JPH01145648A - Photosensitive resin - Google Patents

Photosensitive resin

Info

Publication number
JPH01145648A
JPH01145648A JP30498887A JP30498887A JPH01145648A JP H01145648 A JPH01145648 A JP H01145648A JP 30498887 A JP30498887 A JP 30498887A JP 30498887 A JP30498887 A JP 30498887A JP H01145648 A JPH01145648 A JP H01145648A
Authority
JP
Japan
Prior art keywords
group
resin
photosensitive
photosensitive resin
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30498887A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayami
宏 早味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30498887A priority Critical patent/JPH01145648A/en
Publication of JPH01145648A publication Critical patent/JPH01145648A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain superior light transmitting characteristics in the visible region and to prevent the deterioration of the characteristics even in case of use at high temp. and humidity by synthesizing a photosensitive resin having a specified structure. CONSTITUTION:A photosensitive resin represented by formula I is synthesized. In formula I, R<1> is H or methyl, R<2> is phenyl, etc., R<3> is H or methyl, R<4> is hydrocarbon having hydroxyl, R<5> is H or methyl and R<6> is a photosensitive atomic group capable of forming a cross-linked structure on being irradiated with light. The photosensitive resin has superior moisture resistance as well as superior light transmitting characteristics and the characteristics are not deteriorated even in case of use at high temp. and humidity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可視光領域における光透過性が良く、しかも耐
湿性の優れた感光性樹脂を提供することを目的とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The object of the present invention is to provide a photosensitive resin that has good light transmittance in the visible light region and excellent moisture resistance.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来エリ感光性樹脂はトランジスタ、IC、ハイブリッ
ドIC,LSIなどの半導体素子の製造時のフォトレジ
スト、プリント配線基板、フレッキシブルプリント配線
基板などのプリント基板製造時のエツチングレジスト、
印刷、製版、金属、高分子材料の表面処理材などの分野
で幅広く応用されており、非常に利用価値の高いもので
ある。
Conventional photosensitive resins have been used as photoresists for manufacturing semiconductor devices such as transistors, ICs, hybrid ICs, and LSIs, etching resists for manufacturing printed circuit boards such as printed wiring boards, and flexible printed wiring boards.
It is widely applied in fields such as printing, plate making, metals, and surface treatment materials for polymeric materials, and is extremely valuable.

感光性樹)jhには光照射によって感光性基が重合もし
くは架橋して溶剤不溶になるネガ型感光性樹猶fAの変
化が壽じ溶剤可溶型となるポジ型感光性樹脂の2種類が
あり、必要とする分光的感度、解像度、耐酸、耐アルカ
リなどの要求特性、使用目的によって適宜使い分けられ
ている。
There are two types of photosensitive resins: negative photosensitive resins that polymerize or crosslink photosensitive groups when exposed to light and become insoluble in solvents, and positive photosensitive resins that undergo changes to become solvent soluble. They are used appropriately depending on the required properties such as spectral sensitivity, resolution, acid resistance, alkali resistance, etc., and the purpose of use.

−例を挙げると、ポジ型の感光性樹脂にはフェノール−
ホルムアルデヒド縮合樹脂、クレゾール−ホルムアルデ
ヒド縮合樹脂、p−tert−ブチルフェノール−ホル
ムアルデヒド縮合樹脂などのノボラック系樹脂にオルト
キノアジド基、オルトナフトキノアジド基などの感光性
基を導入した樹脂を代表例として挙げることができる。
-For example, positive-type photosensitive resins include phenol-
Typical examples include resins in which a photosensitive group such as an orthoquinazide group or an orthonaphthoquinazide group is introduced into a novolac resin such as a formaldehyde condensation resin, a cresol-formaldehyde condensation resin, or a p-tert-butylphenol-formaldehyde condensation resin. .

(例えば特公昭56−46579 U、 S、 Pat
、 3046120 (1962) Ger、 Pat
(For example, Special Publication No. 56-46579 U, S, Pat
, 3046120 (1962) Ger, Pat
.

865860 (1953)など)。この感光性樹脂は
特に解像度の良さと耐酸特性の良さから半導体素子形成
のフォトレジストとして欠くことの出来ないものであり
、紫外光照射によってオルトキノアジド基、オルトナフ
トキノアジド基が分解異性化してアルカリ性水溶液可溶
性となって露光部が可溶化し、未露光部が現像時にノボ
ラック樹脂とアゾカップリングして不溶化することを利
用しパターン形成するものである。
865860 (1953), etc.). This photosensitive resin is indispensable as a photoresist for forming semiconductor devices due to its particularly good resolution and acid resistance.When irradiated with ultraviolet light, the orthoquinoazide group and the orthonaphthoquinoazide group decompose and isomerize, forming an alkaline aqueous solution. Patterns are formed by utilizing the fact that the exposed area becomes soluble and the unexposed area becomes insolubilized by azo coupling with the novolac resin during development.

一方、ネガ型の感光性樹脂としてはジアジド化合物−ポ
リイソプレン環化物(例えばU−S、Pa t。
On the other hand, as a negative photosensitive resin, a diazide compound-polyisoprene cyclized product (for example, U-S, Pat.

2、852.379(1958)など)ポリ桂皮酸ビニ
ルなどのシンナメート系樹脂、(例えばU、 S、 P
at、 2725372(1955)など)ベンザルア
七トフエノン部を側鎖に持つシンナミリデン系樹脂、(
例えばC,C,Unruh ;j、Appl、Poly
m、 Sci、 、 2358(1959)など〕、ポ
リメタクリル酸アリル(例えばM、Donati、 e
t at。
2, 852.379 (1958) etc.), cinnamate resins such as polyvinyl cinnamate (e.g. U, S, P
at, 2725372 (1955), etc.) Cinnamylidene resins having benzalua heptophenone moieties in their side chains, (
For example, C, C, Unruh ;j, Appl, Poly
M, Sci., 2358 (1959) etc.], polyallyl methacrylates (e.g. M. Donati, e.g.
t at.

Makromol、 Chem、 60.233(19
63)など)、両末端メククロイルボリジメチルシロキ
サン(特公昭49−39200など)などのようなアク
リル、メタクリル系樹脂、不飽和ポリエステル樹脂(G
er、Pat、1075831(1961)など)など
を挙げることができる。これらの感光性樹脂はプリント
基板の製造時のフォトレジスト、平版印刷、凹版印刷な
どの分野で幅広く利用されており、紫外光などの光照射
によって発生したラジカル、カルベン、ナイトレンなと
の活性種が不飽和結合に付加して架橋する反応、重合あ
るいはオリゴマー化して架橋する反応を応用したもの、
(2+2 )型のシクロ付加反応を起こして架橋するな
どの化学反応を応用した優れた感光性樹脂である。
Makromol, Chem, 60.233 (19
63), etc.), acrylic, methacrylic resins, unsaturated polyester resins (G
er, Pat, 1075831 (1961), etc.). These photosensitive resins are widely used in fields such as photoresist, lithographic printing, and intaglio printing when manufacturing printed circuit boards, and active species such as radicals, carbene, and nitrene generated by irradiation with ultraviolet light and other light are Reactions that add to unsaturated bonds and crosslink, reactions that polymerize or oligomerize and crosslink,
It is an excellent photosensitive resin that utilizes chemical reactions such as (2+2) type cycloaddition reaction and crosslinking.

