JPH01142022A - Manufacture of seamless metallic belt - Google Patents

Manufacture of seamless metallic belt

Info

Publication number
JPH01142022A
JPH01142022A JP30048387A JP30048387A JPH01142022A JP H01142022 A JPH01142022 A JP H01142022A JP 30048387 A JP30048387 A JP 30048387A JP 30048387 A JP30048387 A JP 30048387A JP H01142022 A JPH01142022 A JP H01142022A
Authority
JP
Japan
Prior art keywords
belt
treatment
less
fatigue strength
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30048387A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30048387A priority Critical patent/JPH01142022A/en
Publication of JPH01142022A publication Critical patent/JPH01142022A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

PURPOSE:To manufacture a seamless metallic belt excellent in workability, material strength, fatigue strength, and wear resistance by cold-working a seamless steel pipe made of Ni-Co-Mo steel with a specific composition into a metallic belt and then subjecting the above belt to solution heat treatment, ageing treatment, and nitriding treatment. CONSTITUTION:An ingot of an alloy steel having a composition consisting of, by weight, <0.01% C, <0.05% Si, <0.05% Mn, <0.01% P, <0.01% S, 16-19% Ni, 8-15% Co, 3-6% Mo, 0.3-1.2% Ti, <0.15% Al, <0.0020% N, <0.0015% O, and the balance Fe is hot-extruded into a thick-walled seamless steel pipe, and this pipe is subjected to spinning working so as to be formed into a thin-walled tube stock, which is successively cut into a breadth necessary for a belt. This belt is subjected to solution heat treatment at 800-880 deg.C for 0.5-2hr and, if necessary, to ageing treatment at 420-520 deg.C for 1-6hr, and finally to nitriding treatment at the same temp. in an atmosphere of NH3 gas alone for 1-10hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車の無段変速機等に使用される動力伝達用
継目無金属ベルトの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a seamless metal belt for power transmission used in continuously variable transmissions of automobiles and the like.

〔従来の技術〕[Conventional technology]

自動車の無段変速機等においては、動力を伝達するため
のベルトに優れた材料強度が要求されるため、金属製の
ベルトが使用され始めている。この場合、金属製のベル
トは弾性が小さいため、薄肉の継目無ベルトを必要なト
ルクに応じ重ね合せて使用することが前提となる。した
がって、このような継目無金属ベルトには、薄く加工で
きること、材料強度および疲労強度が高いこと、耐摩耗
性の良好なことが要求される。
BACKGROUND ART In continuously variable transmissions of automobiles, belts for transmitting power are required to have excellent material strength, so metal belts are beginning to be used. In this case, since metal belts have low elasticity, it is premised that thin seamless belts are used by overlapping them according to the required torque. Therefore, such a seamless metal belt is required to be able to be processed thinly, to have high material strength and fatigue strength, and to have good wear resistance.

このような要求に対し、材料面では加工性、材料強度お
よび疲労強度の優れた18%Ni系マルエージ鋼が従来
より使用されてきた。また製法面では、マルエージ鋼か
らなる円筒状の素材をスピニング加工等によってベルト
として必要な肉厚および周長まで薄肉化する加工法が採
用され、ベルトに加工された後は窒化処理にて疲労強度
を高めるのが通例となっている。
In response to these demands, 18% Ni-based marage steel has been used in the past because of its excellent workability, material strength, and fatigue strength. In addition, in terms of the manufacturing method, a processing method is adopted in which a cylindrical material made of marage steel is thinned by spinning processing etc. to the required wall thickness and circumference for the belt, and after being processed into a belt, it is nitrided to improve fatigue strength. It is customary to increase the

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、自動車の無段変速機等においてはベル、
トに対し、トルクに対する耐力のみならず小型軽量化が
強く求ちられ、しかも長期間にわたって破損のないこと
など、極めて厳しい要求が加えられる。
However, in continuously variable transmissions of automobiles, bell,
In addition to strong torque resistance, there is also a strong demand for smaller and lighter weight bearings, and extremely strict requirements are placed on them, such as ensuring that they do not break over a long period of time.

従来の方法で製造された継目無金属ベルトは、このよう
な要求を十分に満足させているとは言い難く、加工性、
材料強度および疲労強度、耐摩耗性の全ての点で史に高
い性能が求められているのが現状である。
Seamless metal belts manufactured by conventional methods cannot be said to fully satisfy these requirements, and have problems with workability,
The current situation is that higher performance than ever before in terms of material strength, fatigue strength, and wear resistance is required.

