JPS5922940A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread

Info

Publication number
JPS5922940A
JPS5922940A JP57131302A JP13130282A JPS5922940A JP S5922940 A JPS5922940 A JP S5922940A JP 57131302 A JP57131302 A JP 57131302A JP 13130282 A JP13130282 A JP 13130282A JP S5922940 A JPS5922940 A JP S5922940A
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
amount
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57131302A
Other languages
Japanese (ja)
Other versions
JPH0471938B2 (en
Inventor
Makoto Misawa
三澤 眞
Tetsuya Mizoguchi
溝口 徹也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP57131302A priority Critical patent/JPS5922940A/en
Publication of JPS5922940A publication Critical patent/JPS5922940A/en
Publication of JPH0471938B2 publication Critical patent/JPH0471938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

PURPOSE:The titled composition, obtained by incorporating a specific rubberlike polymeric mixture with carbon black having specific properties and sulfur in relatively small amounts, capable of reducing the rolling resistance without deteriorating braking performance, etc. on wet road surfaces, and suitable for low-fuel consumption tires. CONSTITUTION:A rubber composition for tire treads, prepared by incorporating 100pts.wt. rubber consisting of (A) 20-50pts.wt. styrene-butadiene copolymeric rubber (SBR) with 15-30wt% content of combined styrene and 30-45% content of 1,2-bonds in the butadiene part, (B) 40-70pts.wt. SBR with 20-30wt% content of combined styrene and <=20% content of 1,2-bonds in the butadiene part and (C) 5-30pts.wt. natural rubber and/or polyisoprene rubber with 50-60pts.wt. carbon black having 60-100mg/g I2 adsorption and 100-130ml/100g dibutyl phthalate oil absorption and 1.5-1.8pts.wt. sulfur.

Description

【発明の詳細な説明】 更に詳しくはブタノエン部の1.2結合が比較的多いス
チレンーブタジエン共重合体コムトフタノエン部の1,
2結合が少ない通常のスチレンープタノエン共重合体ゴ
ムと天然ゴムおよび/またはポリイソプレンゴムとをゴ
ム分とし、これに特定性状を有するカーボンブラックと
イオウを比較的少量配合することによって、タイヤの湿
潤路面における制動性能等の諸特性を損うことなしに転
勤抵抗を低減することを可能としたタイヤトレッド用コ
゛ム組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION More specifically, 1,2 bonds in the butanoene moiety are 1,
The rubber component is a normal styrene-ptanoene copolymer rubber with few 2 bonds, natural rubber and/or polyisoprene rubber, and by blending a relatively small amount of carbon black and sulfur with specific properties into the tire. The present invention relates to a comb composition for tire treads that can reduce rolling resistance without impairing various properties such as braking performance on wet road surfaces.

近年、省エネルギーという観点から、自動車の低燃費性
が望まれ、これに伴ないタイヤの転勤抵抗を低減するこ
とが求められている。タイヤの転勤抵抗は主として、タ
イヤを構成する材料のヒステリシス損失に依っている。
In recent years, from the viewpoint of energy conservation, fuel efficiency of automobiles has been desired, and accordingly, there has been a demand for reducing the rolling resistance of tires. The rolling resistance of a tire is primarily dependent on hysteresis losses in the materials that make up the tire.

しかも構成材料のうちでも体積が大きいキャップトレッ
ドの寄与が最も大きい。従ってキャップトレッド部にヒ
ステリシス損失の小さいゴムを使用することが転勤抵抗
の低減には効果的である。
Moreover, among the constituent materials, the cap tread, which has a large volume, makes the largest contribution. Therefore, using rubber with low hysteresis loss in the cap tread portion is effective in reducing rolling resistance.

しかし、これらヒステリ7ス損失の小さいコ゛ムは湿潤
路面での制動性能が低下するという欠点を有しており、
この転勤抵抗と湿潤路面における制動性能という相反す
る2つの性能を同時に満足することが要求されている。
However, these coils with low hysteresis loss have the disadvantage of reduced braking performance on wet road surfaces.
It is required to simultaneously satisfy two contradictory performances: transfer resistance and braking performance on wet road surfaces.

タイヤの転勤抵抗は回転走行に伴なう繰り返し変形によ
って生ずる材料のヒステリシス損失によるものが大部分
であり、コ8ム材料としては60〜70℃の反発弾性を
もって表わすことができる。
The rolling resistance of a tire is mostly due to hysteresis loss of the material caused by repeated deformation during rotation, and can be expressed as a rebound resilience of 60 to 70 DEG C. for a rubber material.

即ち、反発弾性の高いゴム材料はヒステリシス損失が少
なく、従って転勤抵抗も小さい。
That is, a rubber material with high rebound resilience has less hysteresis loss and therefore has less rolling resistance.