上記の感光性樹脂は、増感のために必要に応じて増感剤
や色素、機械的強度の向上のため無機系フィラーを添加
して使用されることもある。
The above-mentioned photosensitive resin may be used by adding a sensitizer or a dye as necessary for sensitization, and an inorganic filler to improve mechanical strength.

このように、かなり多くの種類の感光性樹脂が開発され
実用に供されているが、上記の感光性樹脂は可視光領域
での光透過性や、殊に、耐湿特性、例えば、高温多湿条
件での使用による可視域での光透過性の劣化については
殆ど顧みられていないのが現状である。
As described above, many types of photosensitive resins have been developed and put into practical use. At present, little attention has been paid to the deterioration of light transmittance in the visible range due to use in

例えば、ポジ型のフェノール−ホルムアルデヒド縮合樹
脂のオルトナフトキノアジドエステルは未露光体が既に
着色しているが、アルカリ水溶液による現像時に、さら
にアゾカップリング反応が起こるので、アゾ系色素が樹
脂中に生成することになり、可視域の光透過性の良好な
樹脂にはならない。
For example, the unexposed body of orthonaphthoquinoazide ester of a positive phenol-formaldehyde condensation resin is already colored, but when developing with an alkaline aqueous solution, an azo coupling reaction occurs further, so the azo dye is mixed into the resin. As a result, a resin with good light transmittance in the visible range cannot be obtained.

一方、ネガ型では、ポリメタクリル酸アリルなどのアリ
ル系樹脂、両末端メタクロイルポリジメチルシロキサン
などのようなアクリル系メタクリル系樹脂は未露光体も
露光体も可視域の光透過性が比較的良好な樹脂であるも
のが多いが、これらの樹脂を高温多湿条件で使用すると
、次第に光透過性が劣化して行く現象が認められるので
ある。
On the other hand, in negative tones, allyl resins such as allyl polymethacrylate and acrylic methacrylic resins such as double-terminated methacroyl polydimethylsiloxane have relatively good light transmittance in the visible range for both unexposed and exposed materials. However, when these resins are used under high temperature and high humidity conditions, a phenomenon is observed in which their light transmittance gradually deteriorates.

例えば、ポリメタクリル酸アリルの未露光体を3.0m
厚みのシート状に成型し、このシートを70°C×90
%四の高温恒温に24時間暴露した場合、初期特性は可
視域の平均透過率が89%と優れた特性であっても、高
温恒温状態に暴露後は3.2%に劣化してしまうのであ
る。この可視域の光透過率の劣化現象は露光によって架
橋せしめた場合もほぼ同様である。
For example, an unexposed body of polyallyl methacrylate is
Form into a thick sheet and heat this sheet at 70°C x 90°C.
When exposed to a high temperature constant temperature of %4 for 24 hours, even if the initial characteristics are excellent with an average transmittance in the visible range of 89%, it deteriorates to 3.2% after exposure to a high temperature constant temperature condition. be. This phenomenon of deterioration of light transmittance in the visible range is almost the same when crosslinking is caused by exposure.

また、アジド系化合物も光照射)てよって著しく可視域
に吸収をもつようになり、光透過性の優れた感光性樹脂
とは言えない。
Furthermore, azide-based compounds also exhibit significant absorption in the visible region when exposed to light (light irradiation), and cannot be said to be photosensitive resins with excellent light transmittance.

特に、耐湿性の劣る感光性材料を例えば、金属表面の透
明保護コートやマーキングなどの用途で使用し、高温多
湿条件に暴露した場合には、コート層、マーキング層の
樹脂が透明性を失う場合や著しく変色してしまう場合が
あり好ましくない。
In particular, when a photosensitive material with poor moisture resistance is used for purposes such as transparent protective coating or marking on metal surfaces and is exposed to high temperature and humidity conditions, the resin in the coating layer and marking layer may lose transparency. This is not preferable as it may cause significant discoloration.

以上のように、従来の感光性樹脂には可視域の光透過性
が良いものが少なく、可視域の光透過性が良いものでも
高温多湿条件での使用で光透過性が劣化するものが多く
、両者を満足する感光性樹脂は殆どなかった。
As mentioned above, there are few conventional photosensitive resins that have good light transmittance in the visible range, and even those that have good light transmittance in the visible range often deteriorate when used in hot and humid conditions. There were almost no photosensitive resins that satisfied both of these requirements.

〔問題点を解決するための手段と作用〕本発明者は上記
の感光性樹脂の可視域の光透過特性、耐湿特性の問題に
ついて鋭意検討を重ねた結果、一般式が CK、n ; m i (J”’−’ n−t−m+1=1 RI    R3R5 −(CH2CH)n−(CLI−CH)m−(CHa 
CH) !−+     1    1 R2C=ORe ? (式中のR1は水素原子、メチル基、Pは−C−0−R
基(Rは炭化水素基〕、フェニル基、R3は水素原子、
メチル基、R4は少なくとも1個の水酸基を有する炭化
水素基、R6は水素原子、メチル基、R6は光照射によ
って架橋構造を形成し得る感光性原子団、望ましくはア
リル基、アクリル基、メタクリル基、シンナミル基、ビ
ニル基を含有する炭化水素基)で示される樹脂が、可視
域の光透過特性が優れ、しかも高温多湿条件で使用した
場合も光透過特性の劣化のない感光性樹脂であることを
見出し、かかる知見に基づき本発明を完成させるに至っ
た。
[Means and effects for solving the problems] As a result of intensive studies on the problems of the light transmission characteristics in the visible range and the moisture resistance characteristics of the above-mentioned photosensitive resin, the inventors found that the general formula is CK, n; (J"'-' n-t-m+1=1 RI R3R5-(CH2CH)n-(CLI-CH)m-(CHa
CH)! −+ 1 1 R2C=ORe? (R1 in the formula is a hydrogen atom, a methyl group, P is -C-0-R
group (R is a hydrocarbon group), phenyl group, R3 is a hydrogen atom,
methyl group, R4 is a hydrocarbon group having at least one hydroxyl group, R6 is a hydrogen atom, methyl group, R6 is a photosensitive atomic group capable of forming a crosslinked structure by light irradiation, preferably an allyl group, an acrylic group, or a methacryl group , a hydrocarbon group containing a cinnamyl group, or a vinyl group) is a photosensitive resin that has excellent light transmission properties in the visible range and does not deteriorate in light transmission properties even when used under high temperature and high humidity conditions. Based on these findings, the present invention was completed.

