JPH01144434A - Rubber composition for tire - Google Patents

Rubber composition for tire

Info

Publication number
JPH01144434A
JPH01144434A JP62303698A JP30369887A JPH01144434A JP H01144434 A JPH01144434 A JP H01144434A JP 62303698 A JP62303698 A JP 62303698A JP 30369887 A JP30369887 A JP 30369887A JP H01144434 A JPH01144434 A JP H01144434A
Authority
JP
Japan
Prior art keywords
carbon black
rubber
rubber composition
amount
dst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62303698A
Other languages
Japanese (ja)
Other versions
JP2562338B2 (en
Inventor
Takao Muraki
孝夫 村木
Kazuyoshi Kayama
和義 加山
Yasushi Kikuchi
菊地 也寸志
Ichiro Suzuki
鈴木 一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP62303698A priority Critical patent/JP2562338B2/en
Publication of JPH01144434A publication Critical patent/JPH01144434A/en
Application granted granted Critical
Publication of JP2562338B2 publication Critical patent/JP2562338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a rubber composition for tires, having improved heat build-up properties and abrasion resistance and suitable especially as treads of large-sized vehicles, by blending specific carbon black in a specific proportion with rubber. CONSTITUTION:A rubber composition for tires obtained by blending 20-100 pts.wt. carbon black having 100-200m<2>/g nitrogen adsorption specific surface area, 90-120ml/100g 24M4 DBP oil absorption and the amount of hydrogen H2 (mg) emitted based on 1g carbon black at 1300 deg.C and mode diameter [Dst (mmu) ] of aggregate distribution by a centrifugal settling method in the relation of H2>=3.74-0.02 Dst (mg/g) with 100 pts.wt. carbon black.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、自動、車用タイヤ (乗用車用タイヤ、バス
・トラック用タイヤ等)のトレッド部、サイドトレッド
部、ベーストレッド部等のゴム質として利用し得る発熱
性と耐摩耗性とを改良したタイヤ用ゴム組成物に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a rubber material for the tread portion, side tread portion, base tread portion, etc. of automobile tires (passenger car tires, bus/truck tires, etc.). The present invention relates to a usable rubber composition for tires with improved heat generation properties and wear resistance.

〔従来技術〕[Prior art]

従来、タイヤ用ゴム組成物の耐摩耗性を改善する方法と
して、■粒子径の小さい、比表面積の大きいカーボンブ
ラックを使用したり、■カーボンブラック配合量を多く
したりする方法がとられている。しかしながら、用いる
カーボンブラックの粒子径が小さくなるかカーボンブラ
ック配合量を多くすると、通常、ゴム組成物中でのカー
ボンブラックの分散が悪くなったり、カーボンブラック
充填ゴム組成物の動的特性、特に発熱性を増大させ、ヒ
ステリシスロスに基づく配合ゴムの劣化促進をうながし
、性能低下をもたらす。
Conventionally, the methods of improving the wear resistance of tire rubber compositions have been to use carbon black with a small particle size and large specific surface area, or to increase the amount of carbon black blended. . However, as the particle size of the carbon black used becomes smaller or the amount of carbon black added is increased, the dispersion of carbon black in the rubber composition usually deteriorates, and the dynamic properties of the carbon black-filled rubber composition, especially the exothermic properties, are affected. This increases the properties of the compounded rubber due to hysteresis loss, leading to a decline in performance.

また、カーボンブラック充填ゴム組成物の動的特性に対
して、カーボンブラックの粒子径(比表面積)以外にい
わゆる凝集体の大きさ(アグリゲートサイズ)及びその
分布が大きな影響を与えることも近年明らかになってき
た(特開昭59−86636号公報、特開昭59−86
641号公報)。
In addition, it has recently become clear that, in addition to the particle size (specific surface area) of carbon black, the so-called aggregate size and its distribution have a large effect on the dynamic properties of carbon black-filled rubber compositions. (Japanese Unexamined Patent Publication No. 59-86636, Japanese Unexamined Patent Publication No. 59-86
Publication No. 641).

