JPS60251175A - Manufacture of formed body made from silicon carbide and carbon - Google Patents

Manufacture of formed body made from silicon carbide and carbon

Info

Publication number
JPS60251175A
JPS60251175A JP59106810A JP10681084A JPS60251175A JP S60251175 A JPS60251175 A JP S60251175A JP 59106810 A JP59106810 A JP 59106810A JP 10681084 A JP10681084 A JP 10681084A JP S60251175 A JPS60251175 A JP S60251175A
Authority
JP
Japan
Prior art keywords
carbon
molded body
silicon
silicon carbide
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59106810A
Other languages
Japanese (ja)
Other versions
JPH0256307B2 (en
Inventor
井澤 一
谷口 和良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP59106810A priority Critical patent/JPS60251175A/en
Publication of JPS60251175A publication Critical patent/JPS60251175A/en
Publication of JPH0256307B2 publication Critical patent/JPH0256307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、耐熱材、耐摩耗材あるいは耐薬品材等として
各種の産業分野において利用され得る炭化ケイ素および
炭素よりなる成形体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a molded article made of silicon carbide and carbon that can be used in various industrial fields as a heat-resistant material, wear-resistant material, chemical-resistant material, etc. It is something.

(ロ)背景技術 炭化ケイ素は、硬度が高く成形が困難である。(b) Background technology Silicon carbide has high hardness and is difficult to mold.

そのため、所望形状の炭化ケイ素成形体を製造する場合
には、炭化ケイ素粉末を出発原料とする焼結法が一般に
採用されている。ところが、焼結法による炭化ケイ素成
形体の製造においては加圧焼結による場合、炭化ケイ素
粉末を型内で高温に加圧し強大な力で圧縮しなければな
らないため、非常に大がかりな設備が必要になるという
問題がある。また、かかる方法による場合 炭化ケイ素
粉末中独では焼結しにくいため、焼結助剤としてB、A
I、 C等あるいはそれらの化合物等を誹加する必要が
あるがこのような焼結助剤を加えると、高温における強
度劣化を生じ、本来の炭化ケイ素としての耐熱性を保ち
難いという不都合かある。
Therefore, when producing a silicon carbide molded body of a desired shape, a sintering method using silicon carbide powder as a starting material is generally employed. However, in the production of silicon carbide molded bodies using the sintering method, if pressure sintering is used, the silicon carbide powder must be heated to a high temperature in a mold and compressed with great force, which requires extremely large-scale equipment. There is a problem with becoming. In addition, when using this method, it is difficult to sinter with silicon carbide powder, so B and A are used as sintering aids.
It is necessary to modify I, C, etc. or their compounds, but adding such a sintering aid causes strength deterioration at high temperatures, making it difficult to maintain the original heat resistance of silicon carbide. .

また、炭化成形体を基材とし、その表面に炭化ケイ素を
被覆させるようにした方法もあるが、これは気相反応を
利用したケイ素化合物蒸気と炭素基材の表層部との反応
による表面の炭化ケイ素化、あるいは、ケイ素化合物と
炭素化合物の気相反応による生成炭化ケイ素の炭素基村
上への被覆といった、表面部における炭化ケイ素化に関
するものである。しかして、このような方法では炭素基
材表面の厚さ11以下程度の部分しか炭化ケイ素化する
ことができない。
There is also a method in which a carbonized molded body is used as a base material and its surface is coated with silicon carbide; It relates to silicon carbide formation on the surface, or coating of silicon carbide produced by a gas phase reaction between a silicon compound and a carbon compound onto a carbon group. However, with such a method, only a portion of the surface of the carbon substrate having a thickness of about 11 or less can be converted into silicon carbide.