R6が感光基であれば、一般の感光性樹脂と同様に基材
に塗布した後、ネガマスクフィルムあるいはガラスネガ
マスクを密着せしめ、紫外光などの光照射を行なえば、
画像形成が可能で、アセトン、メチルエチルケトンなど
のようなケトン系溶剤、エタノール、イソプロパツール
などのようなアルコール系溶剤、酢酸エチルなどのよう
なエステル系あるいはこれらを混合した有機溶剤で可溶
性の未露光部を除去せしめればパターンの形成を行なう
ことができる。
If R6 is a photosensitive group, after coating it on a base material like a general photosensitive resin, attaching a negative mask film or glass negative mask and irradiating it with light such as ultraviolet light,
An unexposed film that can form images and is soluble in ketone solvents such as acetone and methyl ethyl ketone, alcohol solvents such as ethanol and isopropanol, ester solvents such as ethyl acetate, or organic solvents that are a mixture of these. By removing the portion, a pattern can be formed.

解像度は塗布する感光性樹脂の厚みによっても異なるが
、樹脂厚みが1〜100ミクロンの範囲であれば数〜数
十ミクロン解像度をもつものが容易に得られ、この場合
 R6がアリル基、アクリル基、メタクリル基、シンナ
ミル基であれば、感光基を含有するユニットをモル分率
で1−33%の範囲′t/テ設定すれば良かった。
The resolution varies depending on the thickness of the photosensitive resin to be coated, but if the resin thickness is in the range of 1 to 100 microns, a resolution of several to several tens of microns can be easily obtained. In this case, R6 is an allyl group or an acrylic group. , methacrylic group, or cinnamyl group, it is sufficient to set the molar fraction of the unit containing the photosensitive group in the range of 1 to 33% 't/te.

また、露光時間の短縮、高感度化のため、増感剤もしく
は多官能性モノマーを初期の光透過性を損なわない範囲
で添加しても良く、特に感光基がアリル基、アクリル基
、メタクリル基を含有する原子団の場合にはアセトフェ
ノン系、ベンゾフェノン系、ベンゾイン系などの増感剤
、また、感光基がシンナミル基を含有する原子団の場合
はビクラミド、2−クロロ−4−二トロフェノールナト
のアミノ、ニトロ、フェノール性化合物、ベンゾフェノ
ンなどのケトン系化合物などを感光性樹脂100重量部
に対し0.01〜1wt%添加すれば良い。
In addition, in order to shorten the exposure time and increase sensitivity, a sensitizer or a polyfunctional monomer may be added as long as the initial light transmittance is not impaired. In the case of an atomic group containing a photosensitive group, use a sensitizer such as acetophenone, benzophenone, or benzoin, and in the case of an atomic group containing a cinnamyl group, use biclamide, 2-chloro-4-ditrophenol, etc. Amino, nitro, phenolic compounds, ketone compounds such as benzophenone, etc. may be added in an amount of 0.01 to 1 wt% per 100 parts by weight of the photosensitive resin.

多官能性モノマーとしてはエチレングリコールジメタク
リレート、トリメチロールプロパントリアクリレート、
トリメチロールプロパントリアクリレート、トリアリル
イソシアヌレート、トリメタクリルシ、アスレートなど
の化合物が使用可能である。
Polyfunctional monomers include ethylene glycol dimethacrylate, trimethylolpropane triacrylate,
Compounds such as trimethylolpropane triacrylate, triallylisocyanurate, trimethacrylic acid, athlate, etc. can be used.

ところが、上記のようなポリスチレン系、ポリアクリル
酸エステル、ポリアクリル酸エステル基の樹脂に感光基
を導入した感光性樹脂は一般に耐湿性が良くない場合が
多く、先に説明したポリメタクリル酸アリルの如く、高
温多湿条件で使用すると著しく光透過性が劣化してしま
うのである。
However, the photosensitive resins mentioned above, in which photosensitive groups are introduced into polystyrene-based, polyacrylic ester, and polyacrylic ester-based resins, generally have poor moisture resistance, and the above-mentioned allyl methacrylate resins However, when used under high temperature and high humidity conditions, the light transmittance deteriorates significantly.

これに対し、本発明の感光性樹脂はR4を含有するユニ
ットすなわち水酸基を有する炭化水素基を含有するユニ
ットを有しており、このユニットの作用で感光性樹脂の
耐湿性を向上せしめることが可能である。
In contrast, the photosensitive resin of the present invention has a unit containing R4, that is, a unit containing a hydrocarbon group having a hydroxyl group, and the action of this unit can improve the moisture resistance of the photosensitive resin. It is.

R4の水酸基を有する炭化水素基としては、2−ヒドロ
キシエチル基、3−ヒドロキシプロピル基、2−ヒドロ
キシプロピル基などの原子団を代表例として挙げること
ができ、感光性樹脂の耐湿特性はこのR4を含むユニッ
トの含有率もしくはモル分率を適宜設定することにより
、使用条件に見合った耐湿特性を持つ感光性樹脂が得ら
れるという特有の効果を奏するのである。
Representative examples of the hydrocarbon group having a hydroxyl group for R4 include atomic groups such as 2-hydroxyethyl group, 3-hydroxypropyl group, and 2-hydroxypropyl group, and the moisture resistance of the photosensitive resin is determined by this R4. By appropriately setting the content rate or molar fraction of the unit containing , a unique effect is achieved in that a photosensitive resin having moisture resistance characteristics suitable for the usage conditions can be obtained.

なお、ここに耐湿特性は一定の温度、湿度下における一
定時間経過後の透過率で評価されるものである。
Here, the moisture resistance property is evaluated by the transmittance after a certain period of time under a certain temperature and humidity.

一例を挙げれば、例えば60’CX90%冊の条件で使
用する場合にはR4を含むユニットの含有率はモル、分
率で15%以上すなわちn−hn刊=1とすれば0.1
5Sn〈1、また70°α95%四の条件で使用する場
合にはR4を含むユニットの含有率をモル分率で25%
以上すなわちn−hn+1−1とすれば0.25S〈x
設定すれば光透過性の初期特性をほぼ保持することので
きる感光性樹脂にすることが可能である。
For example, when used under the condition of 60'CX90% volume, the content of units containing R4 is 15% or more in mole or fraction, that is, if n-hn publication = 1, then 0.1
5Sn<1, and when used under the conditions of 70°α95%4, the content of units containing R4 is 25% in molar fraction.
In other words, if n-hn+1-1, then 0.25S〈x
If set, it is possible to produce a photosensitive resin that can substantially maintain its initial light transmittance properties.

上記のような耐湿性向上を行なう別の方法として、従来
の感光性樹脂に分子内に水酸基を有する反応性モノマー
あるいは反応性オリゴマー例えば、2−ヒドロキシエチ
ルアクリレート、ペンクエリスリトールトリアクリレー
トや、エポキシ系のオリゴマーを添加する方法が考えら
れる。しかし、この方法では露光架橋後の樹脂に十分な
耐湿性を発揮させるためには、かなり多量の添加を必要
とし、そのため−未露光樹脂の粘度が著しく低下し、ネ
ガマスクを密着せしめる方式のフォトリソグラフィー法
が適用できなくなる場合が多く完全な方法とは言えない
Another method for improving moisture resistance as described above is to add reactive monomers or reactive oligomers having hydroxyl groups in the molecule to conventional photosensitive resins, such as 2-hydroxyethyl acrylate, penquerythritol triacrylate, and epoxy-based resins. A method of adding oligomers is considered. However, in this method, a considerably large amount of additive is required in order to make the resin exhibit sufficient moisture resistance after exposure and crosslinking.As a result, the viscosity of the unexposed resin decreases significantly, and photolithography using a method in which a negative mask is brought into close contact with the resin is required. It is not a perfect method as there are many cases where the law cannot be applied.