しかし、カーボンブラックの最多頻度モード径(Dst
)が大きければ発熱性の低いゴム組成物を与える一方で
耐摩耗性の低下をきたし、このため動的特性と耐摩耗性
とを兼備することはアグリゲートサイズ、分布の制御の
みでは殆んど不可能であった。
However, the most frequent mode diameter (Dst) of carbon black
) is large, a rubber composition with low heat build-up can be obtained, but the abrasion resistance decreases, and for this reason, it is almost impossible to achieve both dynamic properties and abrasion resistance by controlling the aggregate size and distribution alone. It was impossible.

本発明者らは、タイヤ用ゴム組成物の耐摩耗性を向上さ
せる目的で耐摩耗性とカーボンブラックの物理的緒特性
との関連について種々研究を重ねた結果、カーボンブラ
ックの発生水素量と凝集体のストークスモード径が特定
な関係にある場合に、発熱性を低位に保持しながら飛躍
的に耐摩耗性の向上が図られることを発見し、本発明に
達するに至った。
The present inventors have conducted various studies on the relationship between abrasion resistance and the physical characteristics of carbon black in order to improve the abrasion resistance of rubber compositions for tires. The present inventors have discovered that when the Stokes mode diameters of the aggregate have a specific relationship, wear resistance can be dramatically improved while heat generation is kept at a low level, leading to the present invention.

〔発明の目的〕[Purpose of the invention]

したがって、本発明は、低発熱性を有すると共に耐摩耗
性に優れたタイヤ用ゴム組成物を提供することを目的と
する。
Therefore, an object of the present invention is to provide a rubber composition for tires that has low heat build-up and excellent wear resistance.

〔発明の構成〕[Structure of the invention]

このため、本発明は、窒素吸着比表面積(N zSA)
 100〜200m”/g 、 24M4DBP吸油量
90〜b100gの特性領域にあって、かつ1300℃
でカーボンブラックIg当りに発生する水素ff1(H
z)が■で表わして遠心沈降法による凝集体分布の最多
頻度モード径(Dst mμ)と下記式の関係を有する
カーボンブラックを、ゴム100重量部に対して20〜
100重量部配合してなることを特徴とするタイヤ用ゴ
ム組成物を要旨とするものである。
For this reason, the present invention provides nitrogen adsorption specific surface area (NzSA)
100~200m''/g, 24M4DBP oil absorption is in the characteristic range of 90~b100g, and 1300℃
Hydrogen ff1 (H
z) is represented by ■ and has the relationship of the most frequent mode diameter (Dst mμ) of aggregate distribution by centrifugal sedimentation method with the following formula, at 20 to 20 parts by weight per 100 parts by weight of rubber.
The gist of the present invention is a rubber composition for tires characterized by containing 100 parts by weight of the rubber composition.

Hz≧3.74−0.02(Dst) (mg/g)以
下、本発明の構成につき詳しく説明する。
Hz≧3.74-0.02 (Dst) (mg/g) Hereinafter, the structure of the present invention will be explained in detail.

(11カーボンブラック。(11 carbon black.

ここで用いるカーボンブラックは、■窒素吸着比表面積
(NASA)が100〜20On+”/g ”?:!あ
り、■24M40BP吸油量90〜120m1/100
gであって、01300℃でカーボンブラック中から発
生する水素量が、カーボンブラック1g当りに換算した
量を■で表わした場合、凝集体分布の最多頻度モード径
Dstとの関係で3.74−0.02(Dst)式によ
り算出される値以上であること。
The carbon black used here has a nitrogen adsorption specific surface area (NASA) of 100 to 20 On+"/g"? :! Yes, ■24M40BP oil absorption 90-120m1/100
g, and the amount of hydrogen generated from carbon black at 0.1300°C is expressed as . The value must be greater than or equal to the value calculated by the 0.02 (Dst) formula.