そこで、最近本発明者はこれら従来技術と発想を異にし
て、炭化ケイ素(および炭素よりなる)成形体を得るた
めの新しい製造方法を開発し、提案している(特願昭5
8−25291号)。すなわち、この方法は、あらかじ
め所望の形状に成形した炭素成形体を含ケイ素材ととも
に、該含ケイ素材の融点以上の高温における酸素の影響
を受けない不活性雰囲気中に配置し、前記含ケイ素材を
前記炭素成形体に浸透反応させて該炭素成形体を略同形
状の炭化ケイ素および炭素よりなる成形体を得るように
したものであって、比較的簡単な設備で不純物の少ない
炭化ケイ素および炭素よりなる複合成形体が容易に造ら
れる特徴を有し、従来の方法に代わり得る好適な製造方
法を提供することができるものである。
Therefore, the present inventor has recently developed and proposed a new manufacturing method for obtaining molded bodies of silicon carbide (and carbon), differing from these conventional techniques (Japanese patent application No. 5
No. 8-25291). That is, in this method, a carbon molded body previously formed into a desired shape is placed together with a silicon-containing material in an inert atmosphere that is not affected by oxygen at a high temperature higher than the melting point of the silicon-containing material. is permeated into the carbon molded body to obtain a molded body made of silicon carbide and carbon having substantially the same shape as the carbon molded body, and silicon carbide and carbon with few impurities can be obtained using relatively simple equipment. The present invention has the characteristic that a composite molded article consisting of the following can be easily produced, and can provide a suitable manufacturing method that can replace conventional methods.

ところで、本発明者の研究によると、この新しい製造方
法における問題点として、含ケイ素材の浸透反応後に得
られる複合成形体中の炭化ケイ素の割合が比較的低い水
準で飽和してしまう不都合か知見されている。つまり、
この方法によると、高温で溶融した含ケイ素材が炭素材
料(成形体)の空隙中に浸透していき、そこで炭素と反
応して炭化ケイ素を生成することになるのであるが、こ
の際反応により体積膨張(約2,4倍)を引き起こして
成形体中の空隙を塞ぎ、この結果それ以上の浸透反応が
抑制されて炭化ケイ素化率の増大に限界を生じているこ
とである。そして、この炭化ケイ素化率は、元の炭素材
料(炭素成形体)のもつ連続した空隙の割合に依存する
ものであるが、従前のこの種製造方法によると、炭化ケ
イ素の割合がモル比で概ね0.3程度以下のものしか得
られない実情にある。
By the way, according to the research of the present inventor, one of the problems with this new manufacturing method is that the proportion of silicon carbide in the composite molded article obtained after the infiltration reaction of the silicon-containing material is saturated at a relatively low level. has been done. In other words,
According to this method, the silicon-containing material melted at high temperature penetrates into the voids of the carbon material (molded body), where it reacts with carbon to produce silicon carbide. This causes volumetric expansion (approximately 2.4 times) to close the voids in the molded body, and as a result, further infiltration reaction is suppressed, putting a limit on the increase in the silicon carbide conversion rate. This silicon carbide conversion rate depends on the proportion of continuous voids in the original carbon material (carbon compact), but according to the conventional manufacturing method of this type, the proportion of silicon carbide is The actual situation is that only about 0.3 or less can be obtained.

(ハ)目的 本発明は、かかる問題点に着目してなされたものであり
、その目的とするところは、先の本発明者の提案に楳る
炭化ケイ素および炭素よりなる成形体の製造方法を改良
して、この種製造方法が固有にもつ特徴を具備しつつ、
特に反応により得られる成形体中の炭化ケイ素の割合を
広範囲に亘り任意に制御できるようにすることにある。
(c) Purpose The present invention has been made in view of these problems, and its purpose is to develop a method for manufacturing a molded body made of silicon carbide and carbon based on the previous proposal of the present inventors. While improving and incorporating the characteristics inherent to this type of manufacturing method,
In particular, the object is to be able to arbitrarily control the proportion of silicon carbide in a molded body obtained by reaction over a wide range.

(ニ)構成 本発明は、この目的を達成するために、所望の形状に成
形した炭素成形体を、400〜800℃の温度で緩やか
に酸化して軽量多孔化し、この軽量多孔化された炭素成
形体を含ケイ素材とともに、該含ケイ素材の融点以上の
高温における酸素の影響を受けない不活性雰囲気中に配
置し、前記含ケイ素材を前記炭素成形体に浸透反応させ
て元の炭素成形体と略同形状の炭化ケイ素および炭素よ
りなる成形体を得ることを特徴とする。
(d) Structure In order to achieve this object, the present invention makes a carbon molded body molded into a desired shape mildly oxidized at a temperature of 400 to 800°C to make it lightweight and porous, and this lightweight and porous carbon The molded body is placed together with a silicon-containing material in an inert atmosphere that is not affected by oxygen at a high temperature above the melting point of the silicon-containing material, and the silicon-containing material is allowed to penetrate and react with the carbon molded body to restore the original carbon molding. The present invention is characterized by obtaining a molded body made of silicon carbide and carbon that has substantially the same shape as the body.

