JPH0114511B2 - - Google Patents

Info

Publication number
JPH0114511B2
JPH0114511B2 JP55101527A JP10152780A JPH0114511B2 JP H0114511 B2 JPH0114511 B2 JP H0114511B2 JP 55101527 A JP55101527 A JP 55101527A JP 10152780 A JP10152780 A JP 10152780A JP H0114511 B2 JPH0114511 B2 JP H0114511B2
Authority
JP
Japan
Prior art keywords
argon
oxygen
crude
amount
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101527A
Other languages
Japanese (ja)
Other versions
JPS5726377A (en
Inventor
Toshihiro Kurasono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP10152780A priority Critical patent/JPS5726377A/en
Publication of JPS5726377A publication Critical patent/JPS5726377A/en
Publication of JPH0114511B2 publication Critical patent/JPH0114511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon

Description

【発明の詳細な説明】 この発明はアルゴンの製造装置におけるアルゴ
ンの増量採取方法に関し、粗アルゴンガス中に含
まれる酸素の大部分をモレキユラーシーブスなど
の酸素吸着剤を充填した酸素吸着器にて除去し、
その後水素と反応させて残余の酸素を除去するこ
とによりアルゴンの採取量を増加せしめ、水素の
消費量を低減せしめるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the amount of argon collected in an argon production device, in which most of the oxygen contained in crude argon gas is transferred to an oxygen absorber filled with an oxygen adsorbent such as molecular sieves. and remove it.
Thereafter, the remaining oxygen is removed by reacting with hydrogen, thereby increasing the amount of argon collected and reducing the amount of hydrogen consumed.

従来空気の液化精溜法によつてアルゴンを製造
する方法は第1図に示したように空気分離装置の
上部塔(図示せず)からアルゴンを5〜15vol%
含む酸素が管1を通つて粗アルゴン塔3の下部に
供給され、該塔3の上部に設置されたコンデンサ
4に供給される液体空気によつて液化、精溜さ
れ、酸素は液化し管2をとうして空気分離装置の
上部塔(図示せず)に戻される。一方、アルゴン
は精溜により、濃縮され、アルゴン含有量約
97vol%の粗アルゴンガスとして管5から取り出
され熱交換器6をとうり常温まで加温された後ブ
ロア7により所定の圧力、例えば0.6Kg/cm2Gに
圧縮される。次いで脱酸のための水素を水素供給
源8より添加された後脱酸反応器9に導入され該
器9中にて、触媒の働きにより2H2+O2→H2Oの
反応により粗アルゴンガス中の酸素分が水分とな
る。この水分を含む粗アルゴンガスは水冷却器1
0により常温まで冷却され、更にフレオンクーラ
ー11によつて約3〜5℃に冷却され、これによ
り凝縮した水はトラツプ12にて除去され、更に
切換式脱水器13にて露点−60℃以下となるまで
脱水される。ついで熱交換器6にて冷却されたの
ち高純アルゴン塔14に導入されて精溜され、高
純アルゴンは弁15より製品として取り出され窒
素および酸素除去のために添加された過剰の水素
が排ガスとして管16より排出される。
The conventional method for producing argon by air liquefaction rectification is to collect 5 to 15 vol% of argon from the upper column (not shown) of an air separation device, as shown in Figure 1.
Oxygen containing oxygen is supplied to the lower part of the crude argon column 3 through the pipe 1, and is liquefied and rectified by the liquid air supplied to the condenser 4 installed at the upper part of the column 3. The air is then returned to the upper column (not shown) of the air separation unit. On the other hand, argon is concentrated by rectification, and the argon content is approximately
The crude argon gas of 97 vol% is taken out from the tube 5, passed through the heat exchanger 6, heated to room temperature, and then compressed by the blower 7 to a predetermined pressure, for example, 0.6 kg/cm 2 G. Next, hydrogen for deoxidation is added from a hydrogen supply source 8, and then introduced into a deoxidation reactor 9. In the deoxidation reactor 9, crude argon gas is produced by the reaction of 2H 2 + O 2 → H 2 O due to the action of a catalyst. The oxygen content inside becomes water. This crude argon gas containing moisture is transferred to the water cooler 1.
0 to room temperature, and further cooled to about 3 to 5°C by a Freon cooler 11, the condensed water is removed by a trap 12, and then a switchable dehydrator 13 lowers the dew point to -60°C or less. dehydrated until After being cooled in a heat exchanger 6, the high-purity argon is introduced into a high-purity argon column 14 for rectification.The high-purity argon is taken out as a product through a valve 15, and the excess hydrogen added to remove nitrogen and oxygen is removed from the exhaust gas. is discharged from the pipe 16 as