一方、湿潤路面における制動性能は、トレッドゴムが路
面を滑る際に路面の凹凸に追従してゴム材料が変形する
ことによって生じる摩擦抵抗によるものであり、コ゛ム
材料試験としては、ブリティッシーポータブルスキッド
テスターによる、ウェットスキッド抵抗の値で評価され
る。
On the other hand, braking performance on wet road surfaces is due to the frictional resistance caused by the deformation of the rubber material following the unevenness of the road surface when the tread rubber slides on the road surface. It is evaluated by the wet skid resistance value.

ゴム材料のウェットスキッド抵抗は、原料エラストマー
の分子鎖構造および補強用カーボンブランクに強く依存
する。即ち、通常乗用車タイヤ用キャップトレッドに用
いられるスチレン−ブタノエン共重合体ゴムにおいては
、ブタノエン部の1゜2結合量が増加するにつれ、ウェ
ットスキッド抵抗が増大する。また、補強性の強いカー
ボンブラックを用いること、あるいはカーボンブラック
の配合量を増加することによってもウニ、7トスキツド
抵抗を増大することができる。いずれの場合も反発弾性
は低下するが、カーボンブラックの配合量を増加させた
ほうが、フリジエン部の1,2結合金有量の多いスチレ
ン−ブタジェン共重合体コ8ムを用いた場合より反発弾
性の低下は太きい。従ってブタツエン部の1,2結合金
有量の多いスチレン−ブタジェン共重合体ゴムを用い、
カーボンブラック配合量を少なくすることが両特性を満
足させるのに好都合であるが、この場合の欠点は耐摩耗
性が著しく低下すると〆セある。
The wet skid resistance of a rubber material strongly depends on the molecular chain structure of the raw elastomer and the reinforcing carbon blank. That is, in the styrene-butanoene copolymer rubber commonly used for cap treads for passenger car tires, the wet skid resistance increases as the amount of 1°2 bonds in the butanoene moiety increases. In addition, by using carbon black with strong reinforcing properties or by increasing the blending amount of carbon black, it is possible to increase the tossing resistance. In either case, the impact resilience decreases, but the impact resilience is better when the amount of carbon black is increased than when using a styrene-butadiene copolymer with a high amount of 1,2-bond metal in the free diene part. The decline is steep. Therefore, using a styrene-butadiene copolymer rubber with a high content of 1,2-bond metal in the butatsuene moiety,
Although it is advantageous to satisfy both properties by reducing the amount of carbon black blended, the disadvantage in this case is that the wear resistance is significantly reduced.

本発明者らは、このようなブタノエン部の1,2結合金
有量の比較的多いスチレン−ブタジェン共重合体ゴムの
利用に関して、種々検討した結果、従来一般に使用され
てきたブタジェン部の1,2結合の少すいスチレン−ブ
タノエン共重合体コ゛ムト共に用いることにより、耐摩
耗性を維持しつつウェットスキッド抵抗を向上すること
ができ、このウェットスキッド抵抗にみあう分だけカー
ボンブラック、プロセスオイルの配合量を減することが
可能であることを見出した。従って結果的には、ウェッ
トスキッド抵抗を維持しつつ反発弾性を向上したキャッ
プトレッド用ゴムを得ることができる。
The present inventors have conducted various studies regarding the use of styrene-butadiene copolymer rubber having a relatively large amount of 1,2-bond metal in the butanoene moiety. By using a styrene-butanoene copolymer coat with fewer 2-bonds, wet skid resistance can be improved while maintaining wear resistance, and carbon black and process oil can be blended to match this wet skid resistance. We have found that it is possible to reduce the amount. Therefore, as a result, it is possible to obtain a cap tread rubber that maintains wet skid resistance and has improved rebound resilience.

ところが、このようにしてカーボンブラック、プロセス
オイルの配合量を減するとゴムの破断物性が低下してし
まう。この結果、このようなトレッドゴムを用いたタイ
ヤで極度に厳しい旋回試験を行なうと、タイヤショルダ
一部にチャンキングが発生するという現象がみられた。
However, when the amounts of carbon black and process oil are reduced in this way, the physical properties at break of the rubber deteriorate. As a result, when an extremely severe turning test was performed on a tire using such tread rubber, a phenomenon was observed in which chunking occurred in a portion of the tire shoulder.

この厳しい旋回試験は、山道等での急カーブが連続して
いる道路での耐久走行を再現するために行なっており、
横方向に0.7〜0,9Gの強い加速度を受けてショル
ダ一部には犬き々応力が負荷される。このときの7ヨル
ダ一部の温度は95℃以上にもなっている。
This severe turning test is conducted to simulate endurance driving on roads with continuous sharp curves such as mountain roads.
A portion of the shoulder is subjected to strong stress of 0.7 to 0.9 G in the lateral direction. At this time, the temperature in some parts of 7 Jorda reached over 95 degrees Celsius.