カーボンブラックから発生する水素は、粒子径やストラ
フチャーとは異なる別個の特性要素で、カーボンブラッ
ク表面とゴムとの吸着を引き起こす活性点としての役割
を果たすものとみられる。カーボンブラックは、高温気
流中での原料炭化水素油の熱分解、脱水素重縮合を経て
、溶融凝集化から炭化のプロセスで生成される。
Hydrogen generated from carbon black is a separate characteristic element different from particle size and stracture, and appears to play a role as an active site that causes adsorption between the carbon black surface and rubber. Carbon black is produced through thermal decomposition of raw hydrocarbon oil in a high-temperature air stream, dehydrogenation polycondensation, and a process of melt aggregation and carbonization.

この場合、脱水素重縮合後の残存水素量を多くすること
により発生水素量を増加させることができることから、
発生水素量の多いカーボンブラックは炭素微結晶構造の
形成が不十分な状態にあり、構成する粒子表面が化学的
活性ラジラルに富む状態を示している。したがって、カ
ーボンブラックから発生する水素量の多少はカーボンブ
ラックの生成過程における反応時間、反応温度と密接に
関係している。その結果、カーボンブラック凝集体の最
多頻度モード径(Ds t)と相関する関係にある。本
発明では、カーボンブラックからの発生水素量を3.7
4−0.02(Dst)式により算出される値以上に設
定することにより、表面活性度が高い独特の表面性状の
付与が可能となる。ここで、最多頻度モード径(Dst
)とは、第1図に示されるように、凝集体分布のピーク
における凝集体モード径をいう。
In this case, since the amount of hydrogen generated can be increased by increasing the amount of hydrogen remaining after dehydrogenation polycondensation,
Carbon black that generates a large amount of hydrogen has a carbon microcrystalline structure that is insufficiently formed, and the particle surfaces thereof are rich in chemically active radicals. Therefore, the amount of hydrogen generated from carbon black is closely related to the reaction time and reaction temperature in the carbon black production process. As a result, there is a correlation with the most frequent mode diameter (Dst) of carbon black aggregates. In the present invention, the amount of hydrogen generated from carbon black is 3.7
By setting the value to be greater than or equal to the value calculated by the formula 4-0.02 (Dst), it is possible to provide a unique surface texture with high surface activity. Here, the most frequent mode diameter (Dst
) refers to the aggregate mode diameter at the peak of the aggregate distribution, as shown in FIG.

上記のようにカーボンブラックの発生水素量を特定する
ことによりポリマー成分との界面反応が十分に進行し、
発熱の増加を伴わずに耐摩耗性の飛躍的向上がはかられ
る。つまり、カーボンブラック凝集体の最多頻度モード
径(Dst)が同一の場合は、相対的に高い耐摩耗性を
付与することが可能となる。これらの効果は、タイヤの
キャップトレッド用等の優れた耐摩耗性の要求されるゴ
ム組成物において著しく、特に窒素吸着比表面積が10
0〜20抛”/gのカーボンブラックに適用した場合に
実用的効果が大きい。
As mentioned above, by specifying the amount of hydrogen generated by carbon black, the interfacial reaction with the polymer component will proceed sufficiently.
A dramatic improvement in wear resistance can be achieved without an increase in heat generation. In other words, when the most frequent mode diameters (Dst) of carbon black aggregates are the same, relatively high wear resistance can be imparted. These effects are remarkable in rubber compositions that require excellent wear resistance, such as those for tire cap treads, and are especially noticeable in rubber compositions that require excellent wear resistance, such as those used in tire cap treads.
The practical effect is great when applied to carbon black of 0 to 20"/g.