空気液化精溜法によりアルゴンを採取するに
は、一般に上述のようにして行われるが、製品高
純アルゴンガスの採取量の増加を図るため粗アル
ゴン塔3からの粗アルゴンガス量を増やすこと
は、下記の通り難点がある。即ち粗アルゴンガス
の組成は通常の運転状態であれば、管5中で、ア
ルゴン約97vol%、酸素約2vol%、窒素約1vol%
であるが、粗アルゴン塔3からの粗アルゴンガス
の採取量を増やすと上記組成が変化しアルゴン分
が低下し、酸素分および窒素分が増加してしま
う。なかでも酸素分が4vol%以上になると、脱酸
反応器9中における脱酸反応が発熱反応
(57.9Kcal/H2O1モル)であるため、温度上昇が
激しく反応調節が不可能になり、安全上問題であ
り、更に脱酸反応器9中の触媒が劣化したり、水
素の消費量が増大するなどの問題点が発生する。
Argon is generally collected by the air liquefaction rectification method as described above, but in order to increase the amount of product high-purity argon gas collected, it is not possible to increase the amount of crude argon gas from the crude argon column 3. However, there are some difficulties as described below. That is, under normal operating conditions, the composition of the crude argon gas in the tube 5 is about 97 vol% argon, about 2 vol% oxygen, and about 1 vol% nitrogen.
However, when the amount of crude argon gas collected from the crude argon column 3 is increased, the above composition changes, the argon content decreases, and the oxygen content and nitrogen content increase. In particular, when the oxygen content exceeds 4 vol%, the deoxidizing reaction in the deoxidizing reactor 9 is an exothermic reaction (57.9 Kcal/1 mole of H 2 O), and the temperature rises rapidly, making it impossible to control the reaction, making it impossible to safely control the deoxidizing reaction. In addition to the above problems, problems such as deterioration of the catalyst in the deoxidizing reactor 9 and increased consumption of hydrogen occur.

この発明は上記事情に鑑みてなされたもので、
その特徴とするところは、既設のアルゴン製造装
置の脱酸反応器9の前段に、酸素吸着作用を持つ
吸着剤を充填した酸素吸着器を設置し、含有酸素
の残余分を除去することにより、上記問題を解決
してアルゴン採取量の増加を可能にしたものであ
る。
This invention was made in view of the above circumstances,
The feature is that an oxygen absorber filled with an adsorbent that has an oxygen adsorption effect is installed upstream of the deoxidizing reactor 9 of the existing argon production equipment, and by removing the residual amount of oxygen contained, This solves the above problem and makes it possible to increase the amount of argon extracted.

以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第2図はこの発明の増量採取運転を行うに適し
たアルゴンの製造方法の一例を示すものである
が、第1図に示す装置と同一構成部分については
同一符号を付してその説明を省略する。
Fig. 2 shows an example of a method for producing argon suitable for carrying out the increased sampling operation of the present invention, and the same components as those in the apparatus shown in Fig. 1 are given the same reference numerals and their explanations are omitted. do.

粗アルゴン塔3で分離された粗アルゴンガスは
熱交換器6を通り、常温まで加熱されて、酸素吸
着器17に導入される。この酸素吸着器17内に
は、酸素吸着剤としてモレキユラーシーブス(商
品名)、中でもカーボンシーブスとよばれる炭素
系吸着剤などが充填されている。酸素吸着剤とし
てはこれらのもの以外に一般に用いられている酸
素吸収剤、酸素吸着剤が使用可能であるが、酸素
吸着性能、取扱いやすさなどからカーボンシーブ
スが好適に用いられる。酸素吸着器17は1基の
みならず複数基設けて切換式として連続使用する
こともできる。酸素吸着器17を通過した粗アル
ゴンガスは、酸素含有量0.2vol%以下となり、ブ
ロア7により加圧されて、脱酸反応器9に導入さ
れ、水素供給源8からの水素と反応して脱酸さ
れ、以下従来法と同様に精製されて弁15より高
純アルゴンガスが得られる。
The crude argon gas separated in the crude argon column 3 passes through a heat exchanger 6, is heated to room temperature, and is introduced into an oxygen absorber 17. The oxygen absorber 17 is filled with an oxygen adsorbent such as Molecular Sieves (trade name), especially a carbon-based adsorbent called Carbon Sieves. As the oxygen adsorbent, commonly used oxygen absorbents and oxygen adsorbents other than these can be used, but carbon sieves are preferably used due to their oxygen adsorption performance and ease of handling. Not only one oxygen absorber 17 but also a plurality of oxygen adsorbers 17 can be provided and used continuously as a switchable type. The crude argon gas that has passed through the oxygen absorber 17 has an oxygen content of 0.2 vol% or less, is pressurized by the blower 7, is introduced into the deoxidizing reactor 9, reacts with hydrogen from the hydrogen supply source 8, and is deoxidized. The argon gas is acidified and then purified in the same manner as in the conventional method to obtain high purity argon gas from the valve 15.