従って破断物性、特に高温時の破断物性の低下は、この
ような厳しい旋回試験に対する耐久性を低下せしめ好ま
しくない。また、高温時の破断物性の低下は、タイヤを
加硫後、モールドから取り出す際、トレッドゴム欠けを
生じやすくなるという欠点にもつながっている。
Therefore, a decrease in the breaking properties, especially at high temperatures, is undesirable because it reduces the durability against such severe turning tests. Furthermore, the decrease in physical properties at break at high temperatures also leads to the disadvantage that tread rubber is more likely to chip when the tire is removed from the mold after vulcanization.

カーボンブラック、プロセスオイル配合量の減量は、破
断物性の低下の他に、製造上でも問題を生じる。即ち、
カーボンブラック、プロセスオイルを減量すると、他の
部材コゝムとの粘着性が低下することである。そのため
、成型作業に困難をきたしたり、あるいは、加硫後、隣
接ゴムとの界面に空気層が残るという故障の原因となる
Reducing the amount of carbon black and process oil blended causes problems in manufacturing as well as in the deterioration of fracture properties. That is,
If the amount of carbon black and process oil is reduced, the adhesion to other components will decrease. This may cause difficulty in molding work, or may cause malfunctions such as an air layer remaining at the interface with the adjacent rubber after vulcanization.

本発明は、以上述べてきたタイヤ用キャップトレッドゴ
ムにまつわる様々の背反性、あるいは困難性を解決すべ
くなされたもので、加硫後の反発弾性にすぐれ、かつウ
ェットスキッド抵抗、耐摩耗性、破断物性等の他の緒特
性を損わないタイヤトレッド用ゴム組成物を提供するこ
とを目的とし、低燃費タイヤ用キャップトレッドゴムと
して好適に利用される。
The present invention has been made to solve the various disadvantages or difficulties associated with tire cap tread rubber as described above. The purpose of the present invention is to provide a rubber composition for tire treads that does not impair other properties such as physical properties, and is suitably used as cap tread rubber for fuel-efficient tires.

本発明者らは、この目的に沿って鋭意研究の結果、ブタ
ジェン部分の1.2結合の比較的多いスチレンーブタノ
エン共重合体ゴムとブタジェン部分の1.2結合の少な
いスチレン−ブタジェン共重合体ゴムと天然コ゛ムおよ
び/またはポリイソプレンゴムとを特定割合で含有せし
めゴム分として、これに特定性状のカーボンブラックを
比較的少量配合し、さらに特定範囲の量のイオウを配合
したゴム組成物が上記目的を達成することを見出し本発
明に達成した。
As a result of intensive research in line with this objective, the present inventors found that a styrene-butanoene copolymer rubber with a relatively large number of 1.2 bonds in the butadiene moiety and a styrene-butadiene copolymer rubber with a relatively large number of 1.2 bonds in the butadiene moiety. A rubber composition containing polymer rubber and natural comb and/or polyisoprene rubber in a specific ratio, a relatively small amount of carbon black with specific properties, and sulfur in a specific range. It has been found that the above object can be achieved by the present invention.

すなわち本発明は、結合スチレン量が15〜30重量%
でブタノエン部の1.2結合量が30〜45チであるス
チレン−ブタジェン共重合体ゴム(以下、SBR−Aと
いう)20〜50重量部、結合スチレン量が20〜30
重量%でブタノエン部の1゜2結合量が20%以下のス
チレンープクジェン共重合体ゴム(以下、単にSDRと
いう)40〜70重量部、天然ゴム(NR)および/ま
たはポリイソプレンゴム(IR) 5〜30重量部とか
らなるコゝム分100重量部に対し、ヨウ素吸着量60
〜100m9 I9−、ジプチ/l/ 7タレー ト(
DBP)吸油量100〜13 Qmg/100y−のカ
ーボンブラックを50−60重量部およびイオウを1.
5〜1.8重量部配合したことを特徴とするタイヤトレ
ッド用コ゛ム組成物にある。
That is, in the present invention, the amount of bound styrene is 15 to 30% by weight.
20 to 50 parts by weight of styrene-butadiene copolymer rubber (hereinafter referred to as SBR-A) in which the amount of 1.2 bonds in the butanoene moiety is 30 to 45 inches, and the amount of bound styrene is 20 to 30 parts by weight.
40 to 70 parts by weight of styrene-propylene copolymer rubber (hereinafter simply referred to as SDR) with a 1°2 bond content of butanoene moieties of 20% or less, natural rubber (NR) and/or polyisoprene rubber (IR). ) The amount of iodine adsorbed is 60 parts by weight per 100 parts by weight of the comb consisting of 5 to 30 parts by weight.
~100m9 I9-, Djibouti/l/7 Tallate (
DBP) 50-60 parts by weight of carbon black with an oil absorption of 100-13 Qmg/100y- and 1.0 parts by weight of sulfur.
A comb composition for a tire tread, characterized in that it contains 5 to 1.8 parts by weight.

