JPH01142042A - Manufacture of magnesium-lithium alloy compact - Google Patents

Manufacture of magnesium-lithium alloy compact

Info

Publication number
JPH01142042A
JPH01142042A JP30245287A JP30245287A JPH01142042A JP H01142042 A JPH01142042 A JP H01142042A JP 30245287 A JP30245287 A JP 30245287A JP 30245287 A JP30245287 A JP 30245287A JP H01142042 A JPH01142042 A JP H01142042A
Authority
JP
Japan
Prior art keywords
alloy
compact
molded body
magnesium
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30245287A
Other languages
Japanese (ja)
Inventor
Eiji Horikoshi
堀越 英二
Tsutomu Iikawa
勤 飯川
Yoshihiko Seyama
瀬山 喜彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30245287A priority Critical patent/JPH01142042A/en
Publication of JPH01142042A publication Critical patent/JPH01142042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Mg-Li alloy compact with the desired specific strength in high yield by forming a porous press compact from an Mg powder, impregnating the above with molten Li bath, and then heating and alloying the above compact. CONSTITUTION:At the time of subjecting an Mg powder to press compacting, a compact of about 4-45% porosity is prepared by changing compacting pressure. This compact is immersed in molten Li heated to a temp. (about 200 deg.C) right above the m.p. of Li under an inert-gas atmosphere, by which the pores of the compact are impregnated with Li so as to be formed into a composite body. Subsequently, this Mg-Li composite body is heated to a temp. of the m.p. of the Mg-Li alloy or below, by which Mg atoms. and Li atoms. are allowed to react to undergo alloying. By this method, the Mg-Li alloy with the desired composition ratio is prepared and, as a result, the compact with the desired specific strength can be obtained.

Description

【発明の詳細な説明】 〔概要〕 軽量で比強度が優れているマグネシウム・リチウム合金
の製造に関し、 組成制御の精度を向上することを目的とし、マグネシウ
ム粉末をプレス成形して多孔質の成形体を作り、該成形
体を不活性ガス雰囲気または水素雰囲気中のリチウム溶
融浴に浸漬して前記多孔質成形体の中にリチウムを含浸
させた後、該マグネシウム・リチウム複合体を該合金の
融点以下の温度で加熱し、合金化することによりマグネ
シウム・リチウム合金成形体を構成する。
[Detailed Description of the Invention] [Summary] With the aim of improving the accuracy of composition control in the production of magnesium-lithium alloys that are lightweight and have excellent specific strength, magnesium powder is press-molded to form porous compacts. The porous molded body is impregnated with lithium by immersing the molded body in a lithium molten bath in an inert gas atmosphere or hydrogen atmosphere, and then the magnesium-lithium composite is heated to a temperature below the melting point of the alloy. A magnesium-lithium alloy molded body is formed by heating and alloying at a temperature of .

〔産業上の利用分野〕[Industrial application field]

本発明は軽量で比強度の大きいマグネシウム・リチウム
合金成形体の製造方法に関する。
The present invention relates to a method for manufacturing a magnesium-lithium alloy compact that is lightweight and has high specific strength.

マグネシウム・リチウム(以下Mg−Li)合金は実用
金属材料の中で最も軽量で比強度が大きいため航空機器
に限らず電子機器においても軽量を必要とする用途に使
用されている。
Magnesium-lithium (hereinafter referred to as Mg-Li) alloy is the lightest among practical metal materials and has the highest specific strength, so it is used not only in aircraft equipment but also in electronic equipment that requires light weight.

この用途は例えば磁気ディスクにおいて磁気ヘッドを支
えるヘッドアームや高速プリンタのキャリーなどである
This application is, for example, a head arm that supports a magnetic head in a magnetic disk, a carry for a high-speed printer, etc.

なお、比強度とはその材料の単位重量あたりの引張り強
度を云う。
Note that specific strength refers to the tensile strength per unit weight of the material.

ここで、比強度はMgとLiとの組成比により異なるの
で、用途に応じて正しい組成比の合金を作ることが必要
である。
Here, since the specific strength varies depending on the composition ratio of Mg and Li, it is necessary to make an alloy with the correct composition ratio depending on the application.

〔従来の技術〕[Conventional technology]

Mg−Li合金め製法としては従来より鋳造法が用いら
れている。
Casting has been conventionally used as a manufacturing method for Mg-Li alloys.