本発明は、まずその第1段階として、あうかしめ所望の
形状に成形しである炭素材料(炭素成形体)を400〜
600°Cの温度で緩やかに酸化して、最初の形状を保
持しつつ軽量多孔化し、任意のかさ密度(空隙率)を有
する成形体を得るようにする。すなわち、この温度範囲
で緩やかに酸化するようにすると、炭素成形体の軽量多
孔化が時間の関数として進行し、酸化温度と酸化時間を
制御することにより、任意のかさ密度を有するものに仕
上げることかできるものである。ここに、酸化温度の上
眼を600℃としたのは、これを超えると内部拡散酸化
から表面酸化に酸化形式が変遷し、最初の炭素成形体の
形状を保ちつつ空隙率を調節することができなくなるた
めである。また、酸化温度の下限を400℃としたのは
、主として酸化の速度を確保するためである。
The first step of the present invention is to caulk and mold a carbon material (carbon molded body) into a desired shape.
It is oxidized slowly at a temperature of 600°C to make it lightweight and porous while retaining its original shape, and to obtain a molded body having an arbitrary bulk density (porosity). In other words, if oxidation is performed slowly within this temperature range, the carbon molded body will become lightweight and porous as a function of time, and by controlling the oxidation temperature and oxidation time, it can be finished with any desired bulk density. It is something that can be done. The reason why the oxidation temperature was set at 600°C is that when this temperature is exceeded, the oxidation type changes from internal diffusion oxidation to surface oxidation, making it possible to adjust the porosity while maintaining the initial shape of the carbon molded body. This is because it becomes impossible to do so. Furthermore, the lower limit of the oxidation temperature was set at 400° C. mainly to ensure the oxidation rate.

次に、第2段階として、上記第1段階で軽重、多孔化さ
れ、かさ密度(空隙率)を任意に調節した炭素成形体を
、従前のこの種製造方法と同様のプロセスで炭化ケイ素
化する。すなわち、炭素成形体を含ケイ素材とともに、
該含ケイ素材の融点以−1−の高温における酸素の影響
を受けない不活性雰囲気中に配置し、前記含ケイ素材を
前記炭素成形体に浸透反応させて元の炭素成形体と略同
形状の、即ち略同−形状でがっ略同−寸法精度を有する
炭化ケイ素および炭素よりなる成形体を得るようにする
のである。
Next, as a second step, the carbon molded body that has been made light and heavy and porous in the first step and whose bulk density (porosity) has been arbitrarily adjusted is converted into silicon carbide by a process similar to the conventional manufacturing method of this type. . That is, a carbon molded body together with a silicon-containing material,
The silicon-containing material is placed in an inert atmosphere unaffected by oxygen at a high temperature above the melting point of the silicon-containing material, and the silicon-containing material is allowed to permeate and react with the carbon molded body, so that the shape is approximately the same as the original carbon molded body. In other words, molded bodies made of silicon carbide and carbon having approximately the same shape and approximately the same dimensional accuracy are obtained.

このようにして、第1段階で予めかさ密度を調節した炭
素成形体に含ケイ素材を浸透反応させるようにすると、
前述のように、炭化ケイ素化率が元の炭素成形体のもつ
空隙率に依存するものであ、るから、少なくとも必要な
量の含ケイ素材を浸透反応せしめることを条件として、
浸透反応より得られる複合成形体中の炭化ケイ素の割合
をその空隙率に対応する任意の値に制御することが可能
となる。
In this way, when the silicon-containing material is allowed to permeate and react with the carbon molded body whose bulk density has been adjusted in advance in the first step,
As mentioned above, the silicon carbide conversion rate depends on the porosity of the original carbon molded body, so on the condition that at least the necessary amount of the silicon-containing material is allowed to undergo an infiltration reaction,
It becomes possible to control the proportion of silicon carbide in the composite molded body obtained by the infiltration reaction to an arbitrary value corresponding to its porosity.