本発明に用いられる5BR−Aは通常の溶液重合法によ
って得られるが、結合スチレン量が15〜30重量%で
あることが必要であり、15重量%未満ではウェットス
キッド抵抗の改良効果が少なく、30重量%を越える場
合は、反発弾性の低下が大きく好ましくない。またブタ
ジェン部の1,2結合が30%未満ではウェットスキッ
ド抵抗の改良効果が少なく、4s%を越える場合は、耐
摩耗性の低下が大きく好ましく雇い。5BR−Aの使用
量は全ゴム分中20〜50重量%であシ、20重量%未
満ではウェットスキッド抵抗の改良効果が少;・なぐ、
50重量%を越える場合は耐摩耗性が低下し好ましくな
い。
5BR-A used in the present invention can be obtained by a normal solution polymerization method, but it is necessary that the amount of bound styrene is 15 to 30% by weight, and if it is less than 15% by weight, the effect of improving wet skid resistance is small; If it exceeds 30% by weight, it is not preferable because the impact resilience is greatly reduced. Furthermore, if the 1,2 bond in the butadiene moiety is less than 30%, the effect of improving wet skid resistance is small, and if it exceeds 4s%, the abrasion resistance is greatly reduced, which is preferable. The amount of 5BR-A used should be 20 to 50% by weight of the total rubber content, and if it is less than 20% by weight, the effect of improving wet skid resistance will be small.
If it exceeds 50% by weight, the abrasion resistance decreases, which is not preferable.

本発明においていうSBRは通常のゴム組成物に使用さ
れるもので、乳化重合法あるいは溶液重合法によって得
られる結合スチレン量が20〜30重量%のものであp
 、5BR−Aの配合による耐摩耗性、破断物性の低下
を防止するため全ゴム分940〜70重量%含有される
。40重量%未満では耐摩耗性、破断物性の改良が少な
く、70重量部を越える場合には、反発弾性が低下し好
ましくない。
The SBR referred to in the present invention is used in ordinary rubber compositions, and is obtained by emulsion polymerization or solution polymerization and has a bound styrene content of 20 to 30% by weight.
, 5BR-A is contained in a total rubber content of 940 to 70% by weight in order to prevent deterioration in wear resistance and breakage properties due to the blending. If it is less than 40 parts by weight, there will be little improvement in abrasion resistance and rupture properties, and if it exceeds 70 parts by weight, impact resilience will decrease, which is undesirable.

天然コムおよび/またはポリイソプレンゴムは、未加硫
状態での粘着性、および破断物性を向上させるために全
ゴム分中に5〜30重量%配合させる。5重量%未満で
は粘着性に対する効果は期待できず、30重量%を越え
る場合はウェットスキッド抵抗が低下してしまい好まし
くない。
Natural comb and/or polyisoprene rubber is blended in an amount of 5 to 30% by weight in the total rubber content in order to improve adhesion in an unvulcanized state and physical properties at break. If it is less than 5% by weight, no effect on adhesion can be expected, and if it exceeds 30% by weight, wet skid resistance will decrease, which is not preferable.

本発明に用いられるカーボンブラックは、ヨウ素(工2
)吸着量が60〜1oomg/IFでかつジブチル7 
タL’−) (DBP)吸油量力loo〜130m1/
100y−のものであり、具体的にはカーボンブラック
N−330XN−339、N−347、N−351等が
例示される。工2吸着量カ60 my/y−未Ffi 
6 ルイハDBP吸油量カ1oomVlooy−未満で
は、キヤ、ブトレッドとして充分な耐摩耗性、破断特性
を得ることができない。工2吸着量が100m9/7を
越える場合、あるいはDBP吸油量が130mV100
?を越える場合は、耐摩耗性、ウェットスキッド抵抗は
良好なものの反発弾性の低下が著しく好ましくない。上
記範囲のI2吸着量およびDBP吸油量を有するカービ
ンブラックは、ゴム分100重量部に対して50〜60
重量部配合される。カーボンブラックの配合量が50重
量部未満では耐摩耗性に劣り、60重量部を越えると反
発弾性が低下しそれぞれ好ましくない。
The carbon black used in the present invention contains iodine
) Adsorption amount is 60-1oomg/IF and dibutyl 7
L'-) (DBP) Oil absorption power loo~130m1/
100y-, and specific examples include carbon black N-330XN-339, N-347, and N-351. 2 adsorption amount 60 my/y-Ffi
6. If the oil absorption amount of DBP is less than 1 oomVlooy-, sufficient wear resistance and breaking characteristics cannot be obtained as a car or butt tread. If the adsorption amount exceeds 100m9/7 or the DBP oil absorption amount is 130mV100
? If it exceeds this value, the abrasion resistance and wet skid resistance are good, but the impact resilience is significantly lowered, which is undesirable. Carbine black having an I2 adsorption amount and a DBP oil absorption amount within the above range is 50 to 60 parts by weight per 100 parts by weight of rubber.
Parts by weight are added. If the amount of carbon black is less than 50 parts by weight, the abrasion resistance will be poor, and if it exceeds 60 parts by weight, the impact resilience will decrease, which is not preferable.

