JPH01144681A - Manufacture of bipolar transistor - Google Patents

Manufacture of bipolar transistor

Info

Publication number
JPH01144681A
JPH01144681A JP30353887A JP30353887A JPH01144681A JP H01144681 A JPH01144681 A JP H01144681A JP 30353887 A JP30353887 A JP 30353887A JP 30353887 A JP30353887 A JP 30353887A JP H01144681 A JPH01144681 A JP H01144681A
Authority
JP
Japan
Prior art keywords
layer
electrode
film
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30353887A
Other languages
Japanese (ja)
Other versions
JP2576165B2 (en
Inventor
Hidenori Shimawaki
秀徳 嶋脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30353887A priority Critical patent/JP2576165B2/en
Publication of JPH01144681A publication Critical patent/JPH01144681A/en
Application granted granted Critical
Publication of JP2576165B2 publication Critical patent/JP2576165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To shorten a manufacturing process while improving high-speed and high-frequency characteristics by simultaneously forming an emitter electrode and a collector electrode and arranging the emitter electrode and the collector electrode to a base electrode in a self-alignment manner. CONSTITUTION:A semiconductor layer N-GaAs layer 2, a P-GaAs layer 3 and an N-AlGaAs layer 4 are shaped successively onto the surface of a semi-insulating GaAs substrate 1 through an MBE method, and hydrogen ions (H<+>) are implanted to form an insulating region 5. An SiO2 film 6 and a resist film are shaped onto the layer 4, the film 6 is etched, and the layer 4 is etched to expose the surface of the P-GaAs layer 3. The resist film is removed, a resist film 8 is formed into the region 5, and an AuZnNi layer 9 is evaporated. The film 8 is gotten rid of, and a resist film 10 for a collector electrode is shaped. The layer 9 on the film 6 is exposed through etching, and taken off through etching by an ion milling method by Ar<+>, the layer 3 is etched, and the layer 2 in a collector electrode region is exposed. The film 6 is etched, and an AuGeNi layer 11 is evaporated. An emitter electrode 11a and a collector electrode 11b are formed simultaneously onto the surfaces of the layer 2 and the layer 4 in a self-alignment manner with a base electrode 9a at that time. Lastly, the film 10 is removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラトランジスタの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a bipolar transistor.

〔従来の技術〕[Conventional technology]

バイポーラトランジスタは電界効果トランジスタに比べ
て、電流駆動能力が大きいという優れた特徴を有してい
る。このため、近年、SiのみならずG a A sな
どの化合物半導体を用いたバイポーラトランジスタの研
究開発が盛んに行われている。
Bipolar transistors have an excellent feature of higher current driving capability than field effect transistors. Therefore, in recent years, research and development of bipolar transistors using not only Si but also compound semiconductors such as GaAs have been actively conducted.

特に、化合物半導体を用いたバイポーラトランジスタは
、分子線エピタキシー(以降MBEと称す)技術Qどを
用いることによシエミッタ・ペース接合をペテロ接合に
構成でき、ペースを高濃度としても、エミッタ注入効率
を犬きく保てるなどの利点がある。
In particular, in bipolar transistors using compound semiconductors, the emitter-paste junction can be configured into a Peter junction by using molecular beam epitaxy (hereinafter referred to as MBE) technology, and even with a high concentration of paste, the emitter injection efficiency can be improved. It has the advantage of being able to keep dogs quiet.

第2図(a)〜(C)は従来のバイポーラトランジスタ
の製造方法を説明するための工程順に示した半導体チッ
プの断面図である。
FIGS. 2(a) to 2(C) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a bipolar transistor.

GaAs3及びn −A I G a A s層4を順
次MBE法によシ形成し、更に、所定のパターンのAu
GeNi層からなるエミッタ電極11a及びその上のS
iO□膜6を形成した後、これをマスクとしてp−Ga
As層3上にAuZnNi層−9を自己整合的に形成す
る。
GaAs 3 and n-A I Ga As layers 4 are sequentially formed by the MBE method, and then Au in a predetermined pattern is formed.
Emitter electrode 11a made of GeNi layer and S on it
After forming the iO□ film 6, using this as a mask, p-Ga
An AuZnNi layer-9 is formed on the As layer 3 in a self-aligned manner.

