JPH01144603A - Magnetic film - Google Patents

Magnetic film

Info

Publication number
JPH01144603A
JPH01144603A JP30291687A JP30291687A JPH01144603A JP H01144603 A JPH01144603 A JP H01144603A JP 30291687 A JP30291687 A JP 30291687A JP 30291687 A JP30291687 A JP 30291687A JP H01144603 A JPH01144603 A JP H01144603A
Authority
JP
Japan
Prior art keywords
magnetic
film
transition metal
alloy film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30291687A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishiwata
延行 石綿
Chizuko Wakabayashi
若林 千鶴子
Takayuki Matsumoto
隆幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP30291687A priority Critical patent/JPH01144603A/en
Publication of JPH01144603A publication Critical patent/JPH01144603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To increase the corrosion resistance of an iron alloy film, by adding a very small amount of transition metal elements to the iron alloy film that has superior magnetic characteristics. CONSTITUTION:A very small amount (1-10 atomic percent) of at least one kind of transition metal element excluding Cu, Ag and Au is added to an iron metal alloy film that contains at least one element out of Si, C, Al, Y, and Ge. If the added content exceeds ten atomic percent, a high saturation magnetic flux density can not be obtained. When four kinds of magnetic films, Fe-Pt-C, Fe-Pt-Ge, Fe-Pt-Y, and Fe-Pt-Al are left under a high temperature and high humidity condition for a long period of time of more than 500 hours, their saturation magnetic flux densities Bs are kept nearly constant, at their initial value 1.0, and they show extremely good characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気テープ、磁気ディスク等の磁気記録媒体
、あるいは高密度記録用の磁気ヘッド等に用いて好適な
磁性体膜に関し、特にその耐蝕性の改善技術に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic film suitable for use in magnetic recording media such as magnetic tapes and magnetic disks, or magnetic heads for high-density recording, and particularly relates to its corrosion resistance. This is related to improvement technology.

従来の技術およびその問題点 磁気テープ、磁気ディスク等の磁気記録媒体、あるいは
磁気記録再生用の磁気ヘッドの磁極等を構成する磁性材
として、飽和磁束密度大きい、保磁力が小さい等の磁気
特性が優れていることから、従来よりFe(純鉄)を母
材としてAIやSiなとの第2の元素を添加したFe金
属合金膜が多く用いられて来ている。この場合、Fe単
体であると、磁気特性的には不十分であり、単体では到
底実用に供し得ない。したがって、現状ではFeを母材
とし、この母材Feに」二連したような第2元素を添加
している。このFe合金の単層膜は、磁気特性的にもそ
れほど問題はなく、高周波電流の通電に伴う渦電流損も
少なく、それらの点では実用上それほど問題のない磁性
体膜である。しかし、このFe合金単層膜は、後にも述
へるように、経時変化による耐蝕性の低下の点で問題が
あり、例えば高温、高湿下で放置しておくと、高々10
0時間[Hr]を越えた程度で酸化か著しく進行してし
まう。したがって、Fe合金単層膜のみでは、高密度記
録用デバイスの磁性体膜として実用に供することはでき
ず、耐蝕性の改善が強く要望されていた。゛ この発明は、以上の点に績み提案されたものであって、
耐蝕性に優れた記−録デバイス用の磁性体膜を提供する
ことを目的とするものである。
Conventional technology and its problems Magnetic materials constituting magnetic recording media such as magnetic tapes and magnetic disks, or magnetic poles of magnetic heads for magnetic recording and reproduction, have magnetic properties such as high saturation magnetic flux density and low coercive force. Due to its superior properties, Fe metal alloy films made of Fe (pure iron) as a base material and a second element such as AI or Si have been widely used. In this case, Fe alone has insufficient magnetic properties and cannot be put to practical use at all. Therefore, at present, Fe is used as a base material, and a second element like "double" is added to this base material Fe. This single-layer film of Fe alloy has no problems in terms of magnetic properties, and has little eddy current loss due to high-frequency current flow, so it is a magnetic film that does not pose much of a problem in practice in these respects. However, as will be discussed later, this Fe alloy single-layer film has a problem in that its corrosion resistance deteriorates over time.
If the time exceeds 0 hours [Hr], oxidation will proceed significantly. Therefore, a Fe alloy single-layer film alone cannot be put to practical use as a magnetic film for high-density recording devices, and there has been a strong demand for improved corrosion resistance.゛This invention was proposed based on the above points,
The object of the present invention is to provide a magnetic film for a recording device that has excellent corrosion resistance.

