered, and the optical functions were not satisfied. NO. Sample No. 9 tried to release at or below the transition point, but could not release, and was taken out after cooling to room temperature. NO. In No. 10, the tip of the ridge line was fused and glass remained in the mold. On the other hand, N according to Embodiment 2 of the present invention
O. The molded products of Nos. 3 to 9 had non-contact portions with the mold at the ridge portions of the diffraction grating pattern, and had good optical performance.
【0023】以上説明した実施例1,2に関わる回折光
学素子は、カメラなどの撮影装置、そう眼鏡や顕微鏡な
どの観察装置、そしてステッパー、液晶プロジェクタな
どの投影装置、の各種光学機器の光学系に適用され、改
良された性能の良い光学系及び光学機器が得られる。The diffractive optical elements according to Embodiments 1 and 2 described above are optical systems of various optical devices such as a photographing device such as a camera, an observation device such as eyeglasses and a microscope, and a projection device such as a stepper and a liquid crystal projector. And an improved optical system and optical apparatus with high performance can be obtained.
【0024】[0024]
【発明の効果】以上説明したように、本発明によれば、
パターンからの離型性が良く、光学性能を満足すること
が可能な光学素子の製造方法または素子の製造方法、こ
れらの素子を有する光学系、撮影装置、観察装置を実現
することができる。As described above, according to the present invention,
It is possible to realize a method for manufacturing an optical element or a method for manufacturing an element, which has good releasability from a pattern and can satisfy optical performance, and an optical system, a photographing apparatus, and an observation apparatus having these elements.
【図1】本発明の実施例1における型構造を示す図。FIG. 1 is a diagram showing a mold structure according to a first embodiment of the present invention.
【図2】本発明の実施例1における回折光学素子の図。FIG. 2 is a diagram of a diffractive optical element according to the first embodiment of the present invention.
【図3】本発明の実施例1における回折光学素子の稜線
部分の拡大図。FIG. 3 is an enlarged view of a ridge portion of the diffractive optical element according to the first embodiment of the present invention.
【図4】本発明の実施例2における型構造を示す図。FIG. 4 is a diagram showing a mold structure according to a second embodiment of the present invention.
【図5】本発明の実施例2における回折光学素子の図。FIG. 5 is a diagram of a diffractive optical element according to a second embodiment of the present invention.
【図6】本発明の実施例2における回折光学素子の稜線
部分の拡大図。FIG. 6 is an enlarged view of a ridge portion of the diffractive optical element according to the second embodiment of the present invention.
1:平面の上型 2:ブレーズド回折格子を形成するための微細パターン
を持つ下型 3a:上胴型 3b:下胴型 4:リング状枠体 5:成形品 6:回折光学素子 7:非機能面 8:機能面 9:自由表面 10:球面の上型 11:ブレーズド回折格子を形成するための微細パター
ンを持つ下型 12a:上胴型 12b:下胴型 13:リング状枠体 14:成形品 15:回折光学素子 16:非機能面 17:機能面 18:自由表面1: Upper flat mold 2: Lower mold having a fine pattern for forming a blazed diffraction grating 3a: Upper barrel mold 3b: Lower trunk mold 4: Ring frame 5: Molded product 6: Diffractive optical element 7: Non Functional surface 8: Functional surface 9: Free surface 10: Upper surface of spherical surface 11: Lower die having a fine pattern for forming a blazed diffraction grating 12a: Upper trunk type 12b: Lower trunk type 13: Ring frame 14: Molded product 15: Diffractive optical element 16: Non-functional surface 17: Functional surface 18: Free surface
Claims (13)
段階を含む光学素子の製造方法であって、前記素材を軟
化状態にし、該軟化状態の素材に対して前記型の前記稜
線に対応する最深部に前記素材が入り込まない程度の圧
力を加えて前記パターンを成形することを特徴とする光
学素子の製造方法。1. A method of manufacturing an optical element, comprising: forming a pattern having a ridge line on a material with a mold, wherein the material is in a softened state, and the material in the softened state corresponds to the ridge line of the mold. Forming a pattern by applying a pressure that does not allow the material to enter the deepest part of the optical element.
率半径が0.2μm以上〜2.0μm以下であることを
特徴とする請求項1に記載の光学素子の製造方法。2. The method according to claim 1, wherein the ridge line of the pattern has a radius of curvature of a cross section of 0.2 μm or more and 2.0 μm or less.
を特徴とする請求項1または請求項2に記載の光学素子
の製造方法。3. The method for manufacturing an optical element according to claim 1, wherein the optical element is a diffractive optical element.
ることを特徴とする請求項3に記載の光学素子の製造方
法。4. The method according to claim 3, wherein the pattern is a blazed diffraction grating.
能を実質的に低下させない圧力であることを特徴とする
請求項1〜4のいずれか1項に記載の光学素子の製造方
法5. The method for manufacturing an optical element according to claim 1, wherein the pressure is a pressure that does not substantially lower the optical performance of the pattern after molding.
ることを特徴とする請求項1〜5のいずれか1項に記載
の光学素子の製造方法。6. The method of manufacturing an optical element according to claim 1, wherein a pressure is applied at a predetermined molding temperature during said molding.
段階を有する素子の製造方法であって、前記素材に対し
て前記型の前記稜線に対応する最深部に前記素材が入り
込まない程度の圧力を加えて前記パターンを成形するこ
とを特徴とする素子の製造方法。7. A method for manufacturing an element, comprising a step of forming a pattern having a ridge line on a material by using a mold, wherein the material has such an extent that the material does not enter the deepest portion corresponding to the ridge line of the mold. A method for manufacturing an element, wherein the pattern is formed by applying pressure.