さらに、本発明の感光性樹脂はn、m、I比を適宜設定
することにより、耐湿性と感光感度、また、機械的物性
などを個々に制御できるメリットがある。
Furthermore, the photosensitive resin of the present invention has the advantage that moisture resistance, photosensitivity, mechanical properties, etc. can be individually controlled by appropriately setting the n, m, and I ratios.

すなわち、ある特定の樹脂に感光性を付与する方法とし
ては主鎖の官能基もしくは側鎖の官能基に感光性を有す
る原子団を置換、付加などの方法によって導入する方法
が一般に用いられる。この際、−例を挙げれば、側鎖に
エポキシ基を含有する拉4月h、例えば、ポリグリシジ
ルメタクリレートに感光性基としてアクリル基を導入す
る場合にはポリグリシジルメタクリレートにアクリル酸
を反応せしめる方法が一般的である(例えば特開昭48
−74594  など)。この場合、ポリグリシジルメ
タクリレートのエポキシ環はアクリル酸によって開環し
、ポリグリシジルメタクリレート側鎖の2の位置の炭素
原子をζ水酸基が結合した構造の感光性樹脂が合成され
ることになる。この水酸基は本発明と同じく、感光性樹
脂の耐湿性向上に寄与し得るものであるが、例えば、7
0°)90%RHの条件で使用するためには、先に説明
したように水酸基は少なくとも25モル%の含有率が必
要であり、この場合、アクリル基感光基も樹脂に25モ
ル%含まれてしまうことになる。すなわち、このような
例では樹脂の耐湿特性と感光感度が個別に設定、制御が
できない問題がある。この場合、樹脂の機械的物性につ
いても個別に設定、制御できないことは言うまでもない
ことである。
That is, as a method for imparting photosensitivity to a particular resin, a method is generally used in which a photosensitive atomic group is introduced into a main chain functional group or a side chain functional group by a method such as substitution or addition. In this case, for example, when an acrylic group is introduced as a photosensitive group into polyglycidyl methacrylate containing an epoxy group in the side chain, a method of reacting polyglycidyl methacrylate with acrylic acid is used. is common (for example, Japanese Unexamined Patent Application Publication No. 1988)
-74594 etc.). In this case, the epoxy ring of polyglycidyl methacrylate is opened by acrylic acid, and a photosensitive resin having a structure in which a ζ hydroxyl group is bonded to the carbon atom at position 2 of the polyglycidyl methacrylate side chain is synthesized. This hydroxyl group can contribute to improving the moisture resistance of the photosensitive resin as in the present invention, but for example, 7
0°) In order to use the resin under the condition of 90% RH, the content of hydroxyl groups must be at least 25 mol%, as explained above, and in this case, the resin must also contain 25 mol% of acrylic photosensitive groups. This will result in That is, in such an example, there is a problem that the moisture resistance and photosensitivity of the resin cannot be individually set and controlled. In this case, it goes without saying that the mechanical properties of the resin cannot be individually set or controlled.

本発明の感光性樹脂では機械的物性、例えば、硬度、可
撓性などに関しては、各ユニットとして使用するモノマ
ー単位の選定の自由度が大きく、非常に剛性の高い樹脂
から非常に柔軟性に富んだ樹脂まで幅広く材料物性の設
計を行なうことが可能である。
The photosensitive resin of the present invention has a large degree of freedom in selecting the monomer units used as each unit in terms of mechanical properties, such as hardness and flexibility, and can range from a very rigid resin to a very flexible resin. It is possible to design a wide range of material properties, including resins.

以下に、実施例をもって本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

〔実施例〕〔Example〕

実施例1゜ 構造式 %式% (但し、n=0.7. m−0,10,1=0.20.
モル比)の樹脂をメチルメククリレートと2−ヒドロキ
シエチルアクリレートの70:30 (モル比)共重合
体(過酸化ラウロイルを重合開始剤とじ℃メチルエチル
ケトン中で重合)に2−ヒドロキシニーチルアクリレー
トユニットの172当量のメククロイルクロリドをピリ
ジン中で反応せしめる方法で合成した。
Example 1゜Structural formula%Formula% (However, n=0.7. m-0,10,1=0.20.
A 70:30 (mole ratio) copolymer of methyl meccrylate and 2-hydroxyethyl acrylate (polymerized in methyl ethyl ketone at °C with lauroyl peroxide as a polymerization initiator) was added to a 2-hydroxynityl acrylate unit. was synthesized by reacting 172 equivalents of mecculoyl chloride in pyridine.

この樹脂をメチルエチルケトンに溶解後、大過剰のメタ
ノールから再沈澱する方法を2回繰返し精製した。得ら
れた樹脂の数平均分子量は4.IX1υ5であった。
This resin was purified twice by dissolving it in methyl ethyl ketone and reprecipitating it from a large excess of methanol. The number average molecular weight of the obtained resin was 4. It was IX1υ5.

この樹脂の赤外分光分析を行なった結果、3200〜3
500cm’に→H基の特性吸収、1720an’付近
にエステル基の特性吸収、1640an’付近に炭素−
炭素二重結合の特性吸収が見られた。
As a result of infrared spectroscopic analysis of this resin, it was found that 3200-3
At 500 cm' → characteristic absorption of H group, characteristic absorption of ester group around 1720 an', carbon- around 1640 an'
Characteristic absorption of carbon double bonds was observed.

この樹脂の解像度を確認する目的で、樹脂をメチルエチ
ルケトンに溶解せしめ、さらに樹脂100重量部に対し
0.1  重量部の2−ヒドロキシ−2−メチルーl−
フェニルプロパン−1−オンヲ増感剤として添加し、ガ
ラス板上に塗布、乾燥して厚み25ミクロンの塗膜を形
成した。塗膜上に線幅20ミクロン線間隔20ミクロン
のストライプ状テストネガマスク(ガラス厚み0.5m
mのクロム蒸着マスク〕を密着して、設置し、マスク上
20anの高さから1躍の高圧水銀灯を60秒間照射し
た。照射後、インプロパツール/アセトン−215混合
溶剤で未露光部の除去を行なった結果、ネガマスクの逆
パターンが形成できていることが確認できた。
In order to confirm the resolution of this resin, the resin was dissolved in methyl ethyl ketone, and 0.1 part by weight of 2-hydroxy-2-methyl-l- was added to 100 parts by weight of the resin.
Phenylpropane-1-one was added as a sensitizer, coated on a glass plate, and dried to form a coating film with a thickness of 25 microns. A striped test negative mask with a line width of 20 microns and a line spacing of 20 microns on the coating film (glass thickness 0.5 m)
A chromium vapor deposition mask] was placed in close contact with the mask, and a high-pressure mercury lamp was irradiated for 60 seconds from a height of 20 nm above the mask. After irradiation, the unexposed areas were removed using a mixed solvent of Improper Tool/Acetone-215, and as a result, it was confirmed that a reverse pattern of the negative mask had been formed.