問題点を解決するための手段 本発明は、Feを主成分とし、S t、C,I Aes
YまたはGeのいずれか少なくとも1つの元素を添加し
たFe金属合金膜中に、Cus Agt Auを除く遷
移金属元素を少なくとも一種含有させた磁性体膜を要旨
とする。
Means for Solving the Problems The present invention uses Fe as the main component, S t, C, I Aes
The gist of the present invention is a magnetic film in which at least one transition metal element other than Cus, Agt, and Au is contained in a Fe metal alloy film to which at least one element of Y or Ge is added.

作用 母材FeにSi、C1Al、YまたはGeのいずれか少
なくとも1つの元素を添加したFe金属合金膜中にCu
 N A g 1A uを除く遷移金属元素を少なくと
も1種微少量含有させると、耐蝕性が格段に改善向上さ
れた磁性体膜が得られる。
Cu is added to the Fe metal alloy film in which at least one element of Si, C1Al, Y, or Ge is added to the working base material Fe.
When at least one transition metal element other than N A g 1A u is contained in a small amount, a magnetic film with significantly improved corrosion resistance can be obtained.

実施例 以下、本発明の実施例について図面を参照して説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に係る磁性体膜の基本構成を示してい□
る。この磁性体膜10は、基本的にはFeを主成分とし
、、AI(アルミニウム)、Si (シリコン)、C(
カーボン)、Y、(イツトリウム)あるいはGe(ゲル
アニウム)の中からいずれか少なくとも1つの元素を選
択し、第2元素として微少量含有させたFe合金膜の中
に、さらにCulAg1Auを除く遷移金属元素、すな
わちP町(白金)、Ta(タンタル)、Zr(ジルコニ
ウム)、Ni にッケル)、CO(:Iバルト)、Pd
(パラジウム) 、Ru (ルテニウム)、W(タング
ステン)、Rh(ロジウム)などの元素を少なくとも1
種、微少量添加した膜組成を持つ。この磁性体膜10は
、第1図に示すように、スパッタ法等により、ガラス、
セラミック等の非磁性基板11上に成膜される。
Figure 1 shows the basic structure of the magnetic film according to the present invention.
Ru. This magnetic film 10 basically has Fe as its main component, AI (aluminum), Si (silicon), C(
At least one element selected from carbon), Y, (yttrium) or Ge (geranium) is added to the Fe alloy film containing a very small amount as a second element, and a transition metal element other than CulAg1Au, Namely, P town (platinum), Ta (tantalum), Zr (zirconium), Ni nickel), CO (:I baltic), Pd
(palladium), Ru (ruthenium), W (tungsten), Rh (rhodium), etc.
It has a film composition with a small amount of seeds added. As shown in FIG. 1, this magnetic film 10 is made of glass,
A film is formed on a nonmagnetic substrate 11 made of ceramic or the like.

Fe合金膜中に添加される遷移金属は、1種又は2種以
上の数種を組合わせて用いられる。
The transition metals added to the Fe alloy film may be used alone or in combination of two or more.