ここでは、AuGeNi層からなるエミッタ電極11a
の上には、5i02膜6とAu Z n N を層9が
残る。
Here, an emitter electrode 11a made of an AuGeNi layer is used.
On top of this, a 5i02 film 6 and a layer 9 of Au Z n N remain.

続いて、エミック電極11a’i覆う所定のパターンの
ホトレジスト膜10aを形成し、ペース電極の幅WBが
所定の値になるようにする。
Subsequently, a photoresist film 10a having a predetermined pattern is formed to cover the emic electrode 11a'i so that the width WB of the pace electrode becomes a predetermined value.

次に第2図(b)に示すように、ホトレジスト膜10a
をマスクとしてAuZnNi層9をエツチングしてベー
ス電極9aを形成すると共にエツチングによ、!1ll
p−GaAs層3とn−GaAs層20表面とを除去し
、更にホトレジスト膜10a fマスクとしてn −G
aAs層20表面にオーミック金属のAuGeNi層1
1を上方から蒸着する。
Next, as shown in FIG. 2(b), the photoresist film 10a is
Using ! as a mask, the AuZnNi layer 9 is etched to form the base electrode 9a, and by etching! 1ll
The surfaces of the p-GaAs layer 3 and the n-GaAs layer 20 are removed, and a photoresist film 10a is further coated with n-G as a mask.
Ohmic metal AuGeNi layer 1 on the surface of the aAs layer 20
1 is deposited from above.

次に第2図(C)に示すように、有機溶剤中でホトレジ
スト膜10aを溶かしリフトオフを行って、コレクタ電
極11bを形成する。
Next, as shown in FIG. 2C, the photoresist film 10a is dissolved and lifted off in an organic solvent to form a collector electrode 11b.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のバイポーラトランジスタの製造方法では
、先ず、エミッタ電極11aを形成した後、ベース電極
9aを形成し、続いてコレクタ電極11bを形成してい
る。そのため、この方法では、導体層の蒸着工程を3回
行う必要があった。
In the conventional bipolar transistor manufacturing method described above, first, the emitter electrode 11a is formed, then the base electrode 9a is formed, and then the collector electrode 11b is formed. Therefore, in this method, it was necessary to perform the vapor deposition process of the conductor layer three times.