第3図に示すものは、この発明のアルゴンの製
造方法の他の一例であるが、この例においては、
酸素吸着器17をブロア7の吐出側に設けたもの
で、ブロア7の吸入圧に余裕がない時や、酸素吸
着器17での吸着速度を高めたい場合に利用され
る構成である。なお、第3図においても第1図の
装置と同一構成部分には同一符号を付して説明を
省略した。
What is shown in FIG. 3 is another example of the method for producing argon according to the present invention, and in this example,
The oxygen absorber 17 is provided on the discharge side of the blower 7, and this configuration is used when there is not enough suction pressure in the blower 7 or when it is desired to increase the adsorption rate in the oxygen absorber 17. In FIG. 3, the same components as those in the device in FIG. 1 are denoted by the same reference numerals, and their explanations are omitted.

以上、説明したようにこの発明のアルゴンの製
造方法は熱交換器と脱酸反応器との間に酸素吸着
器を設置し、これによつてアルゴンの増量運転に
おける含有酸素の増加を吸着により除去するよう
にしたものであるので、粗アルゴンガス中の酸素
含有量が1/10以下に減少し、よつて増量運転が可
能になると共に、脱酸反応に必要な水素量が大巾
に減少することができる。また、粗アルゴンガス
塔からの粗アルゴンガスの採取量を増やしても、
脱酸反応器における反応熱が、著しく少なくなる
ので、工程の危険性がなくなり、触媒の劣化をお
こすこともないので、安心してアルゴンの採取量
を大巾に増加することができ、装置全体でのアル
ゴンの収率も大巾に向上する。更に装置の新設の
場合には酸素吸着器以下の脱酸反応器、水冷器、
フロンクーラー、脱水器の設備を小型化でき、設
備コストが低下する。既設の場合には、酸素吸着
器を付加するだけで、簡単にアルゴンを増収でき
るなどの利点を有するものである。
As explained above, in the argon production method of the present invention, an oxygen absorber is installed between a heat exchanger and a deoxidizing reactor, and thereby the increase in oxygen content during argon increasing operation is removed by adsorption. As a result, the oxygen content in the crude argon gas is reduced to less than 1/10, making it possible to operate at increased capacity, and greatly reducing the amount of hydrogen required for the deoxidation reaction. be able to. Furthermore, even if the amount of crude argon gas extracted from the crude argon gas tower is increased,
The heat of reaction in the deoxidizing reactor is significantly reduced, eliminating the risk of the process and causing no deterioration of the catalyst, making it possible to greatly increase the amount of argon extracted with peace of mind. The yield of argon is also greatly improved. In addition, when installing new equipment, a deoxidizing reactor below the oxygen absorber, a water cooler,
Freon cooler and dehydrator equipment can be downsized, reducing equipment costs. In the case of an existing system, it has the advantage that argon production can be easily increased by simply adding an oxygen absorber.

以下、実施例にてこの発明を具体的に説明す
る。
The present invention will be specifically explained below with reference to Examples.

実施例 カーボンシーブスタイプ5Aを充填した酸素吸
着器17を有する第2図に示す方法を用いてアル
ゴンを製造し、第1図に示す従来の方法を用いた
場合と比較したところアルゴンブロア7の吐出粗
アルゴンは前記したように従来方法の場合酸素
2vol%あつたものが約1/10の酸素含有量となつて
おり粗アルゴン量1000Nm3/hを処理するに要す
る水素量を約50Nm3/hより約14Nm3/hに減ず
ることができた。又、この発明によつてアルゴン
採取を約30%増量でき、従つて従来方法における
収率48%を60%に向上できる。
Example Argon was produced using the method shown in FIG. 2 having an oxygen absorber 17 filled with carbon sieves type 5A, and the discharge from the argon blower 7 was compared with that using the conventional method shown in FIG. As mentioned above, crude argon is replaced with oxygen in the conventional method.
The oxygen content was about 1/10 of what was 2vol%, and the amount of hydrogen required to treat the crude argon amount of 1000Nm 3 /h was reduced from about 50Nm 3 /h to about 14Nm 3 /h. . Also, according to the present invention, the amount of argon extracted can be increased by about 30%, thus increasing the yield from 48% in the conventional method to 60%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアルゴンの製造方法の一例を示
す工程図、第2図はこの発明のアルゴンの製造方
法の一例を示す工程図、第3図は同じくこの発明
のアルゴンの製造方法の他の一例を示す工程図で
ある。 3……粗アルゴン塔、6……熱交換器、8……
水素供給源、9……脱酸反応器、14……高純ア
ルゴン塔、17……酸素吸着器。
FIG. 1 is a process diagram showing an example of a conventional argon manufacturing method, FIG. 2 is a process diagram showing an example of the argon manufacturing method of the present invention, and FIG. 3 is a process diagram of another argon manufacturing method of the present invention. It is a process chart showing an example. 3... Crude argon column, 6... Heat exchanger, 8...
Hydrogen supply source, 9... deoxidizing reactor, 14... high purity argon column, 17... oxygen adsorption device.

