JPH01143264A - Field effect semiconductor element - Google Patents
Field effect semiconductor elementInfo
- Publication number
- JPH01143264A JPH01143264A JP30106787A JP30106787A JPH01143264A JP H01143264 A JPH01143264 A JP H01143264A JP 30106787 A JP30106787 A JP 30106787A JP 30106787 A JP30106787 A JP 30106787A JP H01143264 A JPH01143264 A JP H01143264A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor layer
- electric field
- electrons
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 230000005669 field effect Effects 0.000 title claims description 11
- 230000005684 electric field Effects 0.000 claims abstract description 32
- 230000007704 transition Effects 0.000 claims abstract description 10
- 239000002784 hot electron Substances 0.000 claims abstract description 7
- 239000000969 carrier Substances 0.000 claims abstract description 3
- 150000001875 compounds Chemical class 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 13
- 239000000758 substrate Substances 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野コ
この発明は電界効果半導体素子に関するものであり、特
に、複数個の■−■化合物半導体層を積層してなる活性
層を有する電界効果゛ト導体素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a field effect semiconductor device, and in particular to a field effect semiconductor device having an active layer formed by laminating a plurality of ■-■ compound semiconductor layers. It relates to conductive elements.
「従来の技術]
■−V族化合物半導体は高速性においてシリコン半導体
を凌ぐため、現在、その電子デバイスの開発が活発に行
なわれている。現在実用化が進んでいるのはGaAsを
用いたショットキゲート型の電界効果トランジスタ(以
下、FETと略す)であるが、超高速情報処理や通信分
野においては、−層のデバイス特性向上が望まれ、新し
いデバイス構造や新しい材料の提案がなされつつある。``Prior art'' ■- Group V compound semiconductors outperform silicon semiconductors in terms of high speed, so the development of electronic devices using them is currently being actively carried out.The one that is currently being put into practical use is a Schottky semiconductor using GaAs. Although gate-type field effect transistors (hereinafter abbreviated as FETs) are used in the fields of ultra-high-speed information processing and communication, it is desired to improve the device characteristics of the negative layer, and new device structures and new materials are being proposed.
[発明が解決しよしようとする問題点]FET型デバイ
スにおいて、信号の担い手となる電子(あるいはホール
)はゲート電圧によってチャネル部に適宜誘起され、さ
らにソース・ドレイン両電極間に印加される電界で加速
され、チャネルに沿って走行して電流を形成する。素子
の動作速度を決める電子の走行速度Vは電界Eに依存す
ることが知られている。すなわち、III−V化合物に
おいて、電子を加速すると、エネルギバンドの伝導帯端
のF点付近で加速されていくが、高電界下ではエネルギ
増加に伴ってホットエレクトロンとなり、遂にはr−L
遷移を生じ、その十行速度はむしろ低下してしまう。し
たがって、素子の高速動作を実現するには、材料特有の
v−E関係を考慮した上で、特に高電界領域での速度低
下を克服するデバイス構造を採用することが有効となる
。[Problems to be solved by the invention] In FET type devices, electrons (or holes) that carry signals are appropriately induced in the channel region by gate voltage, and furthermore, by the electric field applied between the source and drain electrodes. is accelerated and travels along the channel, forming an electric current. It is known that the traveling speed V of electrons, which determines the operating speed of the device, depends on the electric field E. That is, when electrons are accelerated in III-V compounds, they are accelerated near point F at the conduction band edge of the energy band, but under a high electric field, as the energy increases, they become hot electrons, and finally r-L
This causes a transition, and the 10-line speed actually decreases. Therefore, in order to realize high-speed operation of the device, it is effective to consider the v-E relationship specific to the material and adopt a device structure that overcomes the speed reduction, especially in the high electric field region.
この発明は、これらの観点に立ってなされたもので、高
速動作が可能な電界効果半導体素子を提供することを目
的とする。The present invention has been made based on these viewpoints, and an object of the present invention is to provide a field effect semiconductor device capable of high-speed operation.