本発明の目的は、エミッタ電極およびコレクタ電極をベ
ース電極に自己整合的に形成して高速・高周波特性の極
めて優れたバイポーラトランジスタの製造方法において
、蒸着工程を2回にして製造工程を短縮し、製造歩留シ
及び量産性が向上されたバイポーラトランジスタの製造
方法を提供することにある。
An object of the present invention is to shorten the manufacturing process by performing two evaporation steps in a method of manufacturing a bipolar transistor having extremely excellent high-speed and high-frequency characteristics by forming an emitter electrode and a collector electrode in a self-aligned manner with a base electrode. It is an object of the present invention to provide a method for manufacturing bipolar transistors with improved manufacturing yield and mass productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のバイポーラトランジスタの製造方法は、半絶縁
性基板上に第1導電型の第1の半導体層と第2導電型の
第2の半導体層と第1導電型の第3の半導体層及び絶縁
体層を順次堆積させる工程と、該絶縁体層上に所定のパ
ターンの第1のマスクを形成する工程と、該第1のマス
クを用いて前記絶縁体層並びに前記第3の半導体層を順
次にエツチングして除去し前記第3の半導体層からなる
エミッタ層(もしくはコレクタ層)を形成する工程と、
前記第1のマスクを除去したのち前記絶縁体層表該第1
の導体層上に所定のパターンの第2のマスクを形成して
選択的に前記絶縁体層上の前記第1の導体層を露出する
工程と、前記第2のマスクを用いて前記第1の導体層並
びに前記第2の半導体層を順次にエツチングして除去す
ることにより前記第1の導体層からなるベース電極及び
前記第2の半導体層からなるベース層を前記エミッタ層
(もしくはコレクタ層)に対して自己整合的に形成する
工程と、前記絶縁体層をエツチングして除去した後前記
第2のマスクを用いて前記第1の半導体層上並びに前記
エミッタ層(もしくはコレクタ層)上に第2の導体層を
形成することにより順次にコレクタ電極(もしくはエミ
ッタ電極)並びにエミッタ電極(もしくはコレクタ電極
)を同時にかつ前記ベース電極に対して自己整合的に形
成する工程とを含んで構成される。
The method for manufacturing a bipolar transistor of the present invention includes forming a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a third semiconductor layer of a first conductivity type, and an insulating layer on a semi-insulating substrate. a step of sequentially depositing semiconductor layers, a step of forming a first mask with a predetermined pattern on the insulator layer, and a step of sequentially depositing the insulator layer and the third semiconductor layer using the first mask. forming an emitter layer (or collector layer) made of the third semiconductor layer;
After removing the first mask, the first mask is removed from the surface of the insulator layer.
selectively exposing the first conductor layer on the insulating layer by forming a second mask with a predetermined pattern on the conductor layer; By sequentially etching and removing the conductor layer and the second semiconductor layer, the base electrode made of the first conductor layer and the base layer made of the second semiconductor layer are made into the emitter layer (or collector layer). After etching and removing the insulating layer, a second layer is formed on the first semiconductor layer and on the emitter layer (or collector layer) using the second mask. The method includes the step of sequentially forming a collector electrode (or emitter electrode) and an emitter electrode (or collector electrode) simultaneously and in self-alignment with the base electrode by forming a conductor layer.

〔実施例〕〔Example〕

以下に本発明の一実施例について図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)〜(f)は不発、門の一実施例を説明する
た−゛*− めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the non-explosion gate.

まず第1図(a)に示すように、半絶縁性のG a A
 s基板1表面に第1の半導体層としてn−GaAs層
2、第2の半導体層としてp−GaAs層3及び第3の
半導体層としてn −A I G a A s層4をM
BE法によシ順次形成したのち、バイポーラトランジス
タを形成する部分を除いた他の部分に水素イオン(H+
)を注入し絶縁領域5を形成する。
First, as shown in FIG. 1(a), semi-insulating G a A
An n-GaAs layer 2 as a first semiconductor layer, a p-GaAs layer 3 as a second semiconductor layer, and an n-AIGaAs layer 4 as a third semiconductor layer are formed on the surface of the s-substrate 1.
After sequential formation using the BE method, hydrogen ions (H+
) is implanted to form an insulating region 5.

次に第1図(b)に示すように、n−AlGaAs層4
上に5i02膜6と所定のパターンを有するホトレジス
ト膜7とを順次に形成したのち、このホトレジスト膜7
をマスクとしてS i02膜6をリアクティブイオンビ
ームエツチング法で除去し、さらにリン酸、過酸化水素
及び水の混合液によl)n −AA!G a A s層
4をエツチングしてp−GaAs層3表面を露出する。
Next, as shown in FIG. 1(b), the n-AlGaAs layer 4
After sequentially forming a 5i02 film 6 and a photoresist film 7 having a predetermined pattern thereon, this photoresist film 7 is
The Si02 film 6 was removed by reactive ion beam etching using a mask of l)n-AA! The GaAs layer 4 is etched to expose the surface of the p-GaAs layer 3.

次に、第1図(C)に示すように、ホトレジスト膜7を
除去した後、絶縁領域5の上にホトレジスト膜8を形成
し、更に上方よp n−GaAs層2とオーミック接続
するAuZnNi層9を蒸着する。
Next, as shown in FIG. 1C, after removing the photoresist film 7, a photoresist film 8 is formed on the insulating region 5, and an AuZnNi layer ohmically connected to the p-n-GaAs layer 2 is formed from above. 9 is deposited.