硬化部の硬度はショアーD硬度で88であった。The hardness of the hardened portion was 88 on Shore D hardness.

次に上記の樹脂組成物の塗膜を同様な方法でホウケイ酸
ガラス板(厚み1.0mm )上に500ミクロンの厚
みKなるように形成し、塗膜全面に20anの高さから
1関の高圧水銀灯を60秒間照射した。この塗膜/ホウ
ケイ酸ガラス複合体は45 (h/700 nmの波長
の可視光に対し平均9屯θ%の透過性を示した。
Next, a coating film of the above resin composition was formed in the same manner on a borosilicate glass plate (thickness 1.0mm) to a thickness K of 500 microns, and a coating film of 1 cm was coated on the entire surface of the coating film from a height of 20an. It was irradiated with a high pressure mercury lamp for 60 seconds. This coating film/borosilicate glass composite exhibited an average transmittance of 9 tons θ% for visible light at a wavelength of 45 (h/700 nm).

この塗膜/ホウケイ酸ガラス複合体を60°CX90%
四の恒温旬湿槽に1週間放置後、取り出し、透過特性を
測定したところ450”700 nmの波長の可視光に
対し平均87.1%の透過性を持つことが確認できた。
This coating film/borosilicate glass composite was heated at 60°C at 90%
After leaving it in a constant temperature and humidity tank for one week, it was taken out and its transmission properties were measured, and it was confirmed that it had an average transmittance of 87.1% for visible light with a wavelength of 450" and 700 nm.

実施例2゜ 構造式 %式%) ノルマルブチルメタクリレートと2−ヒドロキシエチル
メタクリレートの57.5:42.5 (モル比)共重
合体(アゾビスイソブチロニトリルを重合開始剤として
メチルエチルケトン中で重合)に2−ヒドロキシエチル
メタクリレートユニットの2.5/42.5当量のシン
ナモイルクロリドをピリジンの中で反応せしめる方法で
合成した。
Example 2゜Structural formula % Formula %) 57.5:42.5 (molar ratio) copolymer of n-butyl methacrylate and 2-hydroxyethyl methacrylate (polymerized in methyl ethyl ketone using azobisisobutyronitrile as a polymerization initiator) ) was synthesized by reacting 2.5/42.5 equivalents of cinnamoyl chloride of 2-hydroxyethyl methacrylate units in pyridine.

この樹脂をメチルエチルケトンに溶解後、大過剰のエタ
ノールから再沈澱する方法を2回繰返し精製した。得ら
れた樹脂の数平均分子量は1.8X10’であった。
This resin was purified twice by dissolving it in methyl ethyl ketone and reprecipitating it from a large excess of ethanol. The number average molecular weight of the resulting resin was 1.8×10'.

この樹脂の赤外分光分析の結果、3200−3500a
n ’に一〇H基の特性吸収、1725an’付近にエ
ステル基の特性吸収が見られ、旧核磁気共鳴分析では、
δ6、ド、7 p pmにベンゼン核プロトン、゛δ6
.トロ、6 p pmに炭素−炭素二重結合に結合した
プロトンの吸収ピークが見られた。
As a result of infrared spectroscopic analysis of this resin, 3200-3500a
A characteristic absorption of the 10H group is seen at n', and a characteristic absorption of the ester group is seen near 1725an', and in the old nuclear magnetic resonance analysis,
δ6, de, 7 p pm benzene nucleus proton, ゛δ6
.. An absorption peak of protons bonded to carbon-carbon double bonds was observed at 6 ppm.

この樹脂の解像度を確認する目的で、樹脂をメチルエチ
ルケトンに溶解せしめ、ガラス板上に塗布、乾燥して厚
み50ミクロンの塗膜を形成した。
In order to confirm the resolution of this resin, the resin was dissolved in methyl ethyl ketone, coated on a glass plate, and dried to form a coating film with a thickness of 50 microns.

実施例1と同じく塗膜上に線幅20ミクロン線間隔20
ミクロンのストライプ状テストネガマスク(ガラス厚み
0.5+++mのクロム蒸着マスク)ヲ密着シて設置し
、マスク上20cmの高さから1kWの高圧水銀灯を3
0秒間照射した。照射後、メチルエチルケトン/エタノ
ール−5/1混合溶剤で未露光部の除去を行なった結果
、ネガマスクの逆パターンが形成できていることが確認
できた。硬化部の硬度はショアーA硬度で65であった
As in Example 1, the line width was 20 μm and the line spacing was 20 μm on the coating film.
A micron striped test negative mask (a chromium vapor deposition mask with a glass thickness of 0.5+++m) was placed in close contact with the mask, and a 1kW high-pressure mercury lamp was lit three times from a height of 20cm above the mask.
Irradiated for 0 seconds. After irradiation, the unexposed areas were removed using a mixed solvent of methyl ethyl ketone/ethanol-5/1, and as a result, it was confirmed that a reverse pattern of the negative mask had been formed. The hardness of the hardened portion was 65 on Shore A hardness.

次に上記の樹脂組成物の塗膜を同様な方法でホウケイ酸
ガラス板(厚み1.0mm )上に500ミクロンの厚
みになるように形成し、塗膜全面に20auの高さから
1kWの高圧水銀灯を60秒間照射した。この塗膜/ホ
ウケイ酸ガラス複合体は450”700nmの波長の可
視光に対し平均87.0%の透過性を示した。
Next, a coating film of the above resin composition was formed in the same manner on a borosilicate glass plate (thickness 1.0 mm) to a thickness of 500 microns, and a high pressure of 1 kW was applied from a height of 20 au to the entire surface of the coating film. It was irradiated with a mercury lamp for 60 seconds. The coating/borosilicate glass composite exhibited an average transmission of 87.0% for visible light at wavelengths of 450" and 700 nm.

この塗膜/ホウケイ酸ガラス複合体を70°α90%■
の恒温恒湿槽に1週間放置後、取り出し、透過特性を測
定したところ450”/700 nmの波長の可視光に
対し平均845%の透過性を持つことが確認できた。
This coating film/borosilicate glass composite is 70°α90%■
After leaving it in a constant temperature and humidity chamber for one week, it was taken out and its transmission characteristics were measured, and it was confirmed that it had an average transmittance of 845% for visible light with a wavelength of 450''/700 nm.

実施例3゜ 構造式 %式%(3 (但し、n=0.40. m=0.45.1=0.15
.モル比)の樹脂をスチレンと2−ヒドロキシプロピル
メタクリレートの40:60 (モル比)共重合体(過
酸化ラウロイルを重合開始剤としてベンゼン中で重合)
を2−ヒドロキシプロピルメタクリレートユニットに対
し1当量の水素化ナトリウムで処理後、15/70当量
のアリルプロミドとテトラメチルアンモニウムプロミド
触媒存在下で反応せしめる方法で合成した。
Example 3゜Structural formula%Formula%(3 (However, n=0.40. m=0.45.1=0.15
.. A 40:60 (molar ratio) copolymer of styrene and 2-hydroxypropyl methacrylate (polymerized in benzene using lauroyl peroxide as a polymerization initiator)
was synthesized by treating a 2-hydroxypropyl methacrylate unit with 1 equivalent of sodium hydride and then reacting it with 15/70 equivalent of allyl bromide in the presence of a tetramethylammonium bromide catalyst.