Fe合金膜としては、保磁力Heが50e以下のFeA
l、F e S t 1F e C1F e Yzある
いはFeGeの5種が適用される。その中から耐熱性の
面で最も良い結果が得られるものを選択して用いられば
良い。このFe合金膜中に添加する遷移金属元素の量は
、1〜10at、%の範囲に選定される。実験結果によ
ると、遷移金属元素の添加量が10at、%を越えると
高い飽和磁束密度Bs=4πMs(KG:キロガウス)
が得られない。一方、1at、%未満の場合は、後述す
る耐蝕性の向上が認められない。したがって、FeA1
等のFe合金膜中に添加する遷移金属元素の量は、上記
のように1〜10at、%の範囲にあることが必要であ
る。
As the Fe alloy film, FeA with a coercive force He of 50e or less is used.
1, F e S t 1 F e C1 F e Yz or FeGe are applicable. Among them, the one that provides the best results in terms of heat resistance may be selected and used. The amount of transition metal element added to this Fe alloy film is selected in the range of 1 to 10 at.%. According to experimental results, when the amount of transition metal elements added exceeds 10at.%, the saturation magnetic flux density becomes high, Bs = 4πMs (KG: kilogauss).
is not obtained. On the other hand, if it is less than 1 at.%, no improvement in corrosion resistance, which will be described later, will be observed. Therefore, FeA1
The amount of the transition metal element added to the Fe alloy film must be in the range of 1 to 10 at.% as described above.

以上のような磁性体膜10は、イオンビームスパッタ法
、RFマグネトロンスパッタ法、真空蒸着法等の薄膜形
成技術によって非磁性基板11上に成膜される。
The magnetic film 10 as described above is formed on the nonmagnetic substrate 11 by a thin film forming technique such as ion beam sputtering, RF magnetron sputtering, or vacuum evaporation.

例えば、使用アルゴンガス圧lX10−+Torrの真
空槽内において、イオンビームスパッタ法により、ガラ
スまたはセラミック等の非磁性基板11上に磁性体膜1
0を所定膜厚で成膜される。
For example, a magnetic film 1 is deposited on a non-magnetic substrate 11 made of glass or ceramic by ion beam sputtering in a vacuum chamber with an argon gas pressure of 1X10-+ Torr.
0 to a predetermined thickness.

その場合に用いられるターゲット物質は、上述した5種
の中のいずれか少なくとも1つのFe合金膜中に、やは
り上述した少なくとも1つの遷移金属元素又はその数種
を組合わせて微少量混合させた組成を持つ。
The target material used in this case has a composition in which at least one of the above-mentioned transition metal elements or a combination of several thereof is mixed in a minute amount in at least one Fe alloy film of the above-mentioned five types. have.

非磁性基板11上に形成される磁性体膜10の膜厚は、
適用される記録デバイスへの用途にもよるが、例えば0
.05μm〜100μm程度と薄膜である。
The thickness of the magnetic film 10 formed on the non-magnetic substrate 11 is
Depending on the application to the applicable recording device, for example 0
.. It is a thin film, about 0.05 μm to 100 μm.

以上のように成膜された磁性体膜10は、それのみで十
分な特性が得られるのであるが、さらに必要であれば、
500℃〜800℃、到達真空度1×10〜10  T
orrの真空加熱中において、7000e (エルステ
ッド)程度の回転磁場を与えながら熱処理が行われる。
The magnetic film 10 formed as described above can provide sufficient characteristics by itself, but if additional properties are required,
500℃~800℃, ultimate vacuum 1x10~10T
During the vacuum heating of orr, heat treatment is performed while applying a rotating magnetic field of about 7000e (Oersted).

これで、磁気特性、耐蝕性ともにさらに改善される。This further improves both magnetic properties and corrosion resistance.