次に、第1図(d)に示すように、有機溶剤による洗浄
を行いホトレジスト膜8を除去した後、コレクタ電極形
成用の所定のパターンを有するホトレジスト膜10を形
成する。続いて、リアクティブイオンビームエツチング
によシホトレジスト膜100表面をエツチングして5i
02膜6の上のAuZnNi層9を露出させた後、この
AuZnNi層9をAr+によるイオンミリング法によ
るエツチングで除去し、更に、リン酸、過酸化水素及び
水の混合液によpp−GaAs層3をエツチングしてコ
レクタ電極形成予定領域のn−()aAs層2を露出す
る。
Next, as shown in FIG. 1(d), after the photoresist film 8 is removed by cleaning with an organic solvent, a photoresist film 10 having a predetermined pattern for forming a collector electrode is formed. Subsequently, the surface of the photoresist film 100 is etched by reactive ion beam etching to form a 5i
After exposing the AuZnNi layer 9 on the 02 film 6, the AuZnNi layer 9 is removed by etching by ion milling using Ar+, and the pp-GaAs layer is etched using a mixture of phosphoric acid, hydrogen peroxide, and water. 3 to expose the n-()aAs layer 2 in the region where the collector electrode is to be formed.

次に、第1図(e)に示すように、バッフアートフッ酸
にて5i02膜6をエツチングした後、上方よシn−G
aAs層2およびエミッタ層となるn −AAiGaA
s層4とオーミック接続するAuGeNi層11を蒸層
重1゜このときn−GaAs層2並びにn−AlGaA
s層40表面にはベース電極9aに自己整合的にエミッ
タ電極11a並びにコレクタ電極11bが同時に形成さ
れる。
Next, as shown in FIG. 1(e), after etching the 5i02 film 6 with buffered hydrofluoric acid, the n-G
aAs layer 2 and n-AAiGaA which becomes the emitter layer
The AuGeNi layer 11 which is ohmically connected to the s-layer 4 has a vapor layer thickness of 1°. At this time, the n-GaAs layer 2 and the n-AlGaA
An emitter electrode 11a and a collector electrode 11b are simultaneously formed on the surface of the s-layer 40 in a self-aligned manner with the base electrode 9a.

最後に、第1図(f)に示すように、ホトレジスト膜1
0を除去することによ、!lJ AuGeN i層11
をリフトオフして化合物半導体のバイポーラトランジス
タができる。
Finally, as shown in FIG. 1(f), the photoresist film 1
By removing 0! lJ AuGeN i-layer 11
A compound semiconductor bipolar transistor can be created by lift-off.

なお、上記実施例においては、エミッタトップ型のもの
について述べたが、これに限らすコレクタトップ型のも
のについても同様に実施でき、効果は同じである。
In the above embodiment, the emitter top type was described, but the embodiment is not limited to this, but the collector top type can also be implemented in the same manner, and the effect will be the same.

また、半導体としてはGa A s及びA/GaAs 
f用いたものについて述べたが、これらに限らすInP
やInGaAs等の他の化合物半導体でもよい。また、
絶縁膜としては前記の5i02膜に限らすSiNx等の
窒化膜を用いてもよい。
In addition, as semiconductors, GaAs and A/GaAs
Although we have described the ones using InP, it is limited to these.
Other compound semiconductors such as InGaAs or InGaAs may also be used. Also,
The insulating film is not limited to the 5i02 film described above, but a nitride film such as SiNx may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、エミッタ電極及びコレク
タ電極を同時に形成することにょシ製造工程を短縮しつ
つ、エミッタ電極及びコレクタ電極をベース電極に自己
整合的に配置することによって、高速・高周波特性の非
常に優れた化合物半導体のバイポーラトランジスタを実
現出来るという効果がある。
As explained above, the present invention shortens the manufacturing process by forming the emitter electrode and the collector electrode at the same time, and also improves high-speed and high-frequency characteristics by arranging the emitter electrode and the collector electrode in a self-aligned manner with the base electrode. This has the effect of realizing an extremely superior compound semiconductor bipolar transistor.