この樹脂を塩酸性メタノールで洗浄を繰返し、さらにメ
チルエチルケトンに溶解後、大過剰のメタノールから再
沈澱する方法を3回繰返し精製した。得られた樹脂の数
平均分子量は2.2X105であった。
This resin was purified three times by repeatedly washing it with hydrochloric acidic methanol, dissolving it in methyl ethyl ketone, and reprecipitating it from a large excess of methanol. The number average molecular weight of the resulting resin was 2.2×105.

この樹脂の赤外分光分析の結果、3200−3500a
f’に−0)1基の特性吸収、1720an’付近にエ
ステル基の特性吸収、1600afl付近に炭素−炭素
二重結合の特性吸収が見られた。
As a result of infrared spectroscopic analysis of this resin, 3200-3500a
A characteristic absorption of -0)1 group was observed at f', a characteristic absorption of an ester group around 1720 an', and a characteristic absorption of a carbon-carbon double bond around 1600 afl.

この樹脂の解像度を確認する目的で、樹脂をメチルエチ
ルケトンに溶解せしめ、ガラス板上に塗布、乾燥して厚
み25ミクロンの塗膜を形成した。
In order to confirm the resolution of this resin, the resin was dissolved in methyl ethyl ketone, coated on a glass plate, and dried to form a coating film with a thickness of 25 microns.

実施例1と同じく塗膜上に線幅20ミクロン線間隔20
ミクロンのストライプ状テストネガマスク(ガラス厚み
0.5mmのクロム蒸着マスク)を密着して設置し、マ
スク上20cmの高さから1 kWの高圧水銀灯を60
秒間照射した。照射後、メチルエチルケトン/エタノー
ル= 10/1混合溶剤で未露光部の除去を行なった結
果、ネガマスクの逆パターンが形成できていることが確
認できた。硬化部の硬度はショアーD硬度で44であっ
た。
As in Example 1, the line width was 20 μm and the line spacing was 20 μm on the coating film.
A micron striped test negative mask (a chromium-deposited mask with a glass thickness of 0.5 mm) was placed in close contact with the mask, and a 1 kW high-pressure mercury lamp was heated at a height of 60 cm from a height of 20 cm above the mask.
Irradiated for seconds. After irradiation, the unexposed areas were removed using a mixed solvent of methyl ethyl ketone/ethanol = 10/1, and as a result, it was confirmed that a reverse pattern of the negative mask had been formed. The hardness of the hardened portion was 44 on Shore D hardness.

次に上記の樹脂組成物の塗膜を同様な方法でホウケイ酸
ガラス板(厚み1.0mm )上に500ミクロンの厚
みになるように形成し、塗膜全面に20cmの高さから
1kWの高圧水銀灯を60秒間照射した。この塗膜/ホ
ウケイ酸ガラス複合体は45 ON700 nmの波長
の可視光に対し平均88.0%の透過性を示した。
Next, a coating film of the above resin composition was formed in the same manner on a borosilicate glass plate (thickness 1.0 mm) to a thickness of 500 microns, and a high pressure of 1 kW was applied from a height of 20 cm to the entire surface of the coating film. It was irradiated with a mercury lamp for 60 seconds. This coating/borosilicate glass composite exhibited an average transmission of 88.0% for visible light at a wavelength of 45 ON700 nm.

この塗膜/ホウケイ酸ガラス複合体を70°CX90%
冊の恒温恒湿槽に1週間放置後、取り出し、透過特性を
測定したところ450”l OOnmの波長の可視光に
対し平均84.1%の透過性を持つことが確認できた。
This coating film/borosilicate glass composite was heated at 70°C at 90%
After leaving the book in a constant temperature and humidity chamber for one week, it was taken out and its transmission properties were measured, and it was confirmed that it had an average transmittance of 84.1% for visible light with a wavelength of 450''lOOnm.

ホウケイ酸ガラス複合体を70°CX90%四の゛(1
)、温恒湿槽に・1週間放置後、取り出し、透過特性を
測定したところ45 (h−’700 nmの波長の可
視光に対し平均84.1%の透過性を持つことが確認で
きた。
Borosilicate glass composite at 70°C
), after leaving it in a temperature and humidity chamber for one week, it was taken out and its transmission characteristics were measured, and it was confirmed that it had an average transmittance of 84.1% for visible light with a wavelength of 45 (h-'700 nm). .

比較例1 構造式 (但し、n=0.7.m−Q、3 Q、モル比)の樹脂
をメチルメタクリレートと2−ヒドロキシエチルアクリ
レートの70:30 (モル比)共重合体(実施例1と
同じ方法にて重合)に2−ヒドロキシエチルアクリレー
トユニットの1当量のメタクロイルクロリドピリジン中
で反応せしめる方法で合成した。
Comparative Example 1 A resin having the structural formula (n = 0.7.m-Q, 3 Q, molar ratio) was converted into a 70:30 (molar ratio) copolymer of methyl methacrylate and 2-hydroxyethyl acrylate (Example 1) (Polymerization in the same manner as above) and 2-hydroxyethyl acrylate unit was reacted in 1 equivalent of methacroyl chloride pyridine.

この樹脂をメチルエチルケトンに溶解後、大過剰のメタ
ノールから再沈澱する方法を2回繰返し精製した。得ら
れた樹脂の数平均分子量は41XI O’であった。
This resin was purified twice by dissolving it in methyl ethyl ketone and reprecipitating it from a large excess of methanol. The number average molecular weight of the obtained resin was 41XIO'.

この樹脂の赤外分光分析の結果、1720cnr’付近
にエステル基の特性吸収、1600an”付近に炭素−
炭素二重結合の特性吸収が見られた。
As a result of infrared spectroscopic analysis of this resin, the characteristic absorption of ester groups was found around 1720 cnr', and the carbon-
Characteristic absorption of carbon double bonds was observed.

この樹脂の解像度を確認する目的で、樹脂をメチルエチ
ルケトンに溶解せしめ、さらに樹脂100重量部に対し
0.1重量部の2−ヒドロキシ−2−メチル−1−フェ
ニルプロパン−1−オンヲ増感剤として添加し、ガラス
板上に塗付、乾燥して厚み25ミクロンの塗膜を形成し
た。塗膜上に線幅20ミクロン線間隔20ミクロンのス
トライプ状テストネガマスク(ガラス厚み0.5mm 
)のクロム蒸着マスク)を密着して設置し、マスク上2
hの高さから1kWの高圧水銀灯を60秒間照射した。
In order to confirm the resolution of this resin, the resin was dissolved in methyl ethyl ketone, and 0.1 part by weight of 2-hydroxy-2-methyl-1-phenylpropan-1-one was added as a sensitizer to 100 parts by weight of the resin. The solution was added, applied on a glass plate, and dried to form a coating film with a thickness of 25 microns. Striped test negative mask with a line width of 20 microns and a line spacing of 20 microns on the coating film (glass thickness 0.5 mm)
) chrome-deposited mask) and place it in close contact with the mask.
A 1 kW high-pressure mercury lamp was irradiated for 60 seconds from a height of h.