次に、第2図、第3図は、本発明の磁性体膜10につい
て耐蝕性の面から見た実験結果を示す特性図である。こ
の実験では、温度60″C1相対湿度90%の雰囲気中
に磁性体膜10を放置したときの酸化に伴う飽和磁束密
度Bsの低下の度合いを測定している。第2図、第3図
で横軸は放置時間[Hr]、縦軸は飽和磁束密度の残存
率、すなわち、放置時間tのときの飽和磁束密度B s
 (t)=4πM s (t)と時間零のときの飽和磁
束密度Bs (o) = 4 πM s (o)の比を
表している。第2図、第3図において、実線で示すグラ
フは本発明に係る磁性体膜の特性を表し、破線で示すグ
ラフはFe合金単体膜およびFe単体膜の特性を表して
いる。この実験では、Fe合金単体膜として上述したF
e5is FeGet FeC1FeAl、FeYの5
種、また、本発明に係る磁性体膜の代表例として旧掲し
た5種のFe合全全体膜遷移金属元素の1つptを1〜
10at、%の範囲て微少量(所定量)含有させたもの
が用いられている。
Next, FIGS. 2 and 3 are characteristic diagrams showing experimental results regarding the magnetic film 10 of the present invention from the viewpoint of corrosion resistance. In this experiment, the degree of decrease in the saturation magnetic flux density Bs due to oxidation was measured when the magnetic film 10 was left in an atmosphere with a temperature of 60'' C1 and a relative humidity of 90%. The horizontal axis is the standing time [Hr], and the vertical axis is the residual rate of the saturation magnetic flux density, that is, the saturation magnetic flux density B s at the standing time t.
(t) = 4πM s (t) and the saturation magnetic flux density Bs (o) = 4πM s (o) at time zero. In FIGS. 2 and 3, the graphs shown by solid lines represent the characteristics of the magnetic film according to the present invention, and the graphs shown by broken lines represent the characteristics of the Fe alloy film and the Fe film. In this experiment, the above-mentioned F
e5is FeGet FeC1FeAl, 5 of FeY
Species, and one of the five types of transition metal elements previously listed as representative examples of the magnetic film according to the present invention for the entire film of Fe, from 1 to 1 pt.
A very small amount (predetermined amount) of 10at% is used.

この比較例より明らかなように、本発明に係る磁性体膜
10は、Ptを微少量含有させたことにより、Fe  
P t−C1Fe−P t  Ges  Fe−Pt−
Y、Fe−Pt−Alの4種は500時間以」二の長時
間にわたって高温高湿下で放置しても初期fM1.0に
対して略〜定を保ち、極めて良好な特性を示すことが判
る。但し、F e  P t−8iは、母材FeSiの
性質上、250時間以上の放置時間で残存率が多少緩や
かに低下する傾向を示すが、それでも、FeSi単体膜
に比へると、耐蝕性が格段に高く改善され、実用上良好
な特性が得られていることがよく判る。
As is clear from this comparative example, the magnetic film 10 according to the present invention contains Fe in a small amount by containing a small amount of Pt.
P t-C1Fe-P t Ges Fe-Pt-
The four types of Y, Fe-Pt-Al maintain approximately to constant initial fM1.0 even after being left under high temperature and high humidity for a long time of 500 hours or more, and exhibit extremely good characteristics. I understand. However, due to the nature of the base material FeSi, F e P t-8i shows a tendency for the survival rate to decrease somewhat gradually after being left for more than 250 hours, but it still has poor corrosion resistance when compared to a single FeSi film. It is clearly seen that the properties are significantly improved and that practically good characteristics are obtained.