本発明において、成形に供する炭素材料としては、一般
の炭素材料ならばどのようなものでも使用できる。また
、含ケイ素材としては、粉末状あるいは小塊状の金属シ
リコン、シリコンを含んだ合金(例工ば、フェロシリコ
ン、チタンシリコン等)、あるいは、シリコンと他の金
属との混合物を使用する。そして、この含ケイ素材を度
禽゛成形体に浸透反応させるにあたっては、例えば、粉
末状の含ケイ素材を適自なバインダあるいは溶剤に分散
させたものを前記炭素成形体の表面に付着させ、あるい
は塗り″付けておく、また、炭素成形体が比較的小さな
ものである場合は、小塊状の含ケイ素材を炭素成形体に
載せておくだけでよい。このように含ケイ素材の炭素成
形体に対する初期の接触様態は゛、炭素成形体の形状や
大きさに合わせて、適宜選択する。
In the present invention, any general carbon material can be used as the carbon material for molding. Further, as the silicon-containing material, powdered or small-sized metallic silicon, an alloy containing silicon (eg, ferrosilicon, titanium silicon, etc.), or a mixture of silicon and other metals is used. In order to infiltrate and react this silicon-containing material into the carbon molded body, for example, a powdered silicon-containing material dispersed in a suitable binder or solvent is attached to the surface of the carbon molded body, Alternatively, if the carbon molded body is relatively small, it is sufficient to simply place a small lump of silicon-containing material on the carbon molded body. The manner of initial contact with the carbon material is appropriately selected depending on the shape and size of the carbon molded product.

また、前記第1段階に供する酸化装置については、炭素
成形体を緩やかに酸化させるために、少なくとも400
〜600℃の温度に維持できるものであれば、各種の炉
を使用することができる。一方、前記第2段階で浸透反
応の雰囲気作りに供する加熱装置については、通常の高
温加熱装置を用いればよい。すなわち、かかる加熱装置
としては、炉内の雰囲気を酸素の影響を受けない不活性
な状態(例えば、アルゴン、ヘリウム等)ニ保ち、かつ
前記炭素成形体を均一に加熱して前記含ケイ素材を溶融
状態に維持できるものであれば。
Furthermore, the oxidizing device used in the first stage has an oxidation rate of at least 400 ml in order to gently oxidize the carbon compact.
Various types of furnaces can be used as long as they can maintain temperatures between 600°C and 600°C. On the other hand, as the heating device used to create an atmosphere for the osmosis reaction in the second stage, a normal high temperature heating device may be used. That is, such a heating device maintains the atmosphere in the furnace in an inert state (for example, argon, helium, etc.) that is not affected by oxygen, and uniformly heats the carbon molded body to remove the silicon-containing material. as long as it can be maintained in a molten state.

やはりその炉の種別を問わない。Again, the type of furnace does not matter.

(ホ)実施例 以下、実施例を示して本発明を具体的に説明する。(e) Examples Hereinafter, the present invention will be specifically explained with reference to Examples.

かさ密度p = 1.47 g / cta’ cr)
 炭素成形体、(IOX40X 5 mm)を空気中で
550℃の温度の下に酸化処理すると、最初の形状を保
ったまま時間とともに軽量多孔化が進むことが確認され
た。下表に、処理日数と成形体のかさ密度の関係を示す
Bulk density p = 1.47 g / cta' cr)
It was confirmed that when a carbon molded body (IOX 40X 5 mm) was oxidized in air at a temperature of 550°C, it became lighter and more porous over time while maintaining its initial shape. The table below shows the relationship between the number of processing days and the bulk density of the molded body.

このように一定温度では、素材成形体のかさ密度は温度
の関数となることが判った。また、一定時間では、かさ
密度の関数となるが、このさい温度が600℃を超える
と酸化速度が過大となり、また表面酸化が大きくなるた
め、成形体に最初の形状を保ってないことが判った。し
たがって、酸化の時間と温度を制御することにより、任
意のかさ密度を有しかつ最初の形状を保持している炭素
成形体を得ることができた。
Thus, it was found that at a constant temperature, the bulk density of the molded material becomes a function of temperature. In addition, for a certain period of time, it is a function of bulk density, but if the temperature exceeds 600°C at this time, the oxidation rate becomes excessive and surface oxidation increases, so it was found that the molded product did not maintain its initial shape. Ta. Therefore, by controlling the oxidation time and temperature, it was possible to obtain a carbon molded body having an arbitrary bulk density and retaining its initial shape.