本発明のゴム組成物においては、加硫剤であるイオウは
比較的少量配合することが望ましく、好ましくはゴム分
100重量部に対し1.5〜1.8重量部配合すること
が望ましい。1.5重量部未満では充分な架橋点が得ら
れず、耐摩耗性が低下してしまい、また1、8重量部を
越える場合は、高温時の破断物性の低下が大きいためそ
れぞれ好ましくない。
In the rubber composition of the present invention, it is desirable to incorporate a relatively small amount of sulfur as a vulcanizing agent, preferably 1.5 to 1.8 parts by weight per 100 parts by weight of rubber. If it is less than 1.5 parts by weight, sufficient crosslinking points will not be obtained and the abrasion resistance will deteriorate, and if it exceeds 1 or 8 parts by weight, the physical properties at break at high temperature will be greatly reduced, which is not preferable.

本発明のゴム組成物には、上記以外の通常ゴム工業に用
いられる配合剤、例えばプロセスオイル、加硫促進剤、
加硫助剤、老化防止剤等を適宜添加できる。
The rubber composition of the present invention contains compounding agents other than those mentioned above that are commonly used in the rubber industry, such as process oil, vulcanization accelerator,
Vulcanization aids, anti-aging agents, etc. can be added as appropriate.

以下、本発明を実施例および比較例に基づいて具体的に
説明する。なお表中の配合はすべて重量部である。
The present invention will be specifically described below based on Examples and Comparative Examples. All formulations in the table are parts by weight.

実施例J 第1表に示す構造を有する5DR−A、 SDRと天然
ゴムをゴム分として、各ゴム分の割合を変えて第2表に
示す配合で小型の密閉混合機で混合してゴム組成物を調
製し/ζ。このようにして得られたゴム組成物を160
℃15分加硫して加硫コ゛ムを得、加硫ゴムの、反発弾
性、ウェットスキッド抵抗、耐摩耗性を測定して第1〜
3図に示した。この第1〜3図はゴム分としてSDRを
単独配合した加硫ゴムの値を100どした指数で表示し
、反発弾性はJISK6301に準拠した60℃におけ
るリープケ反発弾性試験、ウェットスキッド抵抗はプリ
ティシュポータプルスキッドテスターによる測定で行な
い、路面は3M社製屋外タイゾBセーフティウオークを
使用し、蒸留水にて振温させ25℃雰囲気中で測定、耐
摩耗性はASTM D2228によるピコ摩耗試験機に
より60rpm、荷重45Kgの条件で行ない、摩耗減
量の逆数で表示した。
Example J 5DR-A having the structure shown in Table 1, SDR and natural rubber as rubber components were mixed in a small closed mixer with the proportions of each rubber component changed as shown in Table 2 to form a rubber composition. Prepare things/ζ. The rubber composition thus obtained was
C. for 15 minutes to obtain a vulcanized rubber, and the impact resilience, wet skid resistance, and abrasion resistance of the vulcanized rubber were measured.
It is shown in Figure 3. These figures 1 to 3 are expressed as an index obtained by dividing the value of vulcanized rubber containing SDR alone as the rubber component by 100, and the impact resilience is determined by the Liebke impact resilience test at 60°C in accordance with JIS K6301, and the wet skid resistance is expressed by the Pretty Measurement was performed using a portable skid tester. The road surface was measured using a 3M Outdoor Tyzo B Safety Walk in an atmosphere of 25°C while shaking with distilled water. Abrasion resistance was measured using a pico abrasion tester according to ASTM D2228 at 60 rpm. The test was carried out under the condition of a load of 45 kg and expressed as the reciprocal of the wear loss.