Claims (1)

【特許請求の範囲】[Claims] 1 空気の液化精溜法によりアルゴンを製造する
方法において、粗アルゴン塔より導出される粗ア
ルゴンガスを増量採取するに際し、該粗アルゴン
塔よりの粗アルゴンを熱交換器において加熱した
後、酸素吸着作用をもつ吸着剤の充填してなる酸
素吸着器に通して含有する酸素の大部分を吸着除
去した後脱酸反応器に導き含有酸素の残余分を除
去し、ついで前記熱交換器を介して高純アルゴン
塔に導入して精溜し、高純度アルゴンを採取する
ことを特徴とするアルゴンの製造方法。
1 In a method for producing argon by air liquefaction rectification method, when increasing the amount of crude argon gas derived from a crude argon column, the crude argon from the crude argon column is heated in a heat exchanger and then subjected to oxygen adsorption. After passing through an oxygen absorber filled with a functional adsorbent to adsorb and remove most of the contained oxygen, the mixture is introduced into a deoxidizing reactor to remove the remaining amount of oxygen, and then passed through the heat exchanger. A method for producing argon, which is characterized by introducing high purity argon into a high purity argon column and rectifying it to collect high purity argon.
JP10152780A 1980-07-24 1980-07-24 Production of argon gas Granted JPS5726377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10152780A JPS5726377A (en) 1980-07-24 1980-07-24 Production of argon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10152780A JPS5726377A (en) 1980-07-24 1980-07-24 Production of argon gas

Publications (2)

Publication Number Publication Date
JPS5726377A JPS5726377A (en) 1982-02-12
JPH0114511B2 true JPH0114511B2 (en) 1989-03-13

Family

ID=14302937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10152780A Granted JPS5726377A (en) 1980-07-24 1980-07-24 Production of argon gas

Country Status (1)

Country Link
JP (1) JPS5726377A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107910A (en) * 1982-12-10 1984-06-22 Toshiba Corp Method for purifying gaseous argon
JP2638897B2 (en) * 1988-03-08 1997-08-06 住友金属工業株式会社 Ar gas recovery method

Also Published As

Publication number Publication date
JPS5726377A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
JP3020842B2 (en) Argon purification method and apparatus
JPS6333634B2 (en)
US4332598A (en) Process for treating industrial gas stream
US4874592A (en) Production process of xenon
JPH06234511A (en) Method and apparatus for purification using compression heat
EP0518553B1 (en) Method and apparatus for industrially preparing chlorine
JPH0114511B2 (en)
JP2539443B2 (en) A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill
JP2726771B2 (en) Industrial production method of chlorine
JPH0463993B2 (en)
JP2872631B2 (en) Nitrogen / oxygen production system
JPH0579754A (en) Manufacturing method of high purity nitrogen
JP3256811B2 (en) Method for purifying krypton and xenon
JP3822981B2 (en) Method for producing high purity carbon monoxide
JP2645137B2 (en) Equipment for purifying raw material air for nitrogen production equipment
JP2020066585A (en) Synthesis equipment and synthesis method of organic matter
JPH0751441B2 (en) Method for producing high-purity hydrogen
JPH02150686A (en) Manufacture of super-high purity oxygen
JP3466437B2 (en) Air separation equipment
JP3385410B2 (en) Noble gas purification method and apparatus
JPH01290518A (en) Method and apparatus for preliminary treatment of raw gas in liquified co2 plant
JPH0545051A (en) Apparatus for liquefaction-separation for air and method for collecting argon therein
JP2685523B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JP3532466B2 (en) Air separation device
JPS63251496A (en) Method of purifying gas mainly composed of carbon monoxide