本発明は斯かる現状に鑑み、加工性、材料強度および疲
労強度、耐摩耗性の全てについて従来レベルを上回る継
目無金属ベルトの製造方法を提供するものである。
In view of the current situation, the present invention provides a method for manufacturing a seamless metal belt that exceeds conventional levels in all of processability, material strength, fatigue strength, and wear resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、従来の方法で製造された継目無金属ベル
トを種々調査したところ、主にその組成と加工後の窒化
処理に問題があり、この問題を解決すれば加工性、材料
強度および疲労強度、耐摩耗性が更に向上することを知
見した。
The present inventors investigated various seamless metal belts manufactured by conventional methods and found that there were problems mainly with the composition and the nitriding treatment after processing. It was found that fatigue strength and wear resistance were further improved.

0 加工性 本発明が対象とする継目無金属ベルトにおいては、前述
したように弾性確保のため薄く加工できることが必要で
ある。従来よりこの種のベルト素材として使用されてい
るマルエージ鋼は、ある程度の加工は可能であるが、肉
厚が0.2n以下になると、介在物による加工中の割れ
および表面欠陥(ふくれ、しわ)が発生しやすくなる。
0 Workability The seamless metal belt that is the object of the present invention needs to be able to be worked into a thin layer in order to ensure elasticity, as described above. Marage steel, which has traditionally been used as a material for this type of belt, can be processed to a certain extent, but when the wall thickness is less than 0.2n, cracks and surface defects (blisters, wrinkles) due to inclusions occur during processing. is more likely to occur.

ちなみに、自動車の無段変速機等に現在使用されている
ベルトの厚みは薄い程曲げ応力が減少するため0.2t
m以下が好ましいとされている。
By the way, the thickness of belts currently used in continuously variable transmissions of automobiles is 0.2t because the thinner the belt, the less bending stress.
It is said that less than m is preferable.

本発明者らの調査によると、0.2龍厚以下に加工した
ときの割れおよび表面欠陥を防止するにはJISGO5
55に規定されるC系清浄度を0.02%以下に抑制す
ることが有効で、そのためにP。
According to the research conducted by the present inventors, JISGO5
It is effective to suppress the C-based cleanliness specified in 55 to 0.02% or less, and for that purpose, P.

S、N、Oを十分に低く抑える必要のあることが判明し
た。特にNは硬質のTiNを形成し、割れおよび表面欠
陥の発生を助長するので、厳しい抑制を必要とする。
It has been found that S, N, and O must be kept sufficiently low. In particular, N forms hard TiN and promotes cracking and surface defects, so strict control is required.

○ 材料強度および疲労強度 ・   3 自動車の無段変速機等を用途とした場合、使用中の引張
強度に耐えるためにはHv500以上の硬度が必要であ
る。しかし、Hv650を超えると疲労強度が低下する
。したがってNi、Co。
○ Material strength and fatigue strength 3. When used in continuously variable transmissions of automobiles, etc., hardness of Hv500 or higher is required to withstand tensile strength during use. However, when Hv exceeds 650, fatigue strength decreases. Therefore, Ni, Co.

Mo、Ti量の調整でベルト硬度をHV500〜650
に管理することが必要となる。
Belt hardness can be adjusted to HV500-650 by adjusting the amount of Mo and Ti.
It is necessary to manage the

また、前述した介在物は、加工中の割れおよび表面欠陥
を招くばかりでなく、疲労破壊を発生させるので、N、
P、S、Oはこの両面カミら制限を必要とし、Cについ
ても制限を加えることが必要となる。
In addition, the inclusions mentioned above not only cause cracks and surface defects during processing, but also cause fatigue fracture, so N,
P, S, and O require this double-sided limit, and it is also necessary to add a limit to C.

そして介在物のうち、TiNがマルエージ鋼の主要介在
物であることから、Nの影響が大と考え、実験を繰返し
た結果、Nを0. OO2%以下に制限することにより
JISG0555に規定されるC系清浄度が急激に改善
し、加工中の割れおよび表面欠陥の防止とともに疲労強
度の向上が図られることが判明した。
Among the inclusions, TiN is the main inclusion in maraging steel, so we thought that the influence of N was large, and as a result of repeated experiments, we found that N was reduced to 0. It has been found that by limiting OO to 2% or less, the C-based cleanliness specified by JIS G0555 can be rapidly improved, and cracks and surface defects during processing can be prevented and fatigue strength can be improved.