汽 このことによシ、遮断周波数が30 GHz以上のバイ
ポーラトランジスタの製造において製造工程が減少し、
歩留り、素子特性の向上のみならず、量産化を可能にし
て価格を低減することが可能となる。
As a result of this, the manufacturing process is reduced in the production of bipolar transistors with a cut-off frequency of 30 GHz or higher.
This not only improves yield and device characteristics, but also enables mass production and reduces costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例を説明するだ
めの工程順に示した半導体チップの断面図、第2図(a
)〜(C)は従来のバイポーラトランジスタの製造方法
を説明するだめの工程順に示した半導体チップの断面図
である。 1− GaAs基板、2 ・= n−GaAs層、3 
・−p −GaAs層、4 ・−n−AA!GaAs層
、5・・・絶縁領域、6・・・S i02膜、7,8・
・・ホトレジスト膜、9・・・AuZnNi 層、9 
a・・・ベース電極、10・・・ホトレジスト膜、11
− AuGeN i層、11 a ・−エミッタ電極、
11b・・・コレクタ電極。 代理人 弁理士  内 原   晋 P−4−
1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
) to (C) are cross-sectional views of a semiconductor chip shown in the order of steps to explain a conventional method for manufacturing a bipolar transistor. 1- GaAs substrate, 2 ・= n-GaAs layer, 3
・-p-GaAs layer, 4 ・-n-AA! GaAs layer, 5... Insulating region, 6... Si02 film, 7, 8...
... Photoresist film, 9 ... AuZnNi layer, 9
a... Base electrode, 10... Photoresist film, 11
- AuGeN i layer, 11 a - emitter electrode,
11b...Collector electrode. Agent Patent Attorney Susumu Uchihara P-4-

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性基板上に第1導電型の第1の半導体層と第2
導電型の第2の半導体層と第1導電型の第3の半導体層
及び絶縁体層を順次堆積させる工程と、該絶縁体層上に
所定のパターンの第1のマスクを形成する工程と、該第
1のマスクを用いて前記絶縁体層並びに前記第3の半導
体層を順次にエッチングして除去し前記第3の半導体層
からなるエミッタ層(もしくはコレクタ層)を形成する
工程と、前記第1のマスクを除去したのち前記絶縁体層
表面を含む全面に第1の導体層を形成する工程と、該第
1の導体層に所定のパターンの第2のマスクを形成して
選択的に前記絶縁体層上の前記第1の導体層を露出する
工程と、前記第2のマスクを用いて前記第1の導体層並
びに前記第2の半導体層を順次エッチングして除去する
ことにより前記第1の導体層からなるベース電極及び前
記第2の半導体層からなるベース層を前記エミッタ層(
もしくはコレクタ層)に対して自己整合的に形成する工
程と、前記絶縁体層をエッチングして除去した後前記第
2のマスクを用いて前記第1の半導体層上並びに前記エ
ミッタ層(もしくはコレクタ層)上に第2の導体層を形
成することによりコレクタ電極(もしくはエミッタ電極
)並びにエミッタ電極(もしくはコレクタ電極)を同時
にかつ前記ベース電極に対して自己整合的に形成する工
程とを含むことを特徴とするバイポーラトランジスタの
製造方法。
A first semiconductor layer of a first conductivity type and a second semiconductor layer are formed on a semi-insulating substrate.
a step of sequentially depositing a second conductive type semiconductor layer, a first conductive type third semiconductor layer, and an insulating layer; forming a first mask with a predetermined pattern on the insulating layer; a step of sequentially etching and removing the insulator layer and the third semiconductor layer using the first mask to form an emitter layer (or collector layer) made of the third semiconductor layer; forming a first conductor layer on the entire surface including the surface of the insulator layer after removing the first mask; and forming a second mask with a predetermined pattern on the first conductor layer to selectively remove the exposing the first conductor layer on the insulator layer, and sequentially etching and removing the first conductor layer and the second semiconductor layer using the second mask. The base electrode consisting of the conductor layer and the base layer consisting of the second semiconductor layer are connected to the emitter layer (
or collector layer), and after etching and removing the insulator layer, use the second mask to form a layer on the first semiconductor layer and the emitter layer (or collector layer). ), forming a collector electrode (or emitter electrode) and an emitter electrode (or collector electrode) simultaneously and in self-alignment with the base electrode by forming a second conductor layer on the base electrode. A method for manufacturing a bipolar transistor.
JP30353887A 1987-11-30 1987-11-30 Manufacturing method of bipolar transistor Expired - Lifetime JP2576165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30353887A JP2576165B2 (en) 1987-11-30 1987-11-30 Manufacturing method of bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30353887A JP2576165B2 (en) 1987-11-30 1987-11-30 Manufacturing method of bipolar transistor