吹に、こうして得られた炭素成形体の表面に、金属シリ
コンを付着させ、高温加熱装置によりアルゴン気流中で
、1800℃の温度に加熱した。しかして、このような
条件下では、シリコンは溶融し、炭素成形体の空隙中に
浸透していくのが観察された。かさ冨度p = 0.8
 、1.0および1.3g/cm】の各炭素成形体に反
応させた結果、反応後における成形体中の炭化ケイ素の
割合は、モル比でそれぞれ0.85.0.75および0
.45であった。なお、これらの各反応成形体の粉末X
線回折を測定したところ、その組成は主に炭化ケイ素と
炭素であった。
Then, metallic silicon was attached to the surface of the carbon molded body thus obtained, and heated to a temperature of 1800° C. in an argon stream using a high-temperature heating device. However, under such conditions, silicon was observed to melt and penetrate into the voids of the carbon molded body. Bulk density p = 0.8
, 1.0 and 1.3 g/cm], the molar ratios of silicon carbide in the molded bodies after the reaction were 0.85, 0.75 and 0, respectively.
.. It was 45. In addition, powder X of each of these reaction compacts
Linear diffraction measurements revealed that the composition was mainly silicon carbide and carbon.

(へ)効果 以−にのように、本発明の製造方法では、炭素成形体に
含ケイ素材を浸透反応させて炭化ケイ素を生成するにあ
たり、あらかじめ炭素成形体に所定の酸化処理を施して
軽都多孔化し、そのかさ密度(空隙率)を任意に制御す
るようにしたものであるから、木発明者が先に提案した
製造方法の問題点を的確に解決して、浸透反応により得
られる炭化ケイ素および炭素よりなる成形体中の炭化ケ
イ素の割合を、広範囲に亘り、具体的にはモル比で03
〜1.0程度の範囲に亘り任意に制御することが可能で
ある・ なお、酸イヒ処理の工程を付加しても既述の特定の処理
条件に従う限り、出発成形体に対し、最終成形体が略同
形状を保つという利点をそのまま具備することになり、
上述の炭化ケイ素の割合を制御できるという改良点を除
いて、本発明は先に本発明者が提案した製造方法の特徴
をそのまま実現するものである。
(f) Effects As described above, in the manufacturing method of the present invention, when silicon carbide is produced by penetrating the carbon molded body with a silicon-containing material, the carbon molded body is subjected to a predetermined oxidation treatment in advance to reduce the weight. Since it is made porous and its bulk density (porosity) can be arbitrarily controlled, it accurately solves the problems of the manufacturing method previously proposed by the wood inventor, and carbonization obtained by osmosis reaction. The proportion of silicon carbide in the molded body made of silicon and carbon is varied over a wide range, specifically in a molar ratio of 0.3
It is possible to arbitrarily control the temperature within the range of ~1.0. Even if the acid immersion treatment step is added, as long as the specific processing conditions described above are followed, the final molded product will be lower than the starting molded product. This means that it retains the advantage of maintaining approximately the same shape,
The present invention directly realizes the features of the manufacturing method previously proposed by the present inventor, except for the above-mentioned improvement that the proportion of silicon carbide can be controlled.

代理人 弁理士 赤澤−博Agent: Patent Attorney Hiroshi Akazawa

Claims (1)