[問題点を解決するための手段]
本発明は複数個のI−V化合物半導体層を積層してなる
活性層を合する電界効果半導体素子に係るものである。[Means for Solving the Problems] The present invention relates to a field effect semiconductor device in which an active layer formed by stacking a plurality of IV compound semiconductor layers is combined.
そして、上記活性層は低電界において高移動度を有する
第1の半導体層と、高電界において高走行速度を有する
第2の半導体層とを含み、上記第1および第2半導体層
間でホットエレクトロンによるキャリアの実空間遷移を
行なわせるようにしている。The active layer includes a first semiconductor layer that has high mobility in a low electric field and a second semiconductor layer that has a high traveling speed in a high electric field, and hot electrons are generated between the first and second semiconductor layers. The carrier is made to perform real space transition.
[作用]
活性層が低電界において高移動度を有する第1の半導体
層と、高電界において高走行速度を有する第2の半導体
層とを含み、上記第1および第2の半導体層間でホット
エレクトロンによるキャリ゛ アの実空間遷移を行なわ
せるようにしているので、低電界および高電界の両頭域
において電子の高速走行を可能とする。[Function] The active layer includes a first semiconductor layer having high mobility in a low electric field and a second semiconductor layer having a high traveling speed in a high electric field, and hot electrons are transferred between the first and second semiconductor layers. Since the real space transition of carriers is caused by , electrons can travel at high speed in both low and high electric field regions.
[実施例]
第1図は本発明の詳細な説明するための図である。第1
図において、上図はFETのチャネルにおける横方向の
電界強度分布を示している。周知のとおり、ソース側は
比較的低電界(<10kV/ c m )であるのに対
し、ドレイン近傍には高電界(>10kV/cm)が存
在する。第1図において、下図は、2つの半導体積層よ
りなる活性層を電子がソースからドレインに向かって走
行する様子を図示したものである。ソース近傍で半導体
層11中に誘起された電子は、該半導体層1]中を加速
されて走行するが、電界の増加に従ってホット化し、電
界強度Eplの付近で隣接する半導体層12に実空間遷
移する。その後、半導体層12中を走行し、ドレイン領
域に到達する。図において、Ep+ + Ep2は、
それぞれ第1および第2の半導体中の電子速度がピーク
となるときの電界強度を示す。[Example] FIG. 1 is a diagram for explaining the present invention in detail. 1st
In the figure, the upper diagram shows the lateral electric field strength distribution in the channel of the FET. As is well known, there is a relatively low electric field (<10 kV/cm) on the source side, whereas a high electric field (>10 kV/cm) exists near the drain. In FIG. 1, the lower diagram illustrates how electrons travel from the source to the drain in an active layer made up of two stacked semiconductor layers. Electrons induced in the semiconductor layer 11 near the source are accelerated and travel in the semiconductor layer 1, but as the electric field increases, they become hotter and transfer to the adjacent semiconductor layer 12 in real space near the electric field strength Epl. do. Thereafter, it travels through the semiconductor layer 12 and reaches the drain region. In the figure, Ep+ + Ep2 is
The electric field strength when the electron velocity in the first and second semiconductors reaches its peak is shown.
上記の活性層を構成する半導体積層の好ましい実施例の
1つは、InGaAsおよびInPを用いて構成できる
。第2図はその説明図である。工nGaAsは低電界領
域でGaAsより大きい電子移動度を有し、これを、第
1図における半導体層11に用いる。次に、InPは高
電界領域においてGaAsより大きな走行速度を有し、
これを第1図の半導体層12に用いる。One of the preferred embodiments of the semiconductor stack constituting the above active layer can be constructed using InGaAs and InP. FIG. 2 is an explanatory diagram thereof. GaAs has a higher electron mobility than GaAs in a low electric field region, and is used for the semiconductor layer 11 in FIG. Next, InP has a higher traveling speed than GaAs in the high electric field region,
This is used for the semiconductor layer 12 in FIG.
前述の動作原理を用いて、いくつかのデバイス構造を構
成できる。以下に、それらについて述べる。Several device structures can be constructed using the operating principles described above. We will discuss them below.