照射後、イソプロパツール/アセトン−2/5混合溶剤
で未露光部の除去を行なった結果、ネガマスクの逆パタ
ーンが形成できていることが確認できた。
After irradiation, the unexposed areas were removed using a mixed solvent of isopropanol/acetone-2/5, and as a result, it was confirmed that a reverse pattern of the negative mask had been formed.

硬化部の硬度はショアーD硬度であった。The hardness of the hardened portion was Shore D hardness.

次に上記の樹脂組成物の塗膜を同様な方法でホウケイ酸
ガラス板(厚み1.0mm ) fに50・0扛グ′ロ
ンの厚みになるように形成し、塗膜全面に20anの高
さから1関の高圧水銀灯を60秒間照射した。この塗膜
/ホウケイ酸ガラス複合体は450”700 nmの波
長の可視光に対し平均95.1%の透過性を示した。
Next, a coating film of the above resin composition was formed on a borosilicate glass plate (thickness 1.0 mm) to a thickness of 50.0 mm in the same manner, and a coating film of 20 ann was applied to the entire surface of the coating film. The sample was irradiated with a high-pressure mercury lamp from Sakara Ichinoseki for 60 seconds. The coating/borosilicate glass composite exhibited an average transmission of 95.1% for visible light at wavelengths of 450" and 700 nm.

この塗膜/ホウケイ酸ガラス複合体を60°CX90%
■の・旧、温恒湿槽に1週間放置後、取り出し、透過特
性を測定したところ450”700 nmの波長の可視
光に対し平均13.8%の透過性に劣化していることが
わかった。
This coating film/borosilicate glass composite was heated at 60°C at 90%
After leaving it in a temperature and humidity chamber for one week, I took it out and measured its transmission characteristics, and found that its transmittance had deteriorated to an average of 13.8% for visible light with a wavelength of 450" and 700 nm. Ta.

比較例2 構造式 (但し、n=0.7+ rn=0.2Φ%1=0.10
. モル比)の樹脂をメチルメタクリレートと2−ヒド
ロキシエチルアクリレートの70:30 (モル比)共
重合体アゾビスイソブチロニトリルを重合開始剤として
メチルエチルケトン中で重合)に2−ヒドロキシエチル
アクリレートユニットの2/3当量のメタクロイルクロ
リドをピリジン中で反応せしめる方法で合成した。
Comparative Example 2 Structural formula (where n=0.7+ rn=0.2Φ%1=0.10
.. 70:30 (molar ratio) copolymer of methyl methacrylate and 2-hydroxyethyl acrylate (polymerized in methyl ethyl ketone using azobisisobutyronitrile as a polymerization initiator) and 2 of 2-hydroxyethyl acrylate units. /3 equivalent of methacroyl chloride was synthesized by reacting in pyridine.

この樹脂をメチルエチルケトンに溶解後、大過剰のメタ
ノールから再沈澱する方法を2回繰返し精製した。得ら
れた樹脂の数平均分子量は4.lXIO3であった。
This resin was purified twice by dissolving it in methyl ethyl ketone and reprecipitating it from a large excess of methanol. The number average molecular weight of the obtained resin was 4. It was lXIO3.

この樹脂の赤外分光分析の結果は実施例1と似かよって
いたが、8200−3500an ’のOH基時特性吸
収吸光度は、実施例1の場合、エステル基の特性吸収の
吸光度を仮に100とした場合、OH基の吸光度が45
であるのに対し、本樹脂では8であチルエチルケトンに
溶解せしめ、さらに樹脂100重量部に対し0.1重量
部の2−ヒドロキシ−2−メチル−1−フェニルプロパ
ン−1−オンヲ増感剤として添加し、ガラス板上に塗布
、乾燥して厚み25ミクロンの塗膜を形成した。塗膜上
に線幅20 ミクロン線間隔20ミクロンのストライプ
状テストネガマスク(ガラス厚み0.5mmのクロム蒸
着マスク)を密着して設置し、マスク上20anの高さ
から1kWの高圧水銀灯を60秒間照射した。
The results of infrared spectroscopic analysis of this resin were similar to those in Example 1, but the characteristic absorption absorbance at the time of OH group of 8200-3500an' was calculated by setting the absorbance of the characteristic absorption of ester group to 100 in the case of Example 1. In this case, the absorbance of OH group is 45
In contrast, this resin was dissolved in ethyl ethyl ketone with 8 and further sensitized with 0.1 part by weight of 2-hydroxy-2-methyl-1-phenylpropan-1-one per 100 parts by weight of the resin. It was added as an agent, coated on a glass plate, and dried to form a coating film with a thickness of 25 microns. A striped test negative mask (chromium vapor deposition mask with glass thickness of 0.5 mm) with a line width of 20 microns and a line spacing of 20 microns was placed closely on the paint film, and a 1 kW high-pressure mercury lamp was applied for 60 seconds from a height of 20 ann above the mask. Irradiated.

照射後、メチルエチルケトン/エタノール= 171混
合溶剤で未露光部の除去を行なった結果、ネガマスクの
逆パターンが形成できていることが確認できた。
After irradiation, the unexposed areas were removed using a mixed solvent of methyl ethyl ketone/ethanol = 171, and as a result, it was confirmed that a reverse pattern of the negative mask had been formed.

上記の樹脂組成物の塗膜をホウケイ酸ガラス板(厚み1
.0mm)上に500ミクロンの厚みになるように形成
し、塗膜全面に20anの高さから1kWの高圧水銀灯
を60秒間照射した。この塗膜/ホウケイ酸ガラス複合
体は450〜700nmの波長の可視光に対し平均94
.4係の透過性を示した。この塗膜/ホウケイ酸ガラス
複合体を60℃×90%門の恒温恒湿槽に1週間放置後
、取り出し、透過特性を測定したところ450〜700
nmの波長の可視光に対し平均37.2係の透過性に劣
化していることがわかった。
A coating film of the above resin composition was applied to a borosilicate glass plate (thickness 1
.. 0 mm) to a thickness of 500 microns, and the entire surface of the coating was irradiated with a 1 kW high-pressure mercury lamp from a height of 20 nm for 60 seconds. This coating/borosilicate glass composite has an average of 94
.. It showed the transparency of Section 4. After leaving this coating film/borosilicate glass composite in a constant temperature and humidity chamber at 60°C x 90% for one week, it was taken out and its permeation properties were measured.
It was found that the transmittance for visible light with a wavelength of nm deteriorated to an average of 37.2.