然し、Mgの融点が650℃、Liの融点は180℃と
大きく離れており、またLiは極めて活性な金属であり
、蒸発し易いため鋳造法により目的の組成比の合金を精
度よく形成することが難しい。
However, the melting point of Mg is 650°C and the melting point of Li is 180°C, which are significantly different from each other, and Li is an extremely active metal that evaporates easily, so it is difficult to accurately form an alloy with the desired composition ratio using a casting method. is difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

Mg−Li合金は実用金属材料の中で最も軽量で比強度
の高い材料であるため一般に用いられているが、必要と
する組成比のものを安定に製造できないことが問題であ
る。
Mg-Li alloys are commonly used because they are the lightest and have the highest specific strength among practical metal materials, but the problem is that they cannot be stably manufactured with the required composition ratio.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題はMg粉末をプレス成形して多孔質の成形体
を作り、該成形体を不活性ガス又は水素(Hz)ガス雰
囲気中のLi溶融浴に浸漬して前記多孔質成形体の中に
Liを含浸させた後、該Mg−Li複合体を該合金の融
点以下の温度で加熱し、合金化するMg−Li合金成形
体の製造方法により解決することができる。
The above problem can be solved by press-molding Mg powder to make a porous molded body, immersing the molded body in a Li molten bath in an inert gas or hydrogen (Hz) gas atmosphere, and then inserting the molded body into the porous molded body. The problem can be solved by a method for manufacturing an Mg-Li alloy molded body, in which the Mg-Li composite is impregnated with Li and then alloyed by heating the Mg-Li composite at a temperature below the melting point of the alloy.

〔作用〕[Effect]

従来の鋳造法によってMg−Li合金を製造する場合に
所定の組成比の合金ができにくい理由は液相一液相反応
を用いるからである。
The reason why it is difficult to produce an alloy with a predetermined composition ratio when manufacturing a Mg-Li alloy by the conventional casting method is because a liquid phase-liquid phase reaction is used.

すなわち、Mgの融点が650℃、Liの融点が180
℃と離れ過ぎているのに加えてLiが活性であることが
らLiに非常に蒸発し易くなっているためである。
That is, the melting point of Mg is 650°C, and the melting point of Li is 180°C.
This is because the temperature is too far away from the temperature and Li is active, making it very easy to evaporate into Li.

そこで、本発明は固相一液相反応と固相−固相反応を組
み合わせ、無理のない状態で合金化を行うことにより所
望の組成比の合金を得るものである。
Therefore, the present invention combines a solid phase-liquid phase reaction and a solid phase-solid phase reaction to obtain an alloy having a desired composition ratio by performing alloying under a reasonable condition.

その方法として本発明は次の工程をとる。As a method for this purpose, the present invention takes the following steps.

■ Mgのプレス成形体を作る。■Make a Mg press molded body.

この際、プレス圧を変えることにより多孔度(Poro
sity)を4%〜45%の範囲に変えることができる
At this time, by changing the press pressure, the porosity (Poro
4% to 45%.

■ このMg成形体を約200℃とLiの融点直上の温
度に加熱され溶融しているLiの融液中に浸漬しし、M
g成形体の穴の中CLiを含浸させて複合体を作る。(
固相一液相反応) ■ かかるMg−Li複合体をMg−Li’合金の融点
以下の温度で加熱し、Mg原子とLi原手とを反応させ
て合金化する。(固相−固相反応) このような方法をとることにより所望の組成比のMg−
Li合金を得るものである。
■ This Mg molded body is immersed in a Li melt that has been heated to approximately 200°C, just above the melting point of Li, and
g CLi is impregnated into the holes of the molded body to form a composite. (
(Solid Phase-Liquid Phase Reaction) (2) The Mg-Li composite is heated at a temperature below the melting point of the Mg-Li' alloy to cause the Mg atoms and the Li base to react to form an alloy. (Solid phase-solid phase reaction) By using such a method, Mg-
This is to obtain a Li alloy.

〔実施例〕〔Example〕

−200メツシユのMg粉末を大気中でプレス圧を変え
て成形することにより4種類の多孔質M、成形体を作っ
た。
-4 types of porous M and molded bodies were made by molding Mg powder of -200 mesh in the air while changing the pressing pressure.

こ−で、0.5ton/ cm”でプレス成形する場合
は相対密度が55%の成形体を、また4 ton/cm
”の条件でプレス成形すると相対密度が96%の成形体
を得ることができる。
In this way, when press forming at 0.5 ton/cm", the molded body has a relative density of 55%, and when press forming at 4 ton/cm"
If press molding is carried out under the following conditions, a molded article with a relative density of 96% can be obtained.