第3図は、本発明の一実施例の金属・絶縁膜・半導体型
トランジスタ(MISFET)を示ス断面図である。図
において、33は半絶縁性のInP基板、32はInP
基板33の上に設けられた格子整合1 nI−X Ga
x As半導体層(X−0゜47)、31はInP半導
体層、34はゲート絶縁層、35はゲート電極、36は
ソース電極、37はドレイン電極である。FIG. 3 is a sectional view showing a metal/insulating film/semiconductor type transistor (MISFET) according to an embodiment of the present invention. In the figure, 33 is a semi-insulating InP substrate, 32 is InP
Lattice matching 1 nI-X Ga provided on the substrate 33
x As semiconductor layer (X-0°47), 31 is an InP semiconductor layer, 34 is a gate insulating layer, 35 is a gate electrode, 36 is a source electrode, and 37 is a drain electrode.
次に、この半導体素子の、ゲート電極35に正電圧を印
加した場合のエネルギバンド図を第4図に示す。このと
き、InPは1.35eV、InGaAsは0.8eV
と、両層は異なるエネルギギャップ値を有する。Next, FIG. 4 shows an energy band diagram of this semiconductor element when a positive voltage is applied to the gate electrode 35. At this time, InP is 1.35 eV and InGaAs is 0.8 eV.
, both layers have different energy gap values.
ゲート電圧をvGとすると、InP層31には、近似的
に、次式に示す電界が印加される。When the gate voltage is vG, an electric field approximately expressed by the following equation is applied to the InP layer 31.
上式において、ε+、d+(あるいはε2+d2)はゲ
ート絶縁膜(あるいはInP層)の誘電率と厚みを示す
。横方向(ソース・ドレイン方向)の電界が弱い場合、
チャネルはInPと接したInGaAs表面に形成され
るように素子を構成する。このとき、ゲート絶縁膜と接
するInP表面に新たなチャネルが形成されないために
は、E2d2〈ΔEcの条件が満たされることが望まし
い。In the above equation, ε+, d+ (or ε2+d2) represent the dielectric constant and thickness of the gate insulating film (or InP layer). When the electric field in the lateral direction (source/drain direction) is weak,
The device is configured such that the channel is formed on the InGaAs surface in contact with InP. At this time, in order to prevent a new channel from being formed on the InP surface in contact with the gate insulating film, it is desirable that the condition E2d2<ΔEc be satisfied.
ここに、ΔE、はI nGaAsとInP間のc。Here, ΔE is the c between InGaAs and InP.
nduction band discont
inuityを表わす。production band discont
Represents intuitiveness.
すなイつち、 である。Sunaitsuchi, It is.
(1)式から明らかなように、本実施例に係るInP層
31の厚みは動作電圧にもよるが、たかだか1000人
程度とすることが望ましい。本素子のソース・ドレイン
間に第1図に示すような電界を印加すると、ます電子は
InGaAsチャネル層をソースからドレインに向かっ
て走行していくが、I nGaAsに対して電子速度の
ピーク値を与える電界強度(第2図のEl)+ )の位
置の付近では、r−L遷移に相当するエネルギを得てホ
ットエレクトロンとなっており、本素子構造の場合には
Lへの遷移よりはむしろ、ゲート電界に引かれてInP
/ゲート絶縁膜界面へと遷移し、そこをドレインに向か
って流れて、信号電流に寄与する。このとき、InPの
El)2より大きな電界領域においては速度低下を生じ
るが、InGaASnGaAs層比べて、その影響はず
っと小さい。As is clear from equation (1), the thickness of the InP layer 31 according to this embodiment depends on the operating voltage, but is preferably about 1000 at most. When an electric field as shown in Figure 1 is applied between the source and drain of this device, electrons travel through the InGaAs channel layer from the source to the drain, but the peak value of the electron velocity with respect to InGaAs is Near the position of the applied electric field strength (El) , InP is attracted by the gate electric field.
/transitions to the gate insulating film interface, flows there toward the drain, and contributes to the signal current. At this time, although the speed decreases in an electric field region larger than that of InP El)2, the effect is much smaller than that of the InGaASnGaAs layer.
本実施例のFETの製法を第3図を参照して説明する。The manufacturing method of the FET of this example will be explained with reference to FIG.