比較例3 構造式 %式%) 樹脂をノルマルブチルメタクリレートと2−ヒドロキシ
エチルメタクリレートの57.5 : 42.5 (モ
ル比)共重合体(ラウロイルパーオキシドを重合開始剤
としてメチルエチルケトン中で重合)に2−ヒドロキシ
エチルメタクリレートユニットの7.5/42.5当量
のシンナモイルクロリドをピリジン中で反応せしめる方
法で合成した。
Comparative Example 3 Structural formula % Formula %) The resin was made into a 57.5:42.5 (molar ratio) copolymer of n-butyl methacrylate and 2-hydroxyethyl methacrylate (polymerized in methyl ethyl ketone using lauroyl peroxide as a polymerization initiator). It was synthesized by reacting cinnamoyl chloride in an amount of 7.5/42.5 equivalents of 2-hydroxyethyl methacrylate units in pyridine.

この樹脂の赤外分光分析の結果は、実施例2の分析結果
と似かよっており、3500−3200an  にOH
基の特性吸収、1720 an−’付近にエステル基の
特性吸収が見られ、1H−核磁気共鳴分析でδ6.13
’7.7 ppmにベンゼン核プロトン、δ6.0〜6
.6ppmに炭素−炭素−二重結合に結合したプロトン
の吸収ピークが見られた。
The results of infrared spectroscopic analysis of this resin are similar to those of Example 2, and 3500-3200 an OH
A characteristic absorption of the ester group was observed near 1720 an-', and 1H-nuclear magnetic resonance analysis showed a characteristic absorption of δ6.13.
Benzene nucleus proton at '7.7 ppm, δ6.0-6
.. An absorption peak of protons bonded to carbon-carbon double bonds was observed at 6 ppm.

上記の樹脂組成物の塗膜をホウケイ酸ガラス板(厚み1
.0mm)上に500ミクロンの厚みになるように形成
し、塗膜全面に20anの高さから1関の高圧水銀灯を
40秒間照射した。この塗膜/ホウケイ酸ガラス複合体
は450〜700nmの波長の可視光に対し平均87.
0%の透過性を示した。この塗膜/ホウケイ酸ガラス複
合体を70℃X90%RHの恒温恒湿槽に1週間放置後
、取り出し、透過特性を測定したところ450〜700
nmの波長の可視光に対し平均54.6チの透過性に劣
化していることがわかった。
A coating film of the above resin composition was applied to a borosilicate glass plate (thickness 1
.. 0 mm) to a thickness of 500 microns, and the entire surface of the coating was irradiated with a high-pressure mercury lamp of 1K from a height of 20 ann for 40 seconds. This coating/borosilicate glass composite exhibits an average resistance of 87% for visible light in the wavelength range of 450-700 nm.
It showed 0% transparency. After leaving this coating film/borosilicate glass composite in a constant temperature and humidity chamber at 70°C and 90% RH for one week, it was taken out and its permeation properties were measured.
It was found that the transmittance for visible light with a wavelength of nm deteriorated to an average of 54.6 inches.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の感光性樹脂は光透過性が
優れるだけでなく、高温多湿条件において使用した場合
も光透過性の劣化がなく耐湿性に優れるものであり、感
光性樹脂応用分野での利用価値は非常に大きいものがあ
る。
As explained above, the photosensitive resin of the present invention not only has excellent light transmittance, but also has excellent moisture resistance without deterioration of light transmittance even when used under high temperature and high humidity conditions, and is suitable for photosensitive resin application fields. There is a great value in using it.

Claims (1)

【特許請求の範囲】 1、一般式 0<+m+l+<1 n+m+l=1 ▲数式、化学式、表等があります▼ (式中のR^1は水素原子、メチル基、R^2は−C−
O−R基(Rは炭化水素基)、フェニル基、R^3は水
素原子、メチル基、R^4は水酸基を有する炭化水素基
、R^5は水素原子、メチル基、R^6は光照射によっ
て架橋構造を形成し得る感光性原子団)で示される感光
性樹脂 2、特許請求範囲第1項のR^6がアリル基、アクリル
基、メタクリル基、シンナミル基、ビニル基からなる群
から選ばれた原子団を含有する炭化水素基である感光性
樹脂
[Claims] 1. General formula 0<+m+l+<1 n+m+l=1 ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (R^1 in the formula is a hydrogen atom, a methyl group, and R^2 is -C-
O-R group (R is a hydrocarbon group), phenyl group, R^3 is a hydrogen atom, a methyl group, R^4 is a hydrocarbon group having a hydroxyl group, R^5 is a hydrogen atom, a methyl group, R^6 is a A photosensitive resin 2 represented by a photosensitive atomic group (a photosensitive atomic group capable of forming a crosslinked structure upon irradiation with light), a group in which R^6 in claim 1 is an allyl group, an acrylic group, a methacryl group, a cinnamyl group, or a vinyl group. A photosensitive resin that is a hydrocarbon group containing an atomic group selected from
JP30498887A 1987-12-01 1987-12-01 Photosensitive resin Pending JPH01145648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30498887A JPH01145648A (en) 1987-12-01 1987-12-01 Photosensitive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30498887A JPH01145648A (en) 1987-12-01 1987-12-01 Photosensitive resin

Publications (1)

Publication Number Publication Date
JPH01145648A true JPH01145648A (en) 1989-06-07

Family

ID=17939719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30498887A Pending JPH01145648A (en) 1987-12-01 1987-12-01 Photosensitive resin

Country Status (1)

Country Link
JP (1) JPH01145648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522604A (en) * 2017-04-13 2020-07-30 セコ カンパニー リミテッド Self-healing functional polyvinyl compound and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522604A (en) * 2017-04-13 2020-07-30 セコ カンパニー リミテッド Self-healing functional polyvinyl compound and method for producing the same

Similar Documents

Publication Publication Date Title
TW512256B (en) Negative type photoresist composition used for light beam with short wavelength and method of forming pattern using the same
EP1210651B1 (en) Antireflective coating for photoresist compositions
JPH09179296A (en) Photopolymerizable composition
EP0138187A2 (en) Photopolymerizable composition
JPH01152109A (en) Photopolymerizable composition
JPS5834488B2 (en) Hikariji Yugousei Seibutsu
JP4268249B2 (en) Copolymer resin and manufacturing method thereof, photoresist and manufacturing method thereof, and semiconductor element
US3387976A (en) Photopolymer and lithographic plates
JPH1172917A (en) Negative photoresist composition and method for forming pattern by using the same
JPH02178302A (en) Photographic recording medium
JP2638887B2 (en) Photosensitive composition
JP3022412B2 (en) Negative photoresist material and pattern forming method using the same
US3859098A (en) Photoresist composition
US4052367A (en) Radiation sensitive polymers of oxygen-substituted maleimides and elements containing same
JPH01145648A (en) Photosensitive resin
JPH01241546A (en) Photosensitive resin composition
KR20000034148A (en) Crosslinking agent for photoresist and photoresist composition using the same
CA1286831C (en) Photosensitizers and polymerizable compositions
JP2004176035A (en) Free radical generator and photosensitive resin composition
Crivello et al. Deep UV photoresists based on poly (dl‐tert‐butyl fumarate)
JPS6281403A (en) Photopolymerization initiator composition
JP2005330481A (en) Polymer compound and its producing method
KR102450676B1 (en) Diketoxime compound, photosensitive resin composition containing thereof and preparing method of diketoxime compound
JPH0392860A (en) Photosensitive resin composition
JPH0565869B2 (en)