本発明のカーボンブラックにおいて、窒素吸着比表面積
が100m”7g未満の場合には耐摩耗性が低くなり、
200+m”/gを越すと耐発熱性、加工性の大幅な低
下が起って実用的でない。
In the carbon black of the present invention, when the nitrogen adsorption specific surface area is less than 100 m''7g, the wear resistance becomes low.
If it exceeds 200+m''/g, heat resistance and processability will be significantly reduced, making it impractical.

また、24M40BP吸油量を90〜120m1/10
0gとする理由は、90m1/100g未満では耐摩耗
性が十分でなく、一方、120m1/100g超では配
合ゴムの弾性率が上昇し、例えば、トレンド部などに用
いた場合には耐チッピング性が低下するからである。し
たがって、耐発熱性の低下を招かないで耐摩耗性の向上
をもたらすゴム組成物を得るには、上記■〜■を同時に
満足するカーボンブラック特性が必要であり、いずれか
1つでも満たされない場合には両特性を兼備することは
できない。
In addition, 24M40BP oil absorption amount is 90~120m1/10
The reason why it is set at 0g is that if it is less than 90m1/100g, the abrasion resistance will not be sufficient, whereas if it exceeds 120m1/100g, the elastic modulus of the compounded rubber will increase, and for example, if it is used in trend parts, the chipping resistance will be poor. This is because it decreases. Therefore, in order to obtain a rubber composition that improves abrasion resistance without causing a decrease in heat resistance, it is necessary to have carbon black properties that simultaneously satisfy the above ■~■, and if any one of them is not satisfied, cannot have both characteristics.

(2)  ゴム。(2) Rubber.

ゴムとしては、例えば、天然ゴム、スチレン−ブタジェ
ン共重合体ゴム、ポリブタジェンゴム、合成ポリブタジ
ェンゴム、ブチルゴムなどのタイヤ用ゴムとして通常用
いられる各種のゴムを単独あるいはブレンドして用いる
ことができる。
As the rubber, for example, various rubbers commonly used as tire rubber such as natural rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, synthetic polybutadiene rubber, and butyl rubber can be used alone or in a blend. can.

上記カーボンブラックの配合割合は、ゴム100重量部
に対して20重量部未満では目的とする高補強性のゴム
組成物が得られず、一方、100重量部超では耐発熱性
の大幅な低下が起って配合ゴムの劣化促進をうながし性
能低下を引き起こす。
If the blending ratio of carbon black is less than 20 parts by weight based on 100 parts by weight of rubber, the desired highly reinforcing rubber composition cannot be obtained, whereas if it exceeds 100 parts by weight, the heat resistance will be significantly reduced. This accelerates the deterioration of compounded rubber and causes a decline in performance.

本発明のゴム組成物は、カーボンブラックの他に必要に
応じて、例えば、硫黄等の加硫剤、加硫促進剤、加硫促
進助剤、老化防止剤、粘着付与剤、軟化剤、充填剤等を
含有してもよい。
In addition to carbon black, the rubber composition of the present invention may contain, if necessary, a vulcanizing agent such as sulfur, a vulcanization accelerator, a vulcanization accelerating aid, an anti-aging agent, a tackifier, a softener, a filler, etc. It may also contain agents etc.

以下に実施例および比較例を示す。Examples and comparative examples are shown below.

実施例、比較例 第1表に示される配合内容(重量部、カーボンブラック
以外の成分は全て(共通)で種々のゴム組成物(実施例
1〜4、比較例1〜6)を作製した。
Examples and Comparative Examples Various rubber compositions (Examples 1 to 4 and Comparative Examples 1 to 6) were prepared using the formulation contents (parts by weight, all components other than carbon black were common) shown in Table 1.

この場合に用いるそれぞれのカーボンブラック特性を第
1表に示す。なお、その特性値は下記の測定方法(1)
〜(4)によるものである。
Table 1 shows the properties of each carbon black used in this case. The characteristic values are measured using the following method (1).
This is based on (4).

(1)  窒素吸着比表面積(N、SA)。(1) Nitrogen adsorption specific surface area (N, SA).