半絶縁性のInP基板33上に、MOCVD、ハライド
VPEなど高純度結晶成長が可能な方法を用い、まず膜
厚0.2〜1μmのInGaAs層32を、InP基板
33に格子整合させて形成する。本結晶層はデバイス動
作速度を高めるためにできるだけ高純度、好ましくはn
<101s〜10110l6’であることが望ましい。First, an InGaAs layer 32 with a thickness of 0.2 to 1 μm is lattice-matched to the InP substrate 33 and formed on the semi-insulating InP substrate 33 using a method capable of high-purity crystal growth such as MOCVD or halide VPE. . This crystal layer should be as pure as possible, preferably n
<101s to 10110l6' is desirable.
次に、膜厚<100OAのInP層を引き続き形成する
。次に、ゲート絶縁膜34は光CVD、 ECRプラ
ズマCVD法など低照射損傷性の低温絶縁膜形成法を用
い、S to2、S i N、PON。Next, an InP layer with a thickness <100 OA is subsequently formed. Next, the gate insulating film 34 is formed by using a low-temperature insulating film forming method with low radiation damage, such as photo-CVD or ECR plasma CVD, to form S to 2, Si N, or PON.
PAsO等あるいはその複合膜を形成する。次に、ゲー
ト電極35をEB蒸希法によるAll、あるいはスパッ
タ法によるWなどを用いて形成し、さらにフォトリソグ
ラフィを用いて所定の素子寸法L/Wを有する形状に加
工する。本素子のソース・ドレイン部36.37は好適
には、第3図に点線38で示したごとく、Si+イオン
注入などの方法で不純物ドープした後、ゲート絶縁膜3
4の当該部分をエツチングにより除去し、AuGe等に
よる電極を真空蒸着法とリフトオフ法との取合せにより
形成して素子を完成する。A film of PAsO or a composite film thereof is formed. Next, the gate electrode 35 is formed using Al using the EB dilution method or W using the sputtering method, and further processed into a shape having a predetermined element dimension L/W using photolithography. The source/drain portions 36 and 37 of this device are preferably doped with impurities by a method such as Si+ ion implantation, as indicated by dotted lines 38 in FIG.
The corresponding portion of 4 is removed by etching, and an electrode made of AuGe or the like is formed by a combination of vacuum evaporation method and lift-off method to complete the device.
なお、本実施例ではゲート絶縁膜として非晶質膜を用い
たが、InA(LP、GaAllAs等ワイドギャップ
の■−■化合物半導体を用いることも可能である。Although an amorphous film is used as the gate insulating film in this embodiment, it is also possible to use a wide-gap compound semiconductor such as InA (LP, GaAllAs, etc.).
次に、第5図、第6図および第7図に、本発明の他の実
施例のバンドプロフィル(但し、ゲート電圧を印加して
いない場合)を示す。第5図は、第3図と同様MISF
ETfM造を有するが、InGaAs層52とInP層
51の間に、これらと格子整合するInAQAsnGa
As層53ている。この層は、特に高いゲート電圧で素
子動作させる場合に、ホット化していない電子がI n
GaAs層からInP層に移行して、新たなチャネル層
が形成するのを阻止するバリア層として機能する。第6
図は、第5図と同様の構造において、InGaAs層6
2をInAQAsnGaAs層63んだ量子井戸となし
、その井戸幅によってサブバンドのレベルを決定し、I
nP層61への遷移を制御する。Next, FIGS. 5, 6, and 7 show band profiles of other embodiments of the present invention (provided that no gate voltage is applied). Figure 5 shows MISF as in Figure 3.
Although it has an ETfM structure, InAQAsnGa which lattice matches the InGaAs layer 52 and the InP layer 51 is placed between the InGaAs layer 52 and the InP layer 51.
There is an As layer 53. In this layer, especially when the device is operated at a high gate voltage, the unhot electrons become In
It functions as a barrier layer that transitions from the GaAs layer to the InP layer and prevents the formation of a new channel layer. 6th
The figure shows an InGaAs layer 6 in a structure similar to that in FIG.