第2表 H: I2吸着t90m9/&、120m17100g
、I2:N−(113ノメチルフチル) −N/−フェ
ニル−p−フェニレンノアミン、I3:N−フクロヘキ
シル−2−ベンゾチアゾールスルフェンアミド 第1〜3図よシ、SBRが70重量部を越える場合、反
発弾性の向上効果はほとんどなくなシ、またNRが30
重量部を越えるとウェットスキッド抵抗が低下してし甘
う。更にSBRが40〜70重量部、NRが5〜30重
量部の範囲内テ5BR−Aが50重量部を越えると耐摩
耗性が極端に低下してしまう。
Table 2 H: I2 adsorption t90m9/&, 120m17100g
, I2: N-(113-nomethylphthyl)-N/-phenyl-p-phenylenenoamine, I3: N-fuclohexyl-2-benzothiazolesulfenamide Figures 1 to 3, SBR exceeds 70 parts by weight In this case, the effect of improving rebound resilience is almost eliminated, and NR is 30
If the weight exceeds the weight limit, the wet skid resistance will decrease. Furthermore, if SBR is in the range of 40 to 70 parts by weight and NR is in the range of 5 to 30 parts by weight, and if 5BR-A exceeds 50 parts by weight, the wear resistance will be extremely reduced.

実施例2〜6および比較例1〜5 第2表の配合で、第3表に示すごとくゴム分の割合を変
え実施例1と同様にゴム組成物を調製した後、実施例1
と同一の条件で加硫し加硫特性を測定した。なお、比較
例1のみはカーボンブラック(N339)を60重量部
、芳香族グロセスオイルを20重量部配合した。また、
反発弾性、ウェットスキッド抵抗、耐摩耗性は実施例1
と同様に測定し、比較例2を1ooとした指数で表示し
た。
Examples 2 to 6 and Comparative Examples 1 to 5 After preparing rubber compositions in the same manner as in Example 1 using the formulations shown in Table 2 and changing the rubber content as shown in Table 3, Example 1
Vulcanization was carried out under the same conditions as above and the vulcanization characteristics were measured. In addition, only in Comparative Example 1, 60 parts by weight of carbon black (N339) and 20 parts by weight of aromatic gross oil were blended. Also,
Resilience, wet skid resistance, and abrasion resistance are as shown in Example 1.
It was measured in the same manner as above and expressed as an index with Comparative Example 2 set as 1oo.

引張強さ、伸び、JIS硬さはJIS K 63旧に準
拠して行ない、粘着力はPICFtliA TACK 
IIタックメータを用い、圧着荷重500 g、圧着時
間O“、ハクリ速度125’Omml min %サン
プル幅10mmで測定したハクリカを比較例2の値を2
00とした指数で表示しだ。それぞれの結果を第3表に
示す。
Tensile strength, elongation, and JIS hardness were determined in accordance with JIS K 63 old, and adhesive strength was determined by PICFtliA TACK.
Using a II tack meter, the value of Comparative Example 2 was 2.
It is displayed as an index set to 00. The respective results are shown in Table 3.

第3表に示されるとと〈コ8ム成分の配合割合を変える
ことにより、反発弾性等の特性は変化する。
As shown in Table 3, properties such as impact resilience change by changing the blending ratio of the ingredients.

実施例2〜6はいずれも基準とした比較例2に比べ反発
弾性、ウェットスキッド抵抗が改良されており、耐摩耗
性の低下も許容される範囲にある。
Examples 2 to 6 all have improved impact resilience and wet skid resistance compared to Comparative Example 2, which was used as a standard, and the decrease in abrasion resistance is within an acceptable range.

また、実施例2〜6は一般的乗用車用トレッド配合であ
る比較例1とくらべると反発弾性は大幅に向上しながら
ウェットスキッド抵抗の低下は少ない。さらにNRを配
合することにより粘着性が向上することがわかる。
Further, in Examples 2 to 6, when compared with Comparative Example 1, which is a general passenger car tread formulation, the impact resilience is significantly improved, while the wet skid resistance is less reduced. Furthermore, it can be seen that the adhesion is improved by blending NR.

実施・例5および比較例6〜10 第2表の配合で、第4表に示すごとくカーボンブラック
の種類および量を変え実施例1と同様にコ゛ム組成物を
調製した後、実施例1と同一の条件で加硫し加硫特性を
測定した。なお測定方法は実施例2と同様に行なった。
Implementation/Example 5 and Comparative Examples 6 to 10 A comb composition was prepared in the same manner as in Example 1 using the formulation shown in Table 2 with the type and amount of carbon black changed as shown in Table 4. The vulcanization properties were measured under the following conditions. The measurement method was the same as in Example 2.

結果を第4表に示す。The results are shown in Table 4.

第4表に示されるごとくカーピンブラックを変えること
により、反発弾性等の特性は変化する。
As shown in Table 4, by changing the carpin black, properties such as impact resilience change.