一方、第2図の破線で示すグラフのように、FeclF
eGes Fes jの8種のFe合金単体膜グループ
は、放置開始当初より急激に残存率が低下し、150時
間程度の放置時間で酸化鉄と路間−の値0.2以下のレ
ベルまで低減する。したかって、この3種のFe合金単
体膜F e CN F eGelFeSiは、それのみ
では耐蝕性の点で実用上全く使用不可である。また、第
3図の破線で示すグラフのように、FeA1、FeYの
2種のFe合金単体膜のグループは、80時時間開まで
は初期値1.0を保つが、それを越えるとかなりの比率
で残存率が低下して行き、500時間を越えると本発明
のFe−Pt−Al、Fe−Pt−Yに一比べて大幅に
低減し、酸化に伴い耐蝕性か劣化し、それほど特性が良
くないことかよく判る。
On the other hand, as shown in the graph indicated by the broken line in Fig. 2, FeclF
For the 8 types of Fe alloy single film group of eGes Fes j, the survival rate decreases rapidly from the beginning of leaving it, and after about 150 hours of leaving it, it decreases to a level of 0.2 or less between iron oxide and road gap. . Therefore, these three types of Fe alloy single films F e CN Fe Gel FeSi cannot be used practically at all in terms of corrosion resistance alone. In addition, as shown in the graph shown by the broken line in Figure 3, the group of two types of Fe alloy single films, FeA1 and FeY, maintains an initial value of 1.0 until opening at 80 o'clock, but after that, the The survival rate decreases depending on the ratio, and after 500 hours, it decreases significantly compared to the Fe-Pt-Al and Fe-Pt-Y of the present invention, and the corrosion resistance deteriorates due to oxidation, and the characteristics are not as good. I can clearly see that this is not a good thing.

この2種のFe合金単体膜FeA1、FeYは第3図の
破線で示す3種のFe合金単体膜FeSi、FeGe1
FeCに比べ、ある程度良好な特性を示すが、本発明の
磁性体膜に比べると耐蝕性がかなり低く、実用上問題で
あり使用不適である。また、Fe単体膜は放置開始当初
より急速に残存率が低下して行き、500時間を越える
と酸化鉄化し、F e単体では実用に供し得ないことが
判る。
These two types of Fe alloy single films FeA1 and FeY are different from the three types of Fe alloy single films FeSi and FeGe1 shown by broken lines in FIG.
Although it exhibits better characteristics to some extent than FeC, it has considerably lower corrosion resistance than the magnetic film of the present invention, which is a practical problem and unsuitable for use. In addition, the survival rate of the single Fe film rapidly decreases from the time it is left to stand, and after 500 hours it turns into iron oxide, indicating that Fe alone cannot be put to practical use.

以上のように、本発明に係る磁性体膜は、遷移金属元素
ptの添加により、耐蝕性が格段に改善され、その改善
効果が著しいことが良(判った。
As described above, it has been found that the corrosion resistance of the magnetic film according to the present invention is significantly improved by adding the transition metal element pt, and the improvement effect is remarkable.

これに対し、比較例として示した5種のFe合金単体膜
は、磁気特性がどのように優れていようとも、耐蝕性の
点で実用上使用に耐えず、あるいは使用不可である。
On the other hand, no matter how excellent the magnetic properties of the five types of Fe alloy single films shown as comparative examples are, they cannot withstand or be used practically in terms of corrosion resistance.

なお、上記実施例では、Fe合金膜中に添加する遷移金
属元素の代表例としてptを例示したが、その他の遷移
金属元素Ni、Co1Pd5 Rh1Ru % T a
 N Z rを添加した場合においても、」二連したの
と同様の優れた耐蝕性改善の効果が得られることが実験
によって確認されている。
In the above example, pt was exemplified as a typical example of the transition metal element added to the Fe alloy film, but other transition metal elements such as Ni, Co1Pd5 Rh1Ru % Ta
It has been confirmed through experiments that even when NZr is added, the same excellent effect of improving corrosion resistance as in the case of adding two layers can be obtained.