2 is a quantum well with an InAQAsnGaAs layer 63, and the subband level is determined by the well width.
Controls transition to nP layer 61.
第7図は、I nGaAs層72とInP層71からな
る積層活性層の上に、これらと格子整合するInAl1
As層73を有し、その表面に金属電極75を設けてシ
ョットキ構造としたものであり、MISFETにおいて
問題となるゲート絶縁膜/半導体活性層間界面の不安定
性を回避して、安定動作を可能にする点に特徴がある。FIG. 7 shows a layer of InAl1 that is lattice-matched to the laminated active layer consisting of an InGaAs layer 72 and an InP layer 71.
It has an As layer 73 and a metal electrode 75 on its surface to form a Schottky structure, which avoids the instability of the gate insulating film/semiconductor active layer interface, which is a problem in MISFETs, and enables stable operation. It is characterized by the fact that
なお、本実施例では、1nP、InGaAs。In addition, in this example, 1nP, InGaAs.
InA之Asなどの格子整合系について述べたが、歪超
格子など不整合系の半導体薄層を併用して、素子を構成
することも勿論可能である。Although a lattice-matched system such as InA or As has been described, it is of course possible to construct an element using a mismatched semiconductor thin layer such as a strained superlattice.
[発明の効果]
以上説明したとおり、本発明に係る電界効果半導体素子
は、エネルギギャップの異なる複数個の■−■化合物を
積層してなる半導体活性層を有し、それらの半導体間に
ホットエレクトロンによる実空間遷移を生ぜしめること
により、低電界および高電界の両領域において電子の高
速走行を可能とする。したがって、従来のGaAsFE
T等に比べて高速動作が可能となる。また、大電圧振幅
、高駆動能力あるいは大出力等の高速デバイスを構成で
きる。さらに、エネルギギャップEgの異なる複数個の
■−■化合物の組合わせにより、超高速動作に適した二
次元電子ガス等を利用した高性能のトランジスタを形成
できる。[Effects of the Invention] As explained above, the field effect semiconductor device according to the present invention has a semiconductor active layer formed by stacking a plurality of ■-■ compounds with different energy gaps, and hot electrons are generated between these semiconductors. By creating a real space transition due to Therefore, conventional GaAsFE
High-speed operation is possible compared to T and the like. Furthermore, high-speed devices with large voltage amplitude, high driving ability, or large output can be constructed. Furthermore, by combining a plurality of 1-2 compounds with different energy gaps Eg, it is possible to form a high-performance transistor using a two-dimensional electron gas suitable for ultra-high-speed operation.
第1図は本発明の詳細な説明するための図である。第2
図は各種半導体素子における電子速度の電界強度依存性
を説明する図である。第3図は本発明の一実施例のMI
S型電界効果トランジスタの構造を示す断面図である。
第4図はそのゲート電極に正電圧を印加した場合のエネ
ルギバンド図を示す。第5〜第7図は本発明の他の実施
例の電界効果トランジスタのエネルギバンド図を示ス。
図において、11.32は低電界において高移動度を有
する第1の半導体層、12.31は高電界において高走
行速度を有する第2の半導体層である。
集10 篇20
算3四 集40
II、32: (%電y+=s=t4uzTh&t*
Vb オ19キ傳4乞層12.31 高tJ)t
=お・・7市足は速度で肩りラオ2つ半導1高70FIG. 1 is a diagram for explaining the present invention in detail. Second
The figure is a diagram illustrating the dependence of electron velocity on electric field strength in various semiconductor devices. FIG. 3 shows MI of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the structure of an S-type field effect transistor. FIG. 4 shows an energy band diagram when a positive voltage is applied to the gate electrode. 5 to 7 show energy band diagrams of field effect transistors according to other embodiments of the present invention. In the figure, 11.32 is a first semiconductor layer that has high mobility in a low electric field, and 12.31 is a second semiconductor layer that has a high traveling speed in a high electric field. Collection 10 Volume 20 Arithmetic 34 Volume 40 II, 32: (%Electrification y+=s=t4uzTh&t*
Vb O19kiden4beggar12.31 hight
= Oh... 7 city legs are 2 shoulders high and 1 high 70 in speed.