ASTM−03037(1984年)“5tandar
d Methods ofTesting Carbo
n Black−5urface Areaby N1
troqen Adsorption ”Mothod
、 Cによる。
ASTM-03037 (1984) “5tandar
dMethods ofTesting Carbo
n Black-5surface Area N1
troquen Adsorption ”Mothod
, by C.

(2124M 40 B P吸油量。(2124M 40B P oil absorption.

ASTM−03493(1984年)による。According to ASTM-03493 (1984).

(3)発生水素量。(3) Amount of hydrogen generated.

カーボンブラックを次に示す条件で、1300℃で発生
する水素量をカーボンブラック1gあたりに、換算した
■数で表わしたものである。測定は、まず、カーボンブ
ラックのlθ■を高温熱分解装置(ソリッド・パイロラ
イザー)を用いて1300℃で120秒(20秒×6回
)熱分解させ、接続したガスクロマトグラフィー(品性
GC−9A)に発生ガスを導入する。この際、キャリア
ガスとして窒素ガスを一定流量(30ml/分)で流入
させる。
The amount of hydrogen generated at 1300° C. for carbon black under the following conditions is expressed as a number of square meters per gram of carbon black. In the measurement, carbon black lθ■ was first thermally decomposed at 1300°C for 120 seconds (20 seconds x 6 times) using a high-temperature pyrolyzer (solid pyrolyzer), and then subjected to gas chromatography (quality GC- Introduce generated gas to 9A). At this time, nitrogen gas is introduced as a carrier gas at a constant flow rate (30 ml/min).

ガスクロマトグラフィーの分析方法はTCD方式を用い
、条件は次の通りである。
The gas chromatography analysis method used the TCD method, and the conditions were as follows.

カラム:モレキュラシーブ、5A、 3mφ×31m試
料注入部温度:100℃ カラム温度:40℃ キャリアーガス:窒素ガス、30n+1/分発生水素量
の定量はあらかじめ所定量(iceの水素ガスに空気を
混合して11とし、そのうちのl ccを使用)の水素
量の面積−重量(mg)を求めておき、面積法によって
求めた。
Column: Molecular sieve, 5A, 3 mφ x 31 m Sample injection part temperature: 100°C Column temperature: 40°C Carrier gas: Nitrogen gas, 30n+1/min To determine the amount of hydrogen generated, mix a predetermined amount (ice hydrogen gas with air). 11, of which 1 cc was used), the area-weight (mg) of the hydrogen amount was determined by the area method.

(4)カーボンブラック凝集体の最多頻度モード径(D
s t)。
(4) Most frequent mode diameter (D
s t).

ジョイス・レーブル社製ディスク・セントリフヱージを
使用し、遠心沈降法により次の方法で測定を行った。
The measurement was carried out by the centrifugal sedimentation method using a disk centrifage manufactured by Joyce Lable in the following manner.

すなわち、JIS K 6221 (1982) 5法
により乾燥して精秤したカーボンブラックを、エタノー
ル20%水溶液に加え、カーボンブラック濃度を0.0
05重量%にした後、超音波で十分に分散させて試料と
した。一方、ディスク・セントフリュージの回転速度を
800Orpmに設定し、スピン液(蒸溜水)10+s
lをこのディスク・セントリフユージに加えたのちに0
.5++1のバッファー液(20容量%エタノール水溶
液)を注入した。ついで、これを試料溶液0.5〜1.
Oslを注射器で加え、遠心沈降を開始させ、光電沈降
法により第1図に示すような凝集体分布曲線を作成した
。この曲線から口stを求めた。
That is, carbon black that had been dried and accurately weighed according to JIS K 6221 (1982) 5 method was added to a 20% aqueous ethanol solution to bring the carbon black concentration to 0.0.
After adjusting the concentration to 0.5% by weight, the sample was sufficiently dispersed using ultrasonic waves. On the other hand, set the rotation speed of the disk centrifuge to 800 rpm, and use the spin liquid (distilled water) for 10 + s.
After adding l to this disk centrifuge, 0
.. 5++1 buffer solution (20 volume % ethanol aqueous solution) was injected. Then, add this sample solution to 0.5 to 1.
Osl was added with a syringe, centrifugal sedimentation was started, and an aggregate distribution curve as shown in FIG. 1 was created by photoelectroprecipitation. The mouth st was determined from this curve.