【特許請求の範囲】[Claims] 所望の形状に成形した炭素成形体を、400〜600°
Cの温度で緩やかに酸化して軽量多孔化し、この軽量多
孔化された炭素成形体を含ケイ素材とともに、該含ケイ
素材の融点以上の高温における酸素の影響を受けない不
活性雰囲気中に配置し、前記含ケイ素材を前記炭素成形
体に浸透反応させて元の炭素成形体と略同形状の炭化ケ
イ素および炭素よりなる成形体を得ることを特徴とする
炭化ケイ素および炭素よりなる成形体の製造方法。
The carbon molded body molded into the desired shape is heated at 400 to 600°.
Gently oxidize at a temperature of C to make it lightweight and porous, and place this lightweight and porous carbon molded body together with a silicon-containing material in an inert atmosphere that is not affected by oxygen at a high temperature above the melting point of the silicon-containing material. A molded body made of silicon carbide and carbon, characterized in that the silicon-containing material is permeated into the carbon molded body and reacted to obtain a molded body made of silicon carbide and carbon having approximately the same shape as the original carbon molded body. Production method.
JP59106810A 1984-05-24 1984-05-24 Manufacture of formed body made from silicon carbide and carbon Granted JPS60251175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106810A JPS60251175A (en) 1984-05-24 1984-05-24 Manufacture of formed body made from silicon carbide and carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106810A JPS60251175A (en) 1984-05-24 1984-05-24 Manufacture of formed body made from silicon carbide and carbon

Publications (2)

Publication Number Publication Date
JPS60251175A true JPS60251175A (en) 1985-12-11
JPH0256307B2 JPH0256307B2 (en) 1990-11-29

Family

ID=14443196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106810A Granted JPS60251175A (en) 1984-05-24 1984-05-24 Manufacture of formed body made from silicon carbide and carbon

Country Status (1)

Country Link
JP (1) JPS60251175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183413A (en) * 1988-01-16 1989-07-21 Ibiden Co Ltd Spring and production thereof
JPH01242408A (en) * 1988-03-23 1989-09-27 Toyo Tanso Kk Silicon carbide-graphite composite material and production thereof
WO1989009753A1 (en) * 1986-10-09 1989-10-19 Osaka Cement Co., Ltd. Process for producing molding composed of silicon carbide and carbon
WO1990001523A1 (en) 1988-08-12 1990-02-22 Ube Industries, Ltd. Carbide fibers with high strength and high modulus of elasticity and polymer composition used for their production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580714A (en) * 1978-12-04 1980-06-18 Kernforschungsanlage Juelich Method and apparatus for manufacturing silicon carbide molded body
JPS5838386A (en) * 1981-08-31 1983-03-05 Daihatsu Motor Co Ltd Apparatus for preventing production of white smoke at the time of starting diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580714A (en) * 1978-12-04 1980-06-18 Kernforschungsanlage Juelich Method and apparatus for manufacturing silicon carbide molded body
JPS5838386A (en) * 1981-08-31 1983-03-05 Daihatsu Motor Co Ltd Apparatus for preventing production of white smoke at the time of starting diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009753A1 (en) * 1986-10-09 1989-10-19 Osaka Cement Co., Ltd. Process for producing molding composed of silicon carbide and carbon
JPH01183413A (en) * 1988-01-16 1989-07-21 Ibiden Co Ltd Spring and production thereof
JPH01242408A (en) * 1988-03-23 1989-09-27 Toyo Tanso Kk Silicon carbide-graphite composite material and production thereof
WO1990001523A1 (en) 1988-08-12 1990-02-22 Ube Industries, Ltd. Carbide fibers with high strength and high modulus of elasticity and polymer composition used for their production

Also Published As

Publication number Publication date
JPH0256307B2 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US5902429A (en) Method of manufacturing intermetallic/ceramic/metal composites
JPS5844630B2 (en) silicone carbide material
US2988806A (en) Sintered magnetic alloy and methods of production
US3151994A (en) Molding of refractory materials
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
JPH05105979A (en) High density sintered zn-ni alloy and its production
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPS6212664A (en) Method of sintering b4c base composite body
JPH0227304B2 (en)
JPS59152268A (en) Manufacture of silicon carbide formed body
JPH0244078A (en) Porous ceramic composite material and production thereof
JPH0571541B2 (en)
JPS59116176A (en) Manufacture of ceramic sintered body
JPS6256371A (en) Manufacture of silicon carbide sintered body
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPS6369757A (en) Composite ceramics and manufacture
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH0513906B2 (en)
JPS5910979B2 (en) Method for manufacturing heat-resistant composite sintered body
KR890003137B1 (en) Process for controlling the carbon amount
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPH05100068A (en) Manufacture of nuclear fuel sintered pellet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees