JPH01147313A - Method for measuring internal diameter and shape of tube - Google Patents

Method for measuring internal diameter and shape of tube

Info

Publication number
JPH01147313A
JPH01147313A JP30656287A JP30656287A JPH01147313A JP H01147313 A JPH01147313 A JP H01147313A JP 30656287 A JP30656287 A JP 30656287A JP 30656287 A JP30656287 A JP 30656287A JP H01147313 A JPH01147313 A JP H01147313A
Authority
JP
Japan
Prior art keywords
tube
measurement
measured
shape
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30656287A
Other languages
Japanese (ja)
Inventor
Kazuteru Naruo
成尾 一輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP30656287A priority Critical patent/JPH01147313A/en
Priority to CA000584753A priority patent/CA1299862C/en
Publication of JPH01147313A publication Critical patent/JPH01147313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the internal diameter and internal surface shape of the tube at the same time and at a high speed with high accuracy by rotating a measurement head where a radius measurement sensor is fitted in the tube to be measured and measuring the angle of rotation and the internal diameter of the tube at this time. CONSTITUTION:The measurement head 32 where the radius measurement sensor 34 is fitted is inserted into the tube 10 to be measured which is placed in radiation environment. The rotary shaft 30 of the measurement head 32 is held by a rotary bearing part 28 which is positioned in the center of the tube 10 to be measured. Then while this rotary bearing part 28 is held stationary, the measurement head 32 is rotated to measure the angle thetan of rotation and the detected value rn of the measurement sensor 34 at the time. The internal diameter size of the tube 10 to be measured and the circumferential internal shape are found according to the measured values.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、測定ヘッドの回転軸を被測定管(測定すべき
管)の中心で保持したまま測定ヘッドを回転して管の半
径とその時の回転角度とを順次測定することにより管の
内径と円周方向内面形状とを測定する方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention measures the radius of the tube and its time by rotating the measuring head while holding the rotation axis of the measuring head at the center of the tube to be measured (the tube to be measured). This invention relates to a method of measuring the inner diameter and circumferential inner surface shape of a tube by sequentially measuring the rotation angle of the tube.

本発明は特に限定されるものではないが、例えば圧力管
型原子炉における圧力管の内径寸法や内面形状を遠隔操
作によって測定する場合に極めて有効な方法である。
Although the present invention is not particularly limited, it is an extremely effective method, for example, when measuring the inner diameter size and inner surface shape of a pressure tube in a pressure tube nuclear reactor by remote control.

[従来の技術] 管の内径寸法や円周方向内面形状を測定したい技術分野
はいろいろある。その典型的な例としては圧力管型原子
炉の圧力管の測定があり、それ以外にも熱交換器チュー
ブの測定等もある。
[Prior Art] There are various technical fields in which it is desired to measure the inner diameter dimension and circumferential inner surface shape of a pipe. Typical examples include measurements of pressure tubes in pressure tube nuclear reactors, as well as measurements of heat exchanger tubes.

以下、典型的な例である圧力管型原子炉における圧力管
の内径寸法および円周方向内面形状の測定の場合につい
て説明する。
Hereinafter, a case of measuring the inner diameter dimension and circumferential inner surface shape of a pressure tube in a pressure tube nuclear reactor, which is a typical example, will be described.

圧力管型原子炉の炉心を構成する圧力管は極めて重要な
機器である。この圧力管は、原子炉の運転中に中性子照
射を受け、更に内部を流れる冷却水が高温・高圧状態で
あるため、内径が運転時間と共に少しずつ変化して行く
特性がある。そこで原子炉の稼動期間中にわたって、゛
照射下におけるクリープ量を測定するために内径寸法測
定を行っている。
The pressure tubes that make up the core of pressure tube reactors are extremely important equipment. This pressure tube is irradiated with neutrons during the operation of the nuclear reactor, and the cooling water flowing inside it is in a high temperature and high pressure state, so its inner diameter gradually changes over time. Therefore, during the operating period of the nuclear reactor, internal diameter measurements are carried out to measure the amount of creep under irradiation.

この内径測定の際には、圧力管の内部が高放射線環境下
にあること、また圧力管が内径約118+m−で、その
両端に取り付けられた延長管を含めると約10mもの長
尺管であることのため、遠隔操作型の測定装置を圧力管
の内部に挿入して行っている6通常この測定は、2年〜
4年間隔毎に原子炉停止時に行うことにしている。
When measuring this inner diameter, it was important to note that the inside of the pressure tube is under a high radiation environment, and that the pressure tube has an inner diameter of approximately 118+m-, and is a long tube of approximately 10m including the extension tubes attached to both ends. Because of this, a remote-controlled measuring device is inserted into the pressure pipe.6 Normally, this measurement takes about two years to
The plan is to conduct this every four years when the reactor is shut down.

従来の内径測定方法は、180度対称的に設けられる一
対(2個)の半径測定センサと、120度間隔で2個の
ガイドボールを固定し1個のガイドボールを可動としス
プリング等を用いて半径方向外向きに弾toされる構造
の3点支持方式の保持機構とが一体となった測定ヘッド
を用い、それを圧力管の内部に挿入し、回転させながら
軸方向に移動させて内径寸法の測定を行っていた。内径
測定センサとしては、非接触式の超音波センサや接触式
の差動トランス等が用いられている。
The conventional inner diameter measurement method uses a pair (two) radius measurement sensors installed 180 degrees symmetrically, two fixed guide balls spaced 120 degrees apart, and one guide ball movable using a spring or the like. Using a measuring head that is integrated with a three-point support holding mechanism that is designed to be pushed outward in the radial direction, the measuring head is inserted into the inside of the pressure tube and moved in the axial direction while rotating to measure the inner diameter dimension. were being measured. As the inner diameter measurement sensor, a non-contact type ultrasonic sensor, a contact type differential transformer, etc. are used.

[発明が解決しようとする問題点] ところがこのような測定方法では、測定ヘッドがその外
周面から突出する3個のボールで支持されているので、
該測定ヘッドは管の内径寸法変化に追従する。このため
測定ヘッドの回転中心位置が時々刻々変化し、且つその
位置を知ることができないので円周方向内面形状を知る
ことができない、特に圧力管の円周方向内面形状が真円
状からかなり変形している場合には、その内面形状の測
定が行えないだけでなく、内径測定も正確に行えない欠
点があった。
[Problems to be Solved by the Invention] However, in such a measuring method, since the measuring head is supported by three balls protruding from its outer peripheral surface,
The measuring head follows changes in the inner diameter of the tube. For this reason, the rotational center position of the measuring head changes from moment to moment, and since the position cannot be known, the inner circumferential shape cannot be known. In particular, the inner circumferential shape of the pressure tube is considerably deformed from a perfect circle. In this case, not only the inner shape cannot be measured, but also the inner diameter cannot be measured accurately.

更に上記のような従来技術では、内径測定センサと保持
機構とが一体になった測定ヘッドであるから、測定ヘッ
ドを高速度で回転すると被測定管の内面の凹凸により振
れが生じて測定誤差が大きくなる欠点もあった。このた
め測定ヘッドの回転速度はある一定の値以下に制限され
、高速で測定できない問題もあった。
Furthermore, in the conventional technology described above, the inner diameter measurement sensor and the holding mechanism are integrated into the measuring head, so when the measuring head is rotated at high speed, the unevenness of the inner surface of the tube to be measured causes vibrations, resulting in measurement errors. There was also a downside to being large. For this reason, the rotational speed of the measurement head is limited to a certain value or less, and there is also the problem that high-speed measurement cannot be performed.

本発明の目的は、上記のような従来技術の欠点を解消し
、遠隔操作によって管の内径を測定する際に、管の円周
方向内面形状も同時に測定でき、しかもこの測定を高速
度で且つ正確に行えるような管の内径・形状測定方法を
提供することにある。
It is an object of the present invention to overcome the above-mentioned drawbacks of the prior art, to enable simultaneous measurement of the inner circumferential shape of the tube when measuring the inner diameter of the tube by remote control, and to perform this measurement at high speed and at the same time. An object of the present invention is to provide a method for accurately measuring the inner diameter and shape of a pipe.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発明は、半
径測定センサを取り付けた測定ヘッドの回転軸を被測定
管の中心に位置する回転軸受部によって保持し、その回
転軸受部を静止させた状態で前記測定ヘッドを回転し、
管の半径とそのときの回転角度とを順次測定して管の内
径および円周方向内面形状を求めるようにした管の内径
・形状測定方法である。
[Means for Solving the Problems] The present invention, which can achieve the above-mentioned objects, is characterized in that the rotation axis of the measurement head to which the radius measurement sensor is attached is held by a rotation bearing section located at the center of the pipe to be measured. and rotating the measuring head with its rotation bearing stationary,
This is a method for measuring the inner diameter and shape of a tube in which the inner diameter and circumferential inner shape of the tube are determined by sequentially measuring the radius of the tube and the rotation angle at that time.

半径測定センサは測定ヘッドに唯1個取り付けられてい
ればよく、超音波センサのような非接触式で高速検出動
作が可能なタイプが好ましい。
Only one radius measuring sensor needs to be attached to the measuring head, and a non-contact type capable of high-speed detection operation, such as an ultrasonic sensor, is preferable.

[作用] 本発明では一つの円周方向内面形状についての測定にお
いて測定ヘッドの中心軸は被測定管の中心で回転軸受部
により保持され、それが半径方向にふらつくことはない
。また半径寸法と回転角度を同時に測定するため、一つ
の測定面内において多数の測定データを取り、それらの
値を2次元子面にプロットすることによって管の内径お
よび円周方向内面形状を正確に求めることができる。
[Function] In the present invention, in the measurement of one circumferential inner surface shape, the central axis of the measuring head is held at the center of the tube to be measured by the rotary bearing, and does not wobble in the radial direction. In addition, in order to measure the radial dimension and rotation angle simultaneously, a large number of measurement data are taken within one measurement plane, and these values are plotted on a two-dimensional surface to accurately determine the inner diameter and circumferential inner shape of the tube. You can ask for it.

[実施例] 第1図は本発明に係る管の内径・形状測定方法の一実施
例を示す説明図であり、第2図はその要部の拡大図であ
る。この実施例は圧力管型原子炉における圧力管の内径
および円周方向内面形状の測定に本発明を適用した例で
ある。
[Example] FIG. 1 is an explanatory view showing an example of the method for measuring the inner diameter and shape of a pipe according to the present invention, and FIG. 2 is an enlarged view of the main part thereof. This embodiment is an example in which the present invention is applied to measurement of the inner diameter and circumferential inner surface shape of a pressure tube in a pressure tube nuclear reactor.

圧力管10の内径および円周方向内面形状の測定を行う
には、第1図に示すように、内径・形状測定装置12を
圧力管10の内部に遠隔操作により挿入し、シール材1
4でシールし、シールプラグ16により固定する。この
ような内径・形状測定装置12の挿入固定は、例えば新
型転換炉「ふげん」発電所の場合、燃料交換機を用いる
ことによって容易に行うことができる。
To measure the inner diameter and circumferential inner surface shape of the pressure pipe 10, as shown in FIG.
4 and fixed with a seal plug 16. Such insertion and fixation of the inner diameter/shape measuring device 12 can be easily performed by using a fuel exchanger, for example, in the case of the new type converter "Fugen" power plant.

内径・形状測定装置12はケーブル18によって制御装
置20と接続されており、該制御装置20からの遠隔操
作により測定を行う。
The inner diameter/shape measuring device 12 is connected to a control device 20 by a cable 18, and measurements are performed by remote control from the control device 20.

内径・形状測定装置12の概略構造は次の如くである。The schematic structure of the inner diameter/shape measuring device 12 is as follows.

この装置は、圧力管10内の任意の位置での測定が行な
えるように上下動機構22を備えた本体部分24を存す
る。本体部分24の上端近傍部には120度間隔で外周
面から突出する3個のガイドボールを備えた保持機構2
6が突設されており、それら各ガイドボールの先端が圧
力管lOの内壁に当接することによって本体部分24が
前記圧力管lOの中心に案内されつつ上下動できるよう
に構成される。この保持機構は、従来同様、2個の固定
式ガイドボールとスプリングにより半径方向外向きに弾
撥される1個の可動式ガイドボールとを組み合わせた3
点支持方式等であってよい。
This device has a main body portion 24 with a vertical movement mechanism 22 so that measurements can be made at any position within the pressure tube 10. A holding mechanism 2 includes three guide balls protruding from the outer peripheral surface at 120 degree intervals near the upper end of the main body portion 24.
6 are provided in a protruding manner, and the tip of each guide ball comes into contact with the inner wall of the pressure tube 1O, so that the main body portion 24 can move up and down while being guided to the center of the pressure tube 1O. This holding mechanism, like the conventional one, is a combination of two fixed guide balls and one movable guide ball that is repelled radially outward by a spring.
It may be a point support method or the like.

また本体部分24の上端部内の中央には回転軸受部28
が組み込まれている。そしてその回転軸受部28に対し
て回転自在に回転軸30が嵌合保持され、該回転軸30
により本体部分24の上端上方にて測定ヘッド32が保
持される。更に本体部分24の上端部内には回転軸30
を回転させるための回転駆動機構(図示せず)が組み込
まれている。測定へラド32には1個の半径測定センサ
34(例えば超音波センサ)が取り付けられ、また回転
輪30には回転角度検出器36が取り付けられる。
Furthermore, a rotation bearing portion 28 is located at the center of the upper end portion of the main body portion 24.
is included. A rotary shaft 30 is rotatably fitted and held in the rotary bearing portion 28, and the rotary shaft 30
The measuring head 32 is held above the upper end of the main body portion 24 by this. Furthermore, a rotating shaft 30 is disposed within the upper end of the main body portion 24.
A rotational drive mechanism (not shown) for rotating is incorporated. A radius measuring sensor 34 (for example, an ultrasonic sensor) is attached to the measuring blade 32, and a rotation angle detector 36 is attached to the rotating wheel 30.

なお、本発明の実施にあたっては、内径・形状測定装置
12が高放射線環境下で使用されるため、測定センサ3
4および内径・形状測定装置12の内部に組み込まれる
電子部品や高分子材料等は耐放射線性のものを用いるこ
とが不可欠である。
In carrying out the present invention, since the inner diameter/shape measuring device 12 is used in a high radiation environment, the measuring sensor 3
4 and the internal diameter/shape measuring device 12, it is essential to use radiation-resistant electronic components, polymer materials, and the like.

圧力管の内径および形状測定は次のように行う、先ず上
下動機構22により測定したい高さに測定ヘッド32を
移動して停止する。次に上下動機構22の動作を停止し
た状態で、回転駆動機構により測定ヘッド32を回転さ
せる。この時、第3図に示すように、半径測定センサ3
4で圧力管10の半径’6+’++  +rnを、回転
角度検出器36で半径を測定した位置での回転角度θ。
The inner diameter and shape of the pressure tube are measured as follows. First, the measuring head 32 is moved to the desired height using the vertical movement mechanism 22 and then stopped. Next, with the operation of the vertical movement mechanism 22 stopped, the measurement head 32 is rotated by the rotation drive mechanism. At this time, as shown in FIG.
4, the radius '6+'++ +rn of the pressure pipe 10 is the rotation angle θ at the position where the radius is measured by the rotation angle detector 36.

、θ1.・・・、θ、を順次測定する0円周方向の測定
間隔は、測定の目的に応じて、大体の形状を知りたい場
合は間隔を大きく、詳細な形状を把握したい場合には間
隔を狭くする。
, θ1. The measurement interval in the 0 circumferential direction, where . do.

一つの断面についての測定が終了すると、−旦測定を休
止して、その間に第2図の矢印Aで示すように次に測定
したい高さに測定へ7ド32を移動し、次いでその移動
を停止して、再び矢印Bに示すように測定ヘッド32を
回転させて同様の測定を繰り返す。
When the measurement for one cross section is completed, the measurement is paused for a moment, and during that time, move the 7-d 32 to the height to be measured next as shown by arrow A in Fig. 2, and then continue that movement. After stopping, the measurement head 32 is rotated again as shown by arrow B, and the same measurement is repeated.

ここで測定時に上下方向の移動動作を停止する理由は測
定精度を高めるためである。つまり測定中に測定ヘッド
32を上下動すると、保持機構26も一緒に動き、該保
持機構26は圧力管IOの内面形状に追従して動くため
、それに伴い測定ヘッド32の回転軸30も横方向に動
いてしまう、このような移動はそのまま測定値に誤差と
なって加わるので、これを避けるためである。
The reason for stopping the vertical movement during measurement is to improve measurement accuracy. In other words, when the measuring head 32 is moved up and down during measurement, the holding mechanism 26 also moves, and since the holding mechanism 26 moves following the inner surface shape of the pressure pipe IO, the rotation axis 30 of the measuring head 32 also moves in the lateral direction. This is to avoid such movement, which causes an error in the measured value.

上記のような方法で半径(rO+  r、+ ・・・。Radius (rO+ r, +...) using the method above.

rR)および角度(θ。、θ1.・・・、θ、)ヲ測定
した後、(re +  θ・)・ (r+ ・ θ1)
・・・・、(「い、θ7)の値を組にして二次元平面に
プロットすることにより、圧力管10の内径および円周
方向内面形状を求めることができる。
rR) and the angle (θ., θ1...., θ,), (re + θ・)・(r+・θ1)
By plotting a set of values of .

測定データ量が多い時はコンピュータ等を用いてデータ
処理を行えばよいし、データ量が少ない時は人手でも処
理できる。
When the amount of measured data is large, the data can be processed using a computer, or when the amount of data is small, it can be processed manually.

この測定方法では、内径測定センサの精度、回転角度検
出器の精度、測定ヘッド回転時の測定ヘッドの振れが測
定精度に直接影響を与えるので、必要とする測定精度に
応じて、これらの精度を許容値以内に収めることが大切
である。
In this measurement method, the accuracy of the inner diameter measurement sensor, the accuracy of the rotation angle detector, and the deflection of the measurement head when it rotates directly affect the measurement accuracy, so adjust these accuracies according to the required measurement accuracy. It is important to keep it within the allowable value.

[発明の効果] 本発明は上記のように測定ヘッドの回転軸が被測定管の
中心で振れないように回転軸受部を保持し、その状態で
測定ヘッドを回転して管の半径とその時の回転角度とを
順次測定するように構成したから、内径測定を行った位
置を知ることができ、従来技術では測定できなかった管
の円周方向内面形状の測定が可能となる他、例え管が真
円から大きく変形していても、その内径を正確に測定で
きる効果がある。
[Effects of the Invention] As described above, the present invention holds the rotation bearing part so that the rotation axis of the measuring head does not swing at the center of the pipe to be measured, and rotates the measuring head in this state to determine the radius of the pipe and the current value. Since the configuration is configured to sequentially measure the rotation angle and the rotation angle, it is possible to know the position where the inner diameter was measured, and it is possible to measure the inner circumferential shape of the tube, which could not be measured with conventional techniques. Even if the shape is significantly deformed from a perfect circle, the inner diameter can be accurately measured.