発明の詳細 な説明したとおり、本発明によれば、Fe合金膜に微少
量の遷移金属元素を添加したことにより、磁気特性的に
優れたFe合金膜の耐蝕性が格段に改善され、磁気特性
、耐蝕性共に優れた磁性体膜が得られる。
As described in detail, according to the present invention, by adding a small amount of transition metal element to the Fe alloy film, the corrosion resistance of the Fe alloy film, which has excellent magnetic properties, is significantly improved, and the magnetic properties are improved. A magnetic film with excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁性体膜を示す断1Iii図、第
2図、第3図は本発明に係る磁性体膜の耐蝕性を飽和磁
束密度の残存率の面から見た特性図である。 10・・・磁性体膜、 11・会・非磁性基板、
FIG. 1 is a cross-sectional view showing the magnetic film according to the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the corrosion resistance of the magnetic film according to the present invention in terms of the residual rate of saturation magnetic flux density. be. 10...Magnetic film, 11.Nonmagnetic substrate,

Claims (2)

【特許請求の範囲】[Claims] (1)Feを主成分とし、Si、C、Al、YまたはG
eのいずれか少なくとも1つの元素を添加したFe金属
合金膜中に、Cu、Ag、Auを除く遷移金属元素を少
なくとも一種含有させたことを特徴とする磁性体膜。
(1) Main component is Fe, Si, C, Al, Y or G
1. A magnetic film characterized in that at least one transition metal element other than Cu, Ag, and Au is contained in an Fe metal alloy film to which at least one element of e is added.
(2)前記遷移金属元素の含有量が1〜10at.%(
アトミック・パーセント)の範囲であることを特徴とす
る特許請求の範囲第(1)項記載の磁性体膜。
(2) The content of the transition metal element is 1 to 10 at. %(
atomic percent).
JP30291687A 1987-11-30 1987-11-30 Magnetic film Pending JPH01144603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30291687A JPH01144603A (en) 1987-11-30 1987-11-30 Magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30291687A JPH01144603A (en) 1987-11-30 1987-11-30 Magnetic film

Publications (1)

Publication Number Publication Date
JPH01144603A true JPH01144603A (en) 1989-06-06

Family

ID=17914659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30291687A Pending JPH01144603A (en) 1987-11-30 1987-11-30 Magnetic film

Country Status (1)

Country Link
JP (1) JPH01144603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244627A (en) * 1990-12-13 1993-09-14 Matsushita Electric Industrial Co., Ltd. Ferromagnetic thin film and method for its manufacture
EP0592922A2 (en) * 1992-10-13 1994-04-20 Konica Corporation Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244627A (en) * 1990-12-13 1993-09-14 Matsushita Electric Industrial Co., Ltd. Ferromagnetic thin film and method for its manufacture
EP0592922A2 (en) * 1992-10-13 1994-04-20 Konica Corporation Magnetic recording medium
EP0592922A3 (en) * 1992-10-13 1994-06-15 Konishiroku Photo Ind Magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS6249722B2 (en)
JPH06104870B2 (en) Method for producing amorphous thin film
JPS60152651A (en) Amorphous alloy containing nitrogen
JP2001273622A (en) Nanogranular thin film and magnetic recording medium
US4663193A (en) Process for manufacturing magnetic recording medium
JPH01144603A (en) Magnetic film
EP0154158B1 (en) Process for manufacturing magnetic recording media
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
US6036825A (en) Magnetic film forming method
JPH0468381B2 (en)
JPH0368744A (en) Thin magnetic film
JP2839554B2 (en) Magnetic film and magnetic head using the same
JP3121933B2 (en) Soft magnetic thin film
JPH0817032A (en) Magnetic recording medium and its production
JPH0867966A (en) Magnetoresistance effect film
JP2631860B2 (en) Magnetic thin film
JPH06325312A (en) Ferhgasi soft magnetic material for induction magnetic head
JP2668590B2 (en) Magnetic alloy for magnetic head
JPS60138736A (en) Production of magnetic recording medium
JP2516064B2 (en) Magnetic recording medium and manufacturing method thereof
JP2884599B2 (en) Soft magnetic amorphous film
JPS62287410A (en) Thin film magnetic head
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH06215941A (en) Magnetic recording medium, target for forming magnetic recording film, and formation of magnetic recording film
JP2842683B2 (en) Soft magnetic thin film material