第1表にゴム組成物の加硫物性を示す。この加硫物性は
、各種カーボンブラックを配合したゴム組成物を混練し
、148℃で30分間プレス加硫して得られた加硫物に
ついて、粘弾性特性、ランボーン摩耗を評価した結果を
記したものである。
Table 1 shows the vulcanized physical properties of the rubber composition. The physical properties of this vulcanization are the results of evaluating the viscoelastic properties and Lambourne wear of the vulcanizate obtained by kneading a rubber composition blended with various carbon blacks and press vulcanizing it at 148°C for 30 minutes. It is something.

発熱性の代替指標であるtanδについては、粘弾性ス
ペクトロメーター(岩本製作所■製)を用いて温度10
0℃、歪率lO±2%、周波数2011zで測定した値
を用いた。配合lを100として指数で示した。値が小
さい程良好である。
Regarding tanδ, which is an alternative index of exothermicity, a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho ■) was used at a temperature of 10
The values measured at 0° C., strain rate lO±2%, and frequency 2011z were used. It is expressed as an index with the formulation l being 100. The smaller the value, the better.

ランボーン摩耗については、ランボーン式摩耗試験機に
より試験片円板と研磨円板とを角度をつけずに接触回転
させ、このとき試験片との間にスリップを生じさせ、単
位時間当りの試験片の摩耗量を測定する。(配合lの摩
耗量)×100÷(試料の摩耗量)で表示。値が大きい
ほど良好。
Regarding Lambourn wear, a test piece disk and a polishing disk are rotated in contact with each other without making an angle using a Lambourn type abrasion tester, and at this time slip is generated between the test piece and the test piece per unit time. Measure the amount of wear. Displayed as (amount of wear of mixture 1) x 100 ÷ (amount of wear of sample). The higher the value, the better.

表1から、本発明に係るゴム組成物(実施例1〜4)は
、同水準の窒素吸着比表面積(NtSA)レヘルテハ、
従来品種(7)SAF(NIIO1N121) 、l5
AF (N220)級ハードカーボンブラックを配合し
たゴム組成物(比較例1〜3)以上の耐摩耗性を有しな
がら、発熱性の代替指標であるtanδを低いレベルに
保有することがわかる。
From Table 1, the rubber compositions according to the present invention (Examples 1 to 4) have the same level of nitrogen adsorption specific surface area (NtSA),
Conventional type (7) SAF (NIIO1N121), l5
It can be seen that the rubber compositions containing AF (N220) grade hard carbon black have abrasion resistance higher than that of the rubber compositions (Comparative Examples 1 to 3), while maintaining tan δ, which is an alternative index of heat generation, at a low level.

比較例5は、24M40BPが本発明カーボンブラック
の範囲外のものであり、tanδが本発明カーボンブラ
ックに比べて高く、発熱性が劣ることがわかる。比較例
6は発生水素量が本発明カーボンブラックの範囲外であ
り、実施例1への本発明カーポジブラックに比べて、発
熱性、耐摩耗性がいずれも劣っていることがわかる。
It can be seen that in Comparative Example 5, 24M40BP is outside the range of the carbon black of the present invention, has a higher tan δ than the carbon black of the present invention, and is inferior in heat generation property. It can be seen that in Comparative Example 6, the amount of hydrogen generated was outside the range of the carbon black of the present invention, and compared to the carbon black of the present invention in Example 1, both heat generation property and abrasion resistance were inferior.