このように本発明では、一つの円周方向内面について、
管の半径とその角度の測定データを必要な数だけ得るこ
とができるため、従来技術よりもはるかに精度よく照射
下における圧力管クリープ量の測定が行えるようになり
、原子炉の安全性向上ならびに性能向上のためのデータ
や余寿命予測のためのデータを豊富に得ることができる
In this way, in the present invention, for one circumferential inner surface,
Since it is possible to obtain the required number of measurement data for the pipe radius and its angle, it is now possible to measure the amount of pressure pipe creep under irradiation with much greater accuracy than conventional technology, improving reactor safety and It is possible to obtain a wealth of data for improving performance and predicting remaining life.

また本発明では一つの円周方向内面形状の測定において
回転軸受部を静止した状態で保持し続けるため、測定ヘ
ッドにふらつきが生じず、特に測定センサに超音波セン
サのような高速度で測定が行えるものを利用することに
より、測定ヘッドを高速度で回転しても高精度で測定を
行うことが可能となり、従来技術に比べて数十倍の測定
の高速化が可能となる。このため特に圧力管型原子炉の
圧力管の検査のような場合には、原子炉の定期検査期間
が短縮され稼動率が向上する利点も生じる。
Furthermore, in the present invention, since the rotary bearing part is kept stationary during the measurement of one inner surface shape in the circumferential direction, the measurement head does not wobble, and in particular, the measurement sensor can perform high-speed measurement such as an ultrasonic sensor. By using a device that can do this, it is possible to perform measurements with high precision even when the measurement head is rotated at high speeds, making it possible to perform measurements several tens of times faster than conventional techniques. Therefore, especially when inspecting the pressure pipes of a pressure tube type nuclear reactor, there is an advantage that the period of periodic inspection of the reactor is shortened and the operating rate is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る管の内径・形状測定方法の一例を
示す説明図、第2図はその要部の拡大一部破断正面図、
第3図はその測定状態を示す説明図である。 10・・・圧力管、12・・・内径・形状測定装置、2
2・・・上下動機構、24;・・本体部分、26・・・
保持機構、28・・・回転軸受部、30・・・回転軸、
32・・・測定ヘッド、34・・・半径測定センサ、3
6・・・回転角度検出器。 特許出願人 動力炉・核燃料開発事業団代  理  人
     茂  見     穣第1図 第2図 第3図
FIG. 1 is an explanatory diagram showing an example of the method for measuring the inner diameter and shape of a pipe according to the present invention, and FIG. 2 is an enlarged partially cutaway front view of the main part thereof.
FIG. 3 is an explanatory diagram showing the measurement state. 10... Pressure pipe, 12... Inner diameter/shape measuring device, 2
2... Vertical movement mechanism, 24;... Main body part, 26...
Holding mechanism, 28... Rotating bearing part, 30... Rotating shaft,
32...Measuring head, 34...Radius measurement sensor, 3
6...Rotation angle detector. Patent applicant: Power Reactor and Nuclear Fuel Development Corporation Representative: Shigeru Miyoshi Hito Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、放射線環境下に置かれた被測定管を、遠隔操作によ
って測定する内径・形状測定方法であって、半径測定セ
ンサを取り付けた測定ヘッドの回転軸を、被測定管の中
心に位置する回転軸受部によって保持し、その回転軸受
部を静止させた状態で前記測定ヘッドを回転し、管の半
径とそのときの回転角度とを順次測定して管の内径およ
び円周方向内面形状を求めることを特徴とする管の内径
・形状測定方法。
1. A method for measuring the inner diameter and shape of a tube to be measured placed in a radiation environment by remote control. The measuring head is held by a bearing, and the measuring head is rotated with the rotating bearing stationary, and the radius of the tube and the rotation angle at that time are sequentially measured to obtain the inner diameter and inner circumferential shape of the tube. A method for measuring the inner diameter and shape of a pipe.
JP30656287A 1987-12-03 1987-12-03 Method for measuring internal diameter and shape of tube Pending JPH01147313A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30656287A JPH01147313A (en) 1987-12-03 1987-12-03 Method for measuring internal diameter and shape of tube
CA000584753A CA1299862C (en) 1987-12-03 1988-12-01 Method of measuring inner diameter and configuration of tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30656287A JPH01147313A (en) 1987-12-03 1987-12-03 Method for measuring internal diameter and shape of tube