カーボンブラックN−339を用いた実施例5は、カー
ボンブラックN−220XN−660、N−326を用
いた比較例6〜8に比べて反発弾性、ウェットスキッド
抵抗、耐摩耗性のいずれもが満足されることがわかる。
Example 5 using carbon black N-339 had satisfactory impact resilience, wet skid resistance, and abrasion resistance compared to Comparative Examples 6 to 8 using carbon black N-220XN-660 and N-326. I know it will happen.

また、カーピンブラックN339の配合量を減少した比
較例9は耐摩耗性および高温時の破断伸びの低下が大き
く、配合量を増加した比較例10は反発弾性の低下が大
きいことがわかる。
Furthermore, it can be seen that Comparative Example 9, in which the blending amount of Carpin Black N339 was reduced, had a large decrease in wear resistance and elongation at break at high temperatures, and Comparative Example 10, in which the blending amount was increased, had a large decline in impact resilience.

実施例5および比較例11〜12 第2表の配合で、第5表に示すととくイオウの量を変え
実施例1と同様にゴム組成物を調製した後、実施例1と
同一の条件で加硫し加硫特性を測定した。なお測定方法
は実施例2と同様に行なった。結果を第5表に示す。
Example 5 and Comparative Examples 11 to 12 Rubber compositions were prepared in the same manner as in Example 1 using the formulations shown in Table 2, with the specific amounts of sulfur shown in Table 5 being changed, and then under the same conditions as in Example 1. It was vulcanized and the vulcanization properties were measured. The measurement method was the same as in Example 2. The results are shown in Table 5.

第5表 第5表に示されるととくイオウの配合量を変えることに
よシ、反発弾性等の特性は変化する。イオウ量が少ない
比較例11およびイオウ量の多い比較例12は耐摩耗性
あるいは高温時の破断伸びが低下してしまう。
Table 5 As shown in Table 5, properties such as impact resilience change by changing the blended amount of sulfur. In Comparative Example 11, which has a small amount of sulfur, and Comparative Example 12, which has a large amount of sulfur, wear resistance or elongation at break at high temperatures deteriorate.

以上説明したごとく、SBRX5BR−A 、 NRお
よび/またはIRの3成分を特定割合で配合してゴム分
とし、これに特定性状のカーボンブラ%的少量配合して
々る本発明のゴム組成物を、タイヤのトレンド部として
使用した場合、従来のタイヤに比べて転勤抵抗を著しく
改善し、しかも湿潤路面での制動性能、耐摩耗性等の他
の特性を害することなく、また製造上の問題が生じるこ
ともないので低燃費タイヤとして好ましく利用される。
As explained above, the rubber composition of the present invention is made by blending the three components SBRX5BR-A, NR and/or IR in a specific ratio to form a rubber component, and adding a small amount of carbon brane with specific properties to this. When used as a trend part of a tire, it significantly improves rolling resistance compared to conventional tires, and does not impair other properties such as braking performance on wet roads or wear resistance, and also eliminates manufacturing problems. Since this does not occur, it is preferably used as a fuel-efficient tire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1におけるゴム分の配合割合と反発弾性
(60℃)の関係を示す三角図、第2図は実施例1にお
゛けるコ8ム分の配合割合とウェットスキッド抵抗の関
係を示す三角図、および、 第3図は実施例1におけるゴム分の配合割合と耐摩耗性
の関係を示す三角図であり、それぞれゴム分としてSB
Rを単独で配合した加硫ゴムの値を100とした指数表
示で示した。 第3!!l
Figure 1 is a triangular diagram showing the relationship between the rubber content and impact resilience (60°C) in Example 1, and Figure 2 is a triangular diagram showing the relationship between the rubber content and impact resilience (60°C) in Example 1. A triangular diagram showing the relationship, and FIG. 3 are triangular diagrams showing the relationship between the blending ratio of the rubber component and the abrasion resistance in Example 1.
The values are expressed as an index, with the value of the vulcanized rubber containing only R blended as 100. Third! ! l

Claims (1)