段階を含む素子の製造方法であって、前記素材に対して
前記型の前記稜線に対応する最深部に前記素材が入り込
まず且つ前記パターンの機能を実質的に低下させない程
度の圧力を加えて前記パターンを成形することを特徴と
する素子の製造方法。8. A method for manufacturing an element, comprising a step of forming a pattern having a ridge line on a material with a mold, wherein the material does not enter a deepest portion corresponding to the ridge line of the mold with respect to the material, and A method for manufacturing an element, comprising applying a pressure that does not substantially lower the function of a pattern to form the pattern.
る請求項7または請求項8に記載の素子の製造方法。9. The method according to claim 7, wherein the element is an optical element.
えることを特徴とする請求項7〜9のいずれか1項に記
載の素子の製造方法。10. The method according to claim 7, wherein a pressure is applied at a predetermined molding temperature during said molding.
学素子の製造方法によっで製造された光学素子または請
求項7〜10のいずれか1項に記載の素子の製造方法に
よっで製造された素子を有することを特徴とする光学
系。11. An optical element manufactured by the method for manufacturing an optical element according to any one of claims 1 to 6 or a method for manufacturing an element according to any one of claims 7 to 10. An optical system comprising an element manufactured by the above method.
を特徴とする撮影装置。12. An imaging apparatus comprising the optical system according to claim 11.
を特徴とする観察装置。13. An observation apparatus comprising the optical system according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250023A JP2002062416A (en) | 2000-08-21 | 2000-08-21 | Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250023A JP2002062416A (en) | 2000-08-21 | 2000-08-21 | Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002062416A true JP2002062416A (en) | 2002-02-28 |
Family
ID=18739673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000250023A Pending JP2002062416A (en) | 2000-08-21 | 2000-08-21 | Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002062416A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005280065A (en) * | 2004-03-29 | 2005-10-13 | Nalux Co Ltd | Method for molding lens |
WO2007111077A1 (en) * | 2006-03-24 | 2007-10-04 | Matsushita Electric Industrial Co., Ltd. | Composite optical element |
JP2011242762A (en) * | 2010-04-23 | 2011-12-01 | Panasonic Corp | Diffraction optical element and optical instrument |
US9335557B2 (en) | 2010-08-30 | 2016-05-10 | Canon Kabushiki Kaisha | Diffractive optical element having high diffraction efficiency at plural wavelengths and image-pickup optical system using the same |
CN114683448A (en) * | 2020-12-25 | 2022-07-01 | 光耀科技股份有限公司 | Optical lens device for head-mounted display and manufacturing method and mold thereof |
-
2000
- 2000-08-21 JP JP2000250023A patent/JP2002062416A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005280065A (en) * | 2004-03-29 | 2005-10-13 | Nalux Co Ltd | Method for molding lens |
JP4560318B2 (en) * | 2004-03-29 | 2010-10-13 | ナルックス株式会社 | Lens press molding method |
WO2007111077A1 (en) * | 2006-03-24 | 2007-10-04 | Matsushita Electric Industrial Co., Ltd. | Composite optical element |
JPWO2007111077A1 (en) * | 2006-03-24 | 2009-08-06 | パナソニック株式会社 | Compound optical element |
US7826152B2 (en) | 2006-03-24 | 2010-11-02 | Panasonic Corporation | Composite optical device |
JP4672058B2 (en) * | 2006-03-24 | 2011-04-20 | パナソニック株式会社 | Compound optical element |
JP2011242762A (en) * | 2010-04-23 | 2011-12-01 | Panasonic Corp | Diffraction optical element and optical instrument |
US9335557B2 (en) | 2010-08-30 | 2016-05-10 | Canon Kabushiki Kaisha | Diffractive optical element having high diffraction efficiency at plural wavelengths and image-pickup optical system using the same |
CN114683448A (en) * | 2020-12-25 | 2022-07-01 | 光耀科技股份有限公司 | Optical lens device for head-mounted display and manufacturing method and mold thereof |
CN114683448B (en) * | 2020-12-25 | 2023-12-22 | 光耀科技股份有限公司 | Optical lens device for head-mounted display and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004339039A (en) | Optical element manufacturing method | |
JP3224472B2 (en) | Optical lens and mold for molding the same | |
JP4951166B2 (en) | Lens blank and lens manufacturing method | |
JP4045833B2 (en) | Optical element manufacturing method | |
JP2002062416A (en) | Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same | |
JP2007304569A (en) | Compound lens and manufacture method thereof | |
CN112218832B (en) | Glass lens forming die | |
JP3922834B2 (en) | Mold for glass optical element and method for producing glass optical element using the mold | |
JP2001163628A (en) | Producing method of molding | |
JP2008074636A (en) | Method and device for producing optical element | |
EP0506131B1 (en) | Method of producing glass blank | |
JP3618936B2 (en) | Optical element molding method | |
JPS6296328A (en) | Method of molding optical glass element | |
JP2000281360A (en) | Optical blank for forming, production of optical blank for forming and method for forming optical parts | |
JP2001158627A (en) | Method for molding into optical glass element and glass raw material for molding | |
JP2008074637A (en) | Manufacturing process and apparatus of optical device | |
JPH0692654A (en) | Method for molding glass lens | |
JP3299785B2 (en) | Manufacturing method of optical glass lens | |
JP2008013392A (en) | Method for manufacturing optical element | |
JP2004345880A (en) | Production method for lens having ball casing | |
JPH02252628A (en) | Method for forming optical element | |
JP2005231946A (en) | Apparatus and method for manufacturing glass preform, glass preform and optical element | |
JP3217153B2 (en) | Optical material molding die, optical material molding method using the same, and optical material obtained thereby | |
JPH01145337A (en) | Production of optical element | |
JP2003063835A (en) | Mold for forming optical element and method for manufacturing the same |