Publications (1)

Publication Number Publication Date
JPH01147313A true JPH01147313A (en) 1989-06-09

Family

ID=17958547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30656287A Pending JPH01147313A (en) 1987-12-03 1987-12-03 Method for measuring internal diameter and shape of tube

Country Status (2)

Country Link
JP (1) JPH01147313A (en)
CA (1) CA1299862C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436408U (en) * 1990-07-24 1992-03-26
JP2008026276A (en) * 2006-07-25 2008-02-07 Nanya Seisakusho:Kk Coordinate detector for measuring position degree, and position degree measuring system
CN103604405A (en) * 2013-08-28 2014-02-26 陕西福音假肢有限责任公司 Internal diameter measurement device of prosthetic socket

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237464A (en) * 1975-09-20 1977-03-23 Nippon Kokan Kk <Nkk> Method of measuring bore distribution of pipe
JPS5752803A (en) * 1980-06-27 1982-03-29 Pietsushiyu Ruudouihi Method of and apparatus for measuring inner surface of hollow cylinder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237464A (en) * 1975-09-20 1977-03-23 Nippon Kokan Kk <Nkk> Method of measuring bore distribution of pipe
JPS5752803A (en) * 1980-06-27 1982-03-29 Pietsushiyu Ruudouihi Method of and apparatus for measuring inner surface of hollow cylinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436408U (en) * 1990-07-24 1992-03-26
JP2008026276A (en) * 2006-07-25 2008-02-07 Nanya Seisakusho:Kk Coordinate detector for measuring position degree, and position degree measuring system
CN103604405A (en) * 2013-08-28 2014-02-26 陕西福音假肢有限责任公司 Internal diameter measurement device of prosthetic socket

Also Published As

Publication number Publication date
CA1299862C (en) 1992-05-05

Similar Documents

Publication Publication Date Title
CN108534657B (en) A kind of passive self-adaptive kernel fuel assembly multifunctional detecting device
CN205209440U (en) From centering deep hole parameter measurement device
JPH01147313A (en) Method for measuring internal diameter and shape of tube
US4862079A (en) Magnetic method and apparatus for measuring and locating wear of control rods in nuclear reactors
CN103954204A (en) Static roundness measurement device and method
CN111795651A (en) Method and equipment for measuring parameters of large-scale revolving body by using mechanical arm
CA1204851A (en) Automatic ultrasonic flaw detector for tubes
US4485560A (en) Method and device for determining the shape of the inner wall of a tube
EP0410154B1 (en) Rotor bore inspection system
CN106908620A (en) A kind of haulage cable linear velocity detector
US3264741A (en) Dimensional inspection bench for parts having cylindrical bodies
US3251136A (en) Hole measuring devices
CN208937533U (en) A kind of Magnetic memory testing carriage device of convertible detection angles
JPH0438287Y2 (en)
KR101510003B1 (en) The Coordinate Measurement Apparatus for Pressure Vessel Nozzle Weld
JPH059661Y2 (en)
JPS59119210A (en) Automatic measuring device for inner diameter of tube
US20210366626A1 (en) Method and system for periodically measuring the total gamma radiation activity of a target radioisotope being produced inside the core of a nuclear reactor
CN116428963A (en) Air-floating rotary table device for roundness measuring instrument, calibration method and measurement method thereof
CN105913885A (en) Relative burn-up measuring system for fuel tube and measuring method thereof
JPH06308281A (en) Mobile in-core probe monitor
CN117554471A (en) Automatic orientation method of array type eddy current detection sensor and detection device thereof
JPS6130210Y2 (en)
CN115774284A (en) Rotary neutron energy spectrum on-line measuring device
Martin et al. Characterization of irradiated fuel rods using pulsed eddy current techniques