Publications (2)

Publication Number Publication Date
JPH01144681A true JPH01144681A (en) 1989-06-06
JP2576165B2 JP2576165B2 (en) 1997-01-29

Family

ID=17922200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30353887A Expired - Lifetime JP2576165B2 (en) 1987-11-30 1987-11-30 Manufacturing method of bipolar transistor

Country Status (1)

Country Link
JP (1) JP2576165B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278083A (en) * 1992-10-16 1994-01-11 Texas Instruments Incorporated Method for making reliable connections to small features of integrated circuits
WO2010047281A1 (en) * 2008-10-21 2010-04-29 日本電気株式会社 Bipolar transistor
US8395237B2 (en) 2008-10-21 2013-03-12 Nec Corporation Group nitride bipolar transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278083A (en) * 1992-10-16 1994-01-11 Texas Instruments Incorporated Method for making reliable connections to small features of integrated circuits
WO2010047281A1 (en) * 2008-10-21 2010-04-29 日本電気株式会社 Bipolar transistor
US8395237B2 (en) 2008-10-21 2013-03-12 Nec Corporation Group nitride bipolar transistor
US8716835B2 (en) 2008-10-21 2014-05-06 Renesas Electronics Corporation Bipolar transistor
JP5628681B2 (en) * 2008-10-21 2014-11-19 ルネサスエレクトロニクス株式会社 Bipolar transistor

Also Published As

Publication number Publication date
JP2576165B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
KR950011018B1 (en) Making method of hetero-junction type bipolar transistor
JP2706034B2 (en) Transistor and manufacturing method thereof
JPH01204411A (en) Manufacture of semiconductor device
KR100254715B1 (en) Method of fabricating very high gain hetero junction bipolar transistor
JP2851044B2 (en) Method for manufacturing semiconductor device
JPH01144681A (en) Manufacture of bipolar transistor
US5252500A (en) Method of fabricating a semiconductor device
JPH0260222B2 (en)
US5153692A (en) Semiconductor device
JP2623655B2 (en) Bipolar transistor and method of manufacturing the same
JP2522378B2 (en) Bipolar transistor and manufacturing method thereof
CN209785942U (en) Heterojunction bipolar transistor
KR100279250B1 (en) Compound Semiconductor Device and Manufacturing Method Thereof
JP2976664B2 (en) Manufacturing method of bipolar transistor
EP0460429A2 (en) Method of making heterojunction bipolar transistor
JPH0831475B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JP2682032B2 (en) Method for manufacturing semiconductor device
JPH0472632A (en) Manufacture of heterojunction bipolr transistor
KR960000384B1 (en) Making method of hbt using emitter re-growth
JPH0758715B2 (en) Method for manufacturing field effect transistor
JPH1064924A (en) Semiconductor device and production method thereof
JP2002134525A (en) Hetero junction bipolar transistor and manufacturing method thereof
JPH03240269A (en) Bipolar transistor and its manufacture
JPS63107066A (en) Heterojunction type bipolar semiconductor