Claims (1)
活性層を有する電界効果半導体素子であって、 前記活性層は低電界において高移動度を有する第1の半
導体層と、高電界において高走行速度を有する第2の半
導体層とを含み、 前記第1および第2半導体層間でホットエレクトロンに
よるキャリアの実空間遷移を行なわせるようにした電界
効果半導体素子。(1) A field effect semiconductor device having an active layer formed by laminating a plurality of III-V compound semiconductor layers, the active layer comprising a first semiconductor layer having high mobility in a low electric field and a first semiconductor layer having high mobility in a high electric field. a second semiconductor layer having a high traveling speed in the field-effect semiconductor device, wherein real space transition of carriers by hot electrons is performed between the first and second semiconductor layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30106787A JPH01143264A (en) | 1987-11-28 | 1987-11-28 | Field effect semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30106787A JPH01143264A (en) | 1987-11-28 | 1987-11-28 | Field effect semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01143264A true JPH01143264A (en) | 1989-06-05 |
Family
ID=17892468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30106787A Pending JPH01143264A (en) | 1987-11-28 | 1987-11-28 | Field effect semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01143264A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04181743A (en) * | 1990-11-16 | 1992-06-29 | Sumitomo Electric Ind Ltd | Field-effect transistor |
US5151757A (en) * | 1990-10-26 | 1992-09-29 | Nippon Telegraph And Telephone Corporation | Heterojunction field-effect transistor |
JP2001185559A (en) * | 1999-12-27 | 2001-07-06 | Natl Inst Of Advanced Industrial Science & Technology Meti | Negative resistance field-effect transistor |
JPWO2009081584A1 (en) * | 2007-12-26 | 2011-05-06 | 日本電気株式会社 | Semiconductor device |
-
1987
- 1987-11-28 JP JP30106787A patent/JPH01143264A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151757A (en) * | 1990-10-26 | 1992-09-29 | Nippon Telegraph And Telephone Corporation | Heterojunction field-effect transistor |
JPH04181743A (en) * | 1990-11-16 | 1992-06-29 | Sumitomo Electric Ind Ltd | Field-effect transistor |
JP2001185559A (en) * | 1999-12-27 | 2001-07-06 | Natl Inst Of Advanced Industrial Science & Technology Meti | Negative resistance field-effect transistor |
JPWO2009081584A1 (en) * | 2007-12-26 | 2011-05-06 | 日本電気株式会社 | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6127681A (en) | Field effect transistor having channel part of superlattice construction | |
EP0514079B1 (en) | High electron mobility transistor and method of manufacture | |
JPH024140B2 (en) | ||
JPH084138B2 (en) | Semiconductor device | |
JPH01143264A (en) | Field effect semiconductor element | |
JPH0312769B2 (en) | ||
JP2629408B2 (en) | Field effect transistor and method of manufacturing the same | |
US5751029A (en) | Field-effect semiconductor device having heterojunction | |
JPS61156773A (en) | Heterojunction semiconductor device | |
US5945695A (en) | Semiconductor device with InGaP channel layer | |
JP2701583B2 (en) | Tunnel transistor and manufacturing method thereof | |
JP2855775B2 (en) | Field effect transistor | |
JP3237458B2 (en) | Semiconductor wafer and semiconductor device | |
JPH025438A (en) | Insulated-gate field-effect transistor | |
JPS61276269A (en) | Hetero-junction type field-effect transistor | |
JPH0311767A (en) | Velocity modulation type field-effect transistor | |
JPS60235476A (en) | Semiconductor device | |
JP2710312B2 (en) | Semiconductor device | |
JPH09102600A (en) | Field effect transistor and manufacture thereof | |
JP2592161B2 (en) | Quantum interference transistor | |
JPS6255316B2 (en) | ||
JPH05102198A (en) | Pseudo-one-dimensional field-effect transistor and its manufacture | |
JPH0513462A (en) | Compound semiconductor structure | |
JP3323008B2 (en) | Semiconductor device | |
JPS60145671A (en) | Integration type semiconductor device |