表1の()内の数値は、はぼ同じ窒素吸着比表面積であ
る比較例2、実施例3,4を比較するため、比較例2の
janδ指数、耐摩耗性指数を100としたときの実施
例3,4それぞれの指数をあられしたものである。実施
例3.4は、比較例2に比べて発熱性、耐摩耗性が優れ
ていることがわかる。
In order to compare Comparative Example 2 and Examples 3 and 4, which have almost the same nitrogen adsorption specific surface area, the values in parentheses in Table 1 are based on the janδ index and wear resistance index of Comparative Example 2 being 100. This figure shows the respective indexes of Examples 3 and 4. It can be seen that Examples 3 and 4 are superior in heat generation properties and wear resistance compared to Comparative Example 2.

第2図にカーボンブラックの発生水素量01□)と最多
頻度モード径(Dst)との関係を示す。第2図中の番
号は、表1における配合番号を示す。
FIG. 2 shows the relationship between the amount of hydrogen generated in carbon black (01□) and the most frequent mode diameter (Dst). The numbers in FIG. 2 indicate the formulation numbers in Table 1.

第2図から、本発明に係るカーボンブラックは、1L2
=3.74 0.02xDstの線よりも上に位置する
ことがわかる(配合7.6.8,3、すなわち実施例1
〜4)。
From FIG. 2, the carbon black according to the present invention is 1L2
= 3.74 It can be seen that it is located above the line of 0.02xDst (Formulation 7.6.8, 3, that is, Example 1
~4).

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば、特定のカーボン
ブラックをゴムに特定量配合することにより、発熱性を
低位に保持しながら、耐摩耗性の優れたゴム組成物を得
ることができる。
As described above, according to the present invention, by blending a specific amount of specific carbon black into rubber, it is possible to obtain a rubber composition with excellent wear resistance while keeping heat generation at a low level.

このゴム組成物は、特に大型車両用タイヤ、乗用車用タ
イヤのトレッドとして用いて効果が極−めて大である。
This rubber composition is particularly effective when used as a tread for tires for large vehicles and tires for passenger cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーボンブラックの凝集体分布と最多頻度モー
ド径(Ds t)の関係図である。 第2図は本発明に係るカーボンブラックのトレッドを示
すために図示した発生水素量(Ht)と最多頻度モード
径(Ds t)との関係図である。 代理人 弁理士 小 川 信 −
FIG. 1 is a diagram showing the relationship between the aggregate distribution of carbon black and the most frequent mode diameter (Dst). FIG. 2 is a diagram showing the relationship between the amount of hydrogen generated (Ht) and the most frequent mode diameter (Ds t), which is illustrated to illustrate the carbon black tread according to the present invention. Agent Patent Attorney Nobuo Ogawa −

Claims (1)

【特許請求の範囲】 窒素吸着比表面積(N_2SA)100〜200m^2
/g、24M4DBP吸油量90〜120ml/100
gの特性領域にあって、かつ1300℃でカーボンブラ
ック1g当りに発生する水素量(H_2)がmgで表わ
して、遠心沈降法による凝集体分布の最多頻度モード径
(Dstmμ)と下記式の関係を有するカーボンブラッ
クを、ゴム100重量部に対して20〜100重量部配
合してなることを特徴とするタイヤ用ゴム組成物。 H_2≧3.74−0.02(Dst)(mg/g)
[Claims] Nitrogen adsorption specific surface area (N_2SA) 100 to 200 m^2
/g, 24M4DBP oil absorption 90-120ml/100
The relationship between the most frequent mode diameter (Dstmμ) of aggregate distribution by centrifugal sedimentation method and the following formula, where the amount of hydrogen (H_2) generated per gram of carbon black at 1300°C is expressed in mg in the characteristic region of 1. A rubber composition for a tire, comprising 20 to 100 parts by weight of carbon black having the following properties per 100 parts by weight of rubber. H_2≧3.74-0.02 (Dst) (mg/g)
JP62303698A 1987-12-01 1987-12-01 Rubber composition for tires Expired - Lifetime JP2562338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303698A JP2562338B2 (en) 1987-12-01 1987-12-01 Rubber composition for tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303698A JP2562338B2 (en) 1987-12-01 1987-12-01 Rubber composition for tires

Publications (2)

Publication Number Publication Date
JPH01144434A true JPH01144434A (en) 1989-06-06
JP2562338B2 JP2562338B2 (en) 1996-12-11

Family

ID=17924167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303698A Expired - Lifetime JP2562338B2 (en) 1987-12-01 1987-12-01 Rubber composition for tires

Country Status (1)

Country Link
JP (1) JP2562338B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220150A (en) * 2004-02-03 2005-08-18 Showa Cabot Kk Carbon black excellent in abrasion resistance
JP2005350496A (en) * 2004-06-08 2005-12-22 Showa Cabot Kk Semiconductor composition
WO2016024397A1 (en) * 2014-08-11 2016-02-18 株式会社ブリヂストン Rubber composition, crosslinked rubber composition, and tire
JP2017114981A (en) * 2015-12-22 2017-06-29 株式会社ブリヂストン Rubber composition and tire
JP2018158996A (en) * 2017-03-23 2018-10-11 横浜ゴム株式会社 Heavy duty pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220150A (en) * 2004-02-03 2005-08-18 Showa Cabot Kk Carbon black excellent in abrasion resistance
JP2005350496A (en) * 2004-06-08 2005-12-22 Showa Cabot Kk Semiconductor composition
JP4673005B2 (en) * 2004-06-08 2011-04-20 キャボットジャパン株式会社 Semiconductive composition
WO2016024397A1 (en) * 2014-08-11 2016-02-18 株式会社ブリヂストン Rubber composition, crosslinked rubber composition, and tire
JP2016037591A (en) * 2014-08-11 2016-03-22 株式会社ブリヂストン Rubber composition, crosslinked rubber composition and tire
US10167375B2 (en) 2014-08-11 2019-01-01 Bridgestone Corporation Rubber composition, crosslinked rubber composition, and tire
JP2017114981A (en) * 2015-12-22 2017-06-29 株式会社ブリヂストン Rubber composition and tire
JP2018158996A (en) * 2017-03-23 2018-10-11 横浜ゴム株式会社 Heavy duty pneumatic tire

Also Published As

Publication number Publication date
JP2562338B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
Wang et al. Carbon—silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound
JP3406105B2 (en) Pneumatic tire
US5100637A (en) Carbon black for compounding into tire tread rubber
JP2999128B2 (en) Pneumatic tire
JP3399602B2 (en) Rubber composition for tire tread
JPH0853002A (en) Pneumatic tyre
JP3454327B2 (en) Pneumatic tire
JP3506542B2 (en) Pneumatic tire
JP3992814B2 (en) Heavy duty pneumatic tire
JPH01144434A (en) Rubber composition for tire
US5230878A (en) Carbon black for tire tread rubber
JPH0693136A (en) Rubber composition for tire tread
JP2601319B2 (en) Rubber composition for tire tread
JP3308709B2 (en) Rubber composition
JPH03137141A (en) Covering rubber composition for carcass of pneumatic tire
JPH0987433A (en) Silica for rubber reinforcement and rubber composition
JP3948817B2 (en) Rubber composition for tire tread
JPS61188437A (en) Rubber composition
JP2652860B2 (en) Rubber composition for tire tread
JPH08176348A (en) Pneumatic tire
JP3904304B2 (en) Rubber composition for tire tread
JPS5922940A (en) Rubber composition for tire tread
JPS63199748A (en) Rubber composition
JP2601321B2 (en) Rubber composition for tire tread
JP2583171B2 (en) Rubber composition for tire tread