かかる成形体をAr雰囲気中で200 ”cで溶融して
いるLi浴の中に浸漬することによりLi含有量が1〜
20重景%の複合体を得ることができた。
By immersing such a molded body in a molten Li bath at 200"C in an Ar atmosphere, the Li content can be reduced to 1~1.
A composite with a density of 20% was obtained.

次に、この複合体を300〜500℃の温度で3時間に
亙って静気流中で熱処理して合金化した。
The composite was then heat treated in a static air flow at a temperature of 300-500° C. for 3 hours to form an alloy.

表はこのようにして製造したMg−Li合金の組成と比
強度の関係を示すものである。
The table shows the relationship between the composition and specific strength of the Mg-Li alloy produced in this way.

表 なお、参考までに代表的なMg鋳造材であるMg−6%
A7!−1%Znの密度は1.81.引張り強さは7.
6゜従って比強度は4.20であり、本発明に係るMg
−Li合金の比強度は優れている。
For reference, the table shows Mg-6%, which is a typical Mg casting material.
A7! -The density of 1% Zn is 1.81. Tensile strength is 7.
6° Therefore, the specific strength is 4.20, and the Mg according to the present invention
-The specific strength of the Li alloy is excellent.

−〔発明の効果〕 本発明によれば、低温での合金化が可能なのでMg−L
i合金成形体の組成の制御が容易となり、これにより所
望の比強度の成形体を歩留まり良く製造することができ
る。
- [Effects of the Invention] According to the present invention, since alloying is possible at low temperatures, Mg-L
The composition of the i-alloy molded body can be easily controlled, thereby making it possible to produce a molded body with a desired specific strength at a high yield.

Claims (1)

【特許請求の範囲】[Claims]  マグネシウム粉末をプレス成形して多孔質の成形体を
作り、該成形体を不活性ガス雰囲気中のリチウム溶融浴
に浸漬して前記多孔質成形体の中にリチウムを含浸させ
た後、該マグネシウム・リチウム複合体を該合金の融点
以下の温度で加熱し、合金化することを特徴とするマグ
ネシウム・リチウム合金成形体の製造方法。
Magnesium powder is press-molded to make a porous molded body, and the molded body is immersed in a lithium molten bath in an inert gas atmosphere to impregnate lithium into the porous molded body. A method for manufacturing a magnesium-lithium alloy molded body, which comprises heating a lithium composite at a temperature below the melting point of the alloy to form an alloy.
JP30245287A 1987-11-30 1987-11-30 Manufacture of magnesium-lithium alloy compact Pending JPH01142042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30245287A JPH01142042A (en) 1987-11-30 1987-11-30 Manufacture of magnesium-lithium alloy compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30245287A JPH01142042A (en) 1987-11-30 1987-11-30 Manufacture of magnesium-lithium alloy compact

Publications (1)

Publication Number Publication Date
JPH01142042A true JPH01142042A (en) 1989-06-02

Family

ID=17909106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30245287A Pending JPH01142042A (en) 1987-11-30 1987-11-30 Manufacture of magnesium-lithium alloy compact

Country Status (1)

Country Link
JP (1) JPH01142042A (en)

Similar Documents

Publication Publication Date Title
US3235346A (en) Composite bodies comprising a continuous framework and an impregnated metallic material and methods of their production
RU2124418C1 (en) Method of producing composite materials
US3348967A (en) Process of making an article having a hard carbide, boride or silicide outer region
JP3446694B2 (en) Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object
FI91724C (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
KR20060035789A (en) Method for manufacturing components with a nickel base alloy as well as components manufactured therewith
US2674542A (en) Method for producing hard surfaced titanium
JPH01142042A (en) Manufacture of magnesium-lithium alloy compact
US4803046A (en) Method for making targets
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JPH05105979A (en) High density sintered zn-ni alloy and its production
US3907514A (en) Aluminum carbon composite seal material
US4088480A (en) Process for preparing refractory metal-silver-cadmium alloys
CN107974597A (en) The magnesium scandium alloy and its processing technology of a kind of die casting
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
US2950979A (en) Carbon structure and spray nozzle formed therefrom
JPS6043894B2 (en) Process for manufacturing composite metals consisting of tungsten, silver and copper
CN108500258B (en) Preparation method of high-performance carbon steel
DE60039384D1 (en) Process for the production of metallic composite material
RU2263089C1 (en) Method of production of a composite material
JPH01142041A (en) Manufacture of sintered compact of magnesium-lithium alloy
JPS58136735A (en) Manufacture of carbon fiber reinforced composite aluminum material
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS61159539A (en) Manufacture of shape memory alloy