【特許請求の範囲】[Claims] 結合スチレン量が15〜30重量%でブタジェン部の1
,2結合量が30〜45係であるスチレン−ブタノエン
共重合体ゴム20〜50重量部、結合スチレン量が20
〜30重量%でブタジェン部の1,2結合量が20%以
下のスチレン−ブタノエン共重合体ゴム40〜70重量
部、天然ゴムおよび/またはポリイノプレンゴム5〜3
0重量部とからなるゴム分100重量部に対し、ヨウ素
吸着量60〜1.00 m9/I−、ジブチルフタレー
ト吸油量100〜130 ml/1007のカーボンブ
ラックを50〜60重量部およびイオウを1.5〜1.
8重量部配合したことを特徴とするタイヤトレッド用ゴ
ム組成物。
When the amount of bound styrene is 15 to 30% by weight, 1 of the butadiene moiety
, 20 to 50 parts by weight of styrene-butanoene copolymer rubber having a bond amount of 30 to 45, and a bond amount of 20 to 50 parts by weight.
40 to 70 parts by weight of styrene-butanoene copolymer rubber containing ~30% by weight and 20% or less of 1,2 bonds in the butadiene moiety, 5 to 3 parts by weight of natural rubber and/or polyinoprene rubber
50 to 60 parts by weight of carbon black with an iodine adsorption amount of 60 to 1.00 m9/I-, a dibutyl phthalate oil absorption amount of 100 to 130 ml/1007, and 1 sulfur to 100 parts by weight of rubber consisting of 0 parts by weight. .5~1.
A rubber composition for a tire tread, characterized in that it contains 8 parts by weight.
JP57131302A 1982-07-29 1982-07-29 Rubber composition for tire tread Granted JPS5922940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131302A JPS5922940A (en) 1982-07-29 1982-07-29 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131302A JPS5922940A (en) 1982-07-29 1982-07-29 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JPS5922940A true JPS5922940A (en) 1984-02-06
JPH0471938B2 JPH0471938B2 (en) 1992-11-17

Family

ID=15054777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131302A Granted JPS5922940A (en) 1982-07-29 1982-07-29 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JPS5922940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205335A (en) * 1987-02-20 1988-08-24 Yokohama Rubber Co Ltd:The Rubber composition for tread
JPH01313545A (en) * 1988-06-10 1989-12-19 Bridgestone Corp Pneumatic tire
JPH07138411A (en) * 1993-11-17 1995-05-30 Sumitomo Rubber Ind Ltd Rubber composition for low-fuel consumption tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500101Y2 (en) * 1993-06-21 1996-06-05 株式会社ニッショー Infusion container cap

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572348A (en) * 1980-06-07 1982-01-07 Bridgestone Corp Reinforced rubber composition
JPS5751503A (en) * 1980-09-10 1982-03-26 Bridgestone Corp Pneumatic tire with improved tread
JPS5755204A (en) * 1980-09-20 1982-04-02 Bridgestone Corp Pneumatic tire with improved tread
JPS5790031A (en) * 1980-11-25 1982-06-04 Toyo Tire & Rubber Co Ltd High-wet grip tire tread rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572348A (en) * 1980-06-07 1982-01-07 Bridgestone Corp Reinforced rubber composition
JPS5751503A (en) * 1980-09-10 1982-03-26 Bridgestone Corp Pneumatic tire with improved tread
JPS5755204A (en) * 1980-09-20 1982-04-02 Bridgestone Corp Pneumatic tire with improved tread
JPS5790031A (en) * 1980-11-25 1982-06-04 Toyo Tire & Rubber Co Ltd High-wet grip tire tread rubber composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205335A (en) * 1987-02-20 1988-08-24 Yokohama Rubber Co Ltd:The Rubber composition for tread
JPH01313545A (en) * 1988-06-10 1989-12-19 Bridgestone Corp Pneumatic tire
JPH0653830B2 (en) * 1988-06-10 1994-07-20 株式会社ブリヂストン Pneumatic tire
JPH07138411A (en) * 1993-11-17 1995-05-30 Sumitomo Rubber Ind Ltd Rubber composition for low-fuel consumption tire

Also Published As

Publication number Publication date
JPH0471938B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US5877249A (en) Tire with tread having silica reinforcement field
US5447971A (en) Tire with silica reinforced tread
JPH0355503B2 (en)
EP0831122B1 (en) Tyre with tread of elastomer composition
US6022922A (en) Tire with silica reinforced tread
JPS584642B2 (en) radial tires
JP3406105B2 (en) Pneumatic tire
AU681407B2 (en) Tire with silica reinforced tread
JPH0853002A (en) Pneumatic tyre
JPH1045951A (en) Tire having silica-reinforced tread
JPH0598078A (en) Rubber composition for tire tread
JP3506542B2 (en) Pneumatic tire
EP0796893A1 (en) Tire having silica reinforced tread
JPS5922940A (en) Rubber composition for tire tread
JPH08225684A (en) Rubber composition, tire tread produced using the same, and tire with the tread
JPH0790124A (en) Tire tread rubber composition
JPS61133245A (en) Rubber composition for tire tread
JPH04359938A (en) Rubber composition for tire tread
JPH08176348A (en) Pneumatic tire
JPS5943286B2 (en) Method for producing rubber composition for tire tread
JPH0120651B2 (en)
AU699188B2 (en) Tire with silica reinforced tread
JPH08259738A (en) Rubber composition for tread
JPS5819340A (en) Rubber composition for tire tread
JPS58116204A (en) Radial tire