第1図は基本成分が0.005C−0,0ISj −0
,01Mn−0,005P−0,0OIS−18Ni−
8,5Co−5,0Mo’−0.5Ti−0.06Aj
! −0,0O15Nであるマルエージ鋼において、鋼
中N量を変化させたときのC系清浄度(JISGO55
5)の推移を示したものである。同図から明らかなよう
に、C系清浄度に対しては鋼中N量が支配的であり、鋼
中N量が0.002%以下でC系清浄度が改善される。
In Figure 1, the basic component is 0.005C-0,0ISj -0
,01Mn-0,005P-0,0OIS-18Ni-
8,5Co-5,0Mo'-0.5Ti-0.06Aj
! -C-based cleanliness (JISGO55
5) shows the transition. As is clear from the figure, the amount of N in the steel is dominant with respect to the C-based cleanliness, and the C-based cleanliness is improved when the N amount in the steel is 0.002% or less.

なお、疲労に対しては独立したTiNよりも点列状に分
布したTiNの方が悪影響が大きいが、NをO,OO’
2%以下に制限することにより、点列状の介在物が消滅
し疲労強度を著しく向上させることも明らかとなった。
Note that TiN distributed in a dot array has a greater negative effect on fatigue than independent TiN, but when N is O, OO'
It has also been found that by limiting the content to 2% or less, inclusions in the form of dot arrays disappear and fatigue strength is significantly improved.

O耐摩耗性 耐摩耗性の付与と、表面への圧縮残留応力の付与とによ
って疲労強度を向上させることは既に知られた技術であ
る。マルエージ鋼に対しても表面窒化処理でこの効果を
引き出すことの可能なことが知られている。しかし、本
発明が対象とする継目無金属ベルトのように大きい曲げ
歪みが加わる場合、従来の窒化処理(タフトライド処理
・・・塩浴窒化、イオン窒化、ガス軟窒化)はマルエー
ジ鋼に対し、かえって疲労寿命を低下させることが判明
した。これは、従来の窒化処理ではベルト表面に不可避
的な化合物層(!It!化層)が形成されてしまうため
である。
O Abrasion Resistance It is already known technology to improve fatigue strength by imparting abrasion resistance and imparting compressive residual stress to the surface. It is known that this effect can also be brought out by surface nitriding treatment of maraging steel. However, when a large bending strain is applied, such as the seamless metal belt that is the object of the present invention, conventional nitriding treatment (tufftride treatment...salt bath nitriding, ion nitriding, gas nitrocarburizing) has a negative effect on maraging steel. It was found that fatigue life was reduced. This is because conventional nitriding treatment inevitably forms a compound layer (!It! compound layer) on the belt surface.

本発明者らは、このことがらベルトの疲労寿命、耐久性
を向上させるには、ベルト断面の硬度分布が重要と考え
、種々実験研究を行った結果、第2図に示すような硬度
分布を与えることが有効なことを知見した。
The inventors believe that the hardness distribution in the cross section of the belt is important in order to improve the fatigue life and durability of the belt, and as a result of various experimental studies, the hardness distribution as shown in Figure 2 was determined. I learned that giving is effective.

すなわち、表面硬度はHv780未満では十分な耐摩耗
性と圧縮残留応力が得られず、Hv860を超ずと脆化
層が形成され、曲げ歪みで早期破損をおこすので、Hv
780〜860を必要とする。ベルト厚さが0.2+n
程度であれば窒化層は20〜40μm(肉厚の10〜2
0%)の厚みを必要とする。窒化層が20μm未満では
窒化層が不足し、耐摩耗性と圧縮残留応力が不十分とな
り、40μmを超える曲げ歪みで早期破損を生じる。
In other words, if the surface hardness is less than 780 Hv, sufficient wear resistance and compressive residual stress cannot be obtained, and if it exceeds 860 Hv, a brittle layer will be formed and early failure will occur due to bending strain.
780-860 is required. Belt thickness is 0.2+n
If the nitride layer is about 20 to 40 μm (10 to 2 μm thick)
0%) thickness is required. If the nitrided layer is less than 20 μm, the nitrided layer will be insufficient, the wear resistance and compressive residual stress will be insufficient, and a bending strain exceeding 40 μm will cause early failure.

中心部硬度については、前述したとおりHv500〜6
00とする。
As for the center hardness, as mentioned above, Hv500~6
Set to 00.

そして、窒化処理でこのような断面硬度分布を得ようと
した場合、従来のガス窒化では、Nの解離を促進するた
めのRXガスの混合は障害となる。
When attempting to obtain such a cross-sectional hardness distribution by nitriding, mixing of RX gas to promote dissociation of N becomes an obstacle in conventional gas nitriding.

また、処理温度も従来のガス窒化における540〜57
0℃では、中心部に必要な硬度が与えられる前に表面に
脆化層を生じてしまう。このようなことから好ましい窒
化処理はNH,ガス単独による420〜520℃の処理
であることが判明した。
In addition, the processing temperature is 540 to 57 in conventional gas nitriding.
At 0° C., a brittle layer forms on the surface before the necessary hardness is achieved in the center. From these facts, it has been found that the preferred nitriding treatment is treatment at 420 to 520° C. using NH or gas alone.

本発明は、斯かる知見に基づきなされたもので、重量%
でC:0.01%以下、Si:0.05%以下、Mn:
0.05%以下、P:0.01%以下、S:Q。
The present invention was made based on this knowledge, and the weight %
C: 0.01% or less, Si: 0.05% or less, Mn:
0.05% or less, P: 0.01% or less, S:Q.

01%以下、Ni : 16〜19%、Co:8〜15
%、Mo:3〜6%、Ti:0.3〜1.2%、A1:
O,15%以下、N:0.002%以下、O:0゜00
15%以下を含み残部実質的にFeよりなる継目無鋼管
を金属ベルトに冷間で加工し、次いで800〜880℃
で0.5〜2hrの固溶化処理を行った後、必要により
420〜520°Cで1〜6hrの時効処理を行い、し
かる後420〜520℃で1〜10hrの実質的にNH
I−ガス単独による窒化処理を行うことを特徴とする継
目無金属ベルトの製造方法を要旨とする。
01% or less, Ni: 16-19%, Co: 8-15
%, Mo: 3-6%, Ti: 0.3-1.2%, A1:
O, 15% or less, N: 0.002% or less, O: 0°00
A seamless steel pipe containing 15% or less and the remainder substantially Fe is cold processed into a metal belt, and then heated at 800 to 880°C.
After performing solution treatment for 0.5 to 2 hours at 420 to 520°C, if necessary, aging treatment for 1 to 6 hours at 420 to 520°C.
The gist of the present invention is a method for manufacturing a seamless metal belt, which is characterized by performing nitriding treatment using I-gas alone.

〔作  用〕[For production]

以下、本発明の製造方法を成分組成、製法の順で詳述し
、その作用を明らかにする。
Hereinafter, the manufacturing method of the present invention will be explained in detail in the order of component composition and manufacturing method, and its effects will be clarified.

O素材の成分組成 C:O,01%を超えると炭化物を形成し、金属間化合
物の析出量が減少して疲労強度を低下させる。
Component composition of the O material C: O. If it exceeds 01%, carbides are formed, the amount of precipitated intermetallic compounds is reduced, and fatigue strength is reduced.

このようなことから、Cは0.(11%以下とし、望ま
しくは0.005%以下である。
From this, C is 0. (It should be 11% or less, preferably 0.005% or less.

Si、Mn:いずれもS i02.MnO,MnSなど
の介在物を形成し、疲労強度を低下させるので、0.0
5%以下に制限する。疲労強度上はSi。
Si, Mn: Both Si02. 0.0 because it forms inclusions such as MnO and MnS and reduces fatigue strength.
Limit to 5% or less. Si in terms of fatigue strength.

Mnが少ないほどよい。The lower the Mn content, the better.

P、S:粒界脆化や介在物形成のために疲労強度を低下
させる。したがって0.01%以下とする。
P, S: Decreases fatigue strength due to grain boundary embrittlement and inclusion formation. Therefore, it should be 0.01% or less.

疲労強度はこれらが少ないほど有利となるので、少ない
程望ましい。
The lower the fatigue strength, the more advantageous it becomes, so the lower the fatigue strength, the more desirable.

Ni:16%未満では材料の強度、靭性が低下し、19
%超えでは100%マルテンサイトが得られず強度低下
を生じる。したがってNiは16〜19%とする。
Ni: If it is less than 16%, the strength and toughness of the material will decrease.
%, 100% martensite cannot be obtained and strength decreases. Therefore, Ni should be 16 to 19%.

Co:8%未満では強度低下を生じ、15%超では靭性
が低下するので、8〜15%とする。
Co: If it is less than 8%, the strength will decrease, and if it exceeds 15%, the toughness will decrease, so it is set at 8 to 15%.

MO=3%未満ではHv≧500相当の強度が得られず
、6%超では靭性低下が著しいので、3〜6%とする。
If MO is less than 3%, the strength equivalent to Hv≧500 cannot be obtained, and if it exceeds 6%, the toughness is significantly reduced, so it is set to 3 to 6%.

Ti:0.3%未満ではこの種のベルトに最小限必要な
Hv500が得られず、1.2%超では中心部硬度がH
v650を超え、しかも介在物Ti(C。
Ti: If it is less than 0.3%, the minimum required Hv500 for this type of belt cannot be obtained, and if it exceeds 1.2%, the center hardness will be Hv500.
v650, and inclusions Ti(C).

N)が増加し、耐久性を劣化させる。したがってTiは
0.3〜1.2%とする。
N) increases, deteriorating durability. Therefore, Ti is set to 0.3 to 1.2%.

Aa:脱酸に有効であるが、0.15%超ではアルミナ
系酸化物が多くなり、耐久性を低下させるので、0.1
5%以下とする。
Aa: Effective in deoxidizing, but if it exceeds 0.15%, alumina-based oxides will increase and durability will decrease, so 0.1%
5% or less.

N:疲労強度に悪影響を与える有害元素で、0.002
%以下と低減することが重要であり、0.002%を超
えると、主にT i Nが急激に増加し、しかもこれが
点列状となるため、疲労強度は著しく低下する。したが
ってNは0.002%以下に制限する。疲労強度上はN
が少ないほど有利となり0゜001%以下とすると耐久
性が一段と向上する。
N: A harmful element that has a negative effect on fatigue strength, 0.002
% or less, and if it exceeds 0.002%, T i N will mainly increase rapidly and this will become a series of dots, resulting in a significant decrease in fatigue strength. Therefore, N is limited to 0.002% or less. Fatigue strength is N
The smaller the amount, the more advantageous it is, and when it is 0°001% or less, the durability is further improved.

O:酸化物系(B、C系)介在物を形成し、0.001
5%以下と低くすることが重要であり、0.0015%
を超えると疲労強度が著しく低下する。
O: Forms oxide-based (B, C-based) inclusions, 0.001
It is important to keep it as low as 5% or less, 0.0015%
If it exceeds this, the fatigue strength will drop significantly.

疲労強度上はOが少ないほど有利となり0.001%以
下とすることにより耐久性が更に改善される。
In terms of fatigue strength, the smaller the O content, the more advantageous it is, and by setting it to 0.001% or less, the durability is further improved.

O製法 製法は基本的に造塊、加工、熱処理からなる。O manufacturing method The manufacturing method basically consists of ingot making, processing, and heat treatment.

■ 造塊 介在物を低くするために、V、 OD等の脱ガス処理で
もよいが、なるべく真空誘導溶解を行うのがよい。溶解
後、高真空アークによる再溶解を行うのも有効である。
(2) Degassing treatment such as V or OD may be used to reduce the amount of agglomerated inclusions, but it is preferable to perform vacuum induction melting as much as possible. After melting, it is also effective to perform remelting using a high vacuum arc.

■ 加工 造塊により得られた鋼塊を熱間鍛造あるいは熱間押出に
より厚内の継目無管とし、これを直接あるいは固溶化処
理の後、冷間加工にて金属ベルト用素管に成形する。
■ Steel ingots obtained by processing ingots are hot-forged or hot-extruded into thick seamless pipes, which are then formed directly or after solution treatment into raw pipes for metal belts by cold working. .

冷間加工としてはスピニング加工、ベルト圧延の2つが
良く知られており、通常はこれらを単独あるいは組合せ
て実施する。スピニング加工では素管の内径は変化せず
、肉厚のみを減少させ、加工後ベルトとして必要な幅に
切断する。ベルト圧延では予め素管をベルト状に切断し
たものを用い、肉厚減少と直径増加とを同時に生じさせ
る。
Two well-known cold working methods are spinning processing and belt rolling, and these are usually carried out singly or in combination. In spinning processing, the inner diameter of the raw tube does not change, only the wall thickness is reduced, and after processing, it is cut into the width required for the belt. In belt rolling, a raw pipe is cut into a belt shape in advance, and the wall thickness is reduced and the diameter is increased at the same time.

冷間加工の形態、加工度等は最終製品の肉厚、直径、寸
法精度等により適宜選択される。
The form of cold working, degree of working, etc. are appropriately selected depending on the wall thickness, diameter, dimensional accuracy, etc. of the final product.

■ 熱処理 (A)固溶化処理 この処理は冷間加工後に施すもので、冷間加工による加
工硬化を除去し、細粒のマルテンサイト組織を得るため
に実施する。
(2) Heat treatment (A) Solution treatment This treatment is performed after cold working to remove work hardening caused by cold working and to obtain a fine-grained martensitic structure.

800℃未満、0.5hr未満ではいずれの場合4λ未
固溶の金属間化合物が残り、強度と靭性が低下する。逆
に880℃超、2hr超ではいずれの場合も結晶粒の粗
大化が生じ、強度、靭性を低下させ、ベルトの変形も大
きくなる。したがって、固溶化処理は800〜880℃
で0.5〜2hrの処理とする。
If the heating time is lower than 800° C. and shorter than 0.5 hr, in any case, 4λ undissolved intermetallic compounds remain, resulting in a decrease in strength and toughness. On the other hand, if the temperature exceeds 880° C. and the time exceeds 2 hours, the crystal grains will become coarser, reducing the strength and toughness and increasing the deformation of the belt. Therefore, the solution treatment is carried out at 800-880℃.
The treatment time is 0.5 to 2 hours.

なお、この処理は、冷間加工による肉厚減少率が80%
以下なら省略することができる。この処理を省略した場
合、窒化処理条件が若干変化するが、その場合にあって
も本発明範囲内の条件で処理が可能である。
In addition, this treatment reduces the wall thickness by 80% due to cold working.
The following can be omitted. If this treatment is omitted, the nitriding conditions will change slightly, but even in that case, the treatment can be carried out under conditions within the scope of the present invention.

(B)時効処理 420℃未満、lhr未満ではいずれの場合も十分な析
出強化(Hv≧500)を得ることができない。逆に5
20℃超、10hr超ではいずれの場合も過時効となり
、強度と延性がかえって低下する。したがって時効処理
は420〜520℃で1〜10時間の処理とする。
(B) Aging treatment If the aging treatment is less than 420° C. or less than 1hr, sufficient precipitation strengthening (Hv≧500) cannot be obtained in either case. On the contrary, 5
If the temperature exceeds 20° C. and the time exceeds 10 hr, overaging will occur in any case, and the strength and ductility will actually decrease. Therefore, the aging treatment is carried out at 420 to 520°C for 1 to 10 hours.

なお、後で行う窒化処理が、この時効処□理を満足する
条件で実施されるならば、この時効処理を省略すること
ができる。
Note that if the nitriding treatment to be performed later is carried out under conditions that satisfy this aging treatment, this aging treatment can be omitted.

(C)窒化処理 通常のガス窒化処理は、Nの解離を促進するためにNH
,lガスに50%程度のRXガスを混合して行うが、こ
のような雰囲気で本発明が対象とする、金属ベルトを処
理した場合、ベルト表面硬度がH,860を超え、脆化
層が形成されることから、かえって疲労寿命が低下する
。したがって本発明では、実質的にNH3ガス単独で変
化処理を行う。
(C) Nitriding process Normal gas nitriding process uses NH to promote the dissociation of N.
, l gas mixed with about 50% RX gas. When a metal belt, which is the object of the present invention, is treated in such an atmosphere, the belt surface hardness exceeds H.860 and the brittle layer is formed. As a result of this formation, the fatigue life actually decreases. Therefore, in the present invention, the conversion process is substantially performed using NH3 gas alone.

この場合、10%程度までであればRXガスが混入され
ても、処理温度を低くし処理時間を短くすれば、脆化層
の形成は防止できる。実質的にとは、10%程度までR
Xガスが混入されてもよいことを意味する。
In this case, even if RX gas is mixed up to about 10%, the formation of a brittle layer can be prevented by lowering the processing temperature and shortening the processing time. “Substantially” means R up to about 10%.
This means that X gas may be mixed.

処理温度については420℃未満ではNHlの分解が不
十分となり、必要な表面硬度および深さの窒化層が得ら
れない。逆に520℃超ではNH3の分解が過度に進み
、必要な窒化層が形成される前に表面硬度がHv860
を超え、脆化層が形成される結果になる。したがって4
20〜520℃とする。
If the treatment temperature is lower than 420° C., the decomposition of NHL will be insufficient, and a nitrided layer with the required surface hardness and depth will not be obtained. On the other hand, if the temperature exceeds 520°C, the decomposition of NH3 will proceed excessively, and the surface hardness will reach Hv860 before the necessary nitrided layer is formed.
This results in the formation of a brittle layer. Therefore 4
The temperature shall be 20-520°C.

処理時間についてはlhr未満では必要な窒化層が得ら
れず、耐摩耗性および圧縮残留応力が不足する。逆に1
0hr超では窒化層が厚くなり過ぎて曲げ歪みにより割
れを生じたり、表面硬度がH,860を超えて疲労強度
を著しく低下させる。
If the treatment time is less than 1hr, the necessary nitrided layer will not be obtained, resulting in insufficient wear resistance and compressive residual stress. On the contrary, 1
If it exceeds 0 hr, the nitrided layer becomes too thick and cracks occur due to bending strain, and the surface hardness exceeds H.860, significantly reducing fatigue strength.

したがって1〜]、 Q h rとする。Therefore, it is set as 1~], Q h r.

〔実施例〕〔Example〕

次に実施例を説明するう 第1表番こA−Hで示す本発明範囲内の鋼、およびI 
−0で示す本発明範囲外の鋼を真空誘導溶解と高真空ア
ーク再熔解とにより各500 kg造塊した。その後、
得られた各鋼塊を熱間押出にて厚肉の継目無鋼管とし、
しかる後、スピニング加工で肉厚0.18〜0.5mm
、内径100〜250+nのベルト用薄肉素管とした。
Next, examples will be explained using steels within the scope of the present invention shown in Table 1 with numbers A-H, and I
Steels outside the scope of the present invention, indicated by -0, were agglomerated by vacuum induction melting and high vacuum arc remelting, each weighing 500 kg. after that,
The obtained steel ingots are hot extruded into thick-walled seamless steel pipes,
After that, the wall thickness is 0.18~0.5mm by spinning process.
, a thin-walled raw tube for belts with an inner diameter of 100 to 250+n.

肉厚が0.18mmに達しないものは更にベルト圧延に
より肉厚を0.18m■まで減少させた。
For those whose wall thickness did not reach 0.18 mm, the wall thickness was further reduced to 0.18 m by belt rolling.

そして、得られた各素管より幅10nのベルトを切り出
し、これに第2表左欄に示す条件で固溶処理を行い、必
要に応じ時効処理を行った後、NI−(3ガス単独によ
る窒化処理を行った。一部のベルトについては比較のた
めNH,ガス+5註処理後のベルトについて表面割れの
有無、断面硬度分布、疲労強度を調査した。その結果を
第2表右欄に示す。
Then, a belt with a width of 10n is cut out from each of the obtained raw tubes, subjected to solid solution treatment under the conditions shown in the left column of Table 2, and subjected to aging treatment if necessary. Nitriding treatment was performed.For comparison, some of the belts were investigated for the presence of surface cracks, cross-sectional hardness distribution, and fatigue strength after NH, gas + 5 notes treatment.The results are shown in the right column of Table 2. .

表面割れは脆化層の有無および加工性の指標となるもの
で、D=15t(D:曲げ棒直径、t:ベルト肉厚)の
丸棒にベルトを巻きつけ、180℃曲げた際の表面割れ
の有無で判定し、割れが生じたものについては疲労試験
を省略した。
Surface cracking is an indicator of the presence or absence of a brittle layer and of workability. Judgment was made based on the presence or absence of cracks, and fatigue tests were omitted for those with cracks.

硬度分布については表面硬度、窒化層深さ、中心部硬度
を測定し、耐久性を確保する上で必要な条件は第2図に
示されるように表面硬度がHv780〜860、窒化層
深さが20〜40μm、中心部硬度がHv500〜65
0であるので、この範囲に入るか否かで判定した。
Regarding the hardness distribution, we measured the surface hardness, nitrided layer depth, and center hardness.The conditions necessary to ensure durability are as shown in Figure 2, when the surface hardness is Hv780-860 and the nitrided layer depth is 20~40μm, center hardness Hv500~65
Since it is 0, it was determined whether it falls within this range or not.

疲労強度はベルトをプーリーに収め、これを回転させて
一定の曲げ応力(片振.2〜5 0 fur f /1
1+1”)下で繰り返し曲げを行い、その限界回数Nで
評価し、N≧107を合格とした。
Fatigue strength is determined by placing the belt in a pulley, rotating it, and applying a constant bending stress (pulsation.2 to 50 fur f /1
1+1'') was repeatedly bent and evaluated by the limit number N of bending, and N≧107 was considered to be a pass.

第2表において、隘1〜11は成分組成が本発明範囲内
の鋼A−HをヘルHこ加工後、本発明範囲内の条件で熱
処理した本発明例である。
In Table 2, columns 1 to 11 are examples of the present invention in which steels A-H having component compositions within the range of the present invention were heat-treated under conditions within the range of the present invention after being subjected to heat treatment.

いずれにおいても表面割れは生じず、脆化層は形成され
ていない。ベルト断面の硬度分布についても、表面硬度
はHV780〜860、窒化層深さは20〜40/7m
、中心部硬度はHv500〜650の各範囲内にあり、
第2図に示す目標硬度分布を満足している。疲労強度は
いずれも合格ラインであるN=IX]O’を超えている
In either case, no surface cracks occurred and no brittle layer was formed. Regarding the hardness distribution of the belt cross section, the surface hardness is HV780-860, and the nitrided layer depth is 20-40/7m.
, the center hardness is within the range of Hv500 to 650,
The target hardness distribution shown in FIG. 2 is satisfied. All fatigue strengths exceed the passing line N=IX]O'.

阻12〜17は成分組成が本発明範囲内の鋼A。Nos. 12 to 17 are steels A whose compositions are within the range of the present invention.

Eをベルトに加工後、本発明範囲外の条件で熱処理した
比較例である。
This is a comparative example in which E was processed into a belt and then heat-treated under conditions outside the scope of the present invention.

階12においては同溶化処理での処理温度が高すぎ、か
つ窒化処理での処理温度が高すぎるため、表面硬度が過
大で表面割れを生じ、疲労強度も十分でない。隘13に
おいては窒化処理温度が低すぎるため、表面硬度および
窒化層深さが不足し、疲労強度も十分でない。1lkL
14においては窒化処理時間が長ずぎるため、脆化層を
生じている。陶15においては時効化処理温度が低く、
また窒化処理温度も低いため析出強化を得られず、窒化
層深さも浅いため充分な疲労強度が得られていない。
In floor 12, the treatment temperature in the solution treatment is too high and the treatment temperature in the nitriding treatment is too high, so the surface hardness is excessive and surface cracks occur, and the fatigue strength is also insufficient. In point 13, the nitriding temperature is too low, resulting in insufficient surface hardness and nitrided layer depth, and insufficient fatigue strength. 1lkL
In No. 14, the nitriding treatment time was too long, resulting in a brittle layer. In ceramic 15, the aging treatment temperature is low;
Further, since the nitriding temperature is low, precipitation strengthening cannot be obtained, and the depth of the nitriding layer is also shallow, so sufficient fatigue strength cannot be obtained.

阻16においては時効処理温度および時間が過多のため
に過時効となり、強度と延性がかえって低下している。
In No. 16, the aging treatment temperature and time were excessive, resulting in overaging, and the strength and ductility were actually reduced.

11kL17においては固溶化処理温度が低すぎるため
、強度と靭性の低下を生じ、表面割れおよび中心部の硬
度不足が生じている。
In 11kL17, the solution treatment temperature was too low, resulting in a decrease in strength and toughness, resulting in surface cracks and insufficient hardness in the center.

南18〜24は成分組成が本発明範囲外の鋼■〜0をベ
ルトに加工後、本発明範囲内の条件で熱処理した別の比
較例である。
South Nos. 18 to 24 are other comparative examples in which steels 1 to 0, whose compositions are outside the range of the present invention, were processed into belts and then heat-treated under conditions within the range of the present invention.

陽1B(鋼T使用)においてはNiが不足し、A2が過
多のため、表面割れを生じ疲労強度が低下している。隘
19(鋼J使用)においてはSおよびNiが過多、Co
が不足のため中心部硬度が不足し疲労強度も十分でない
。隘20(鋼に使用)においてはCおよびCoが過多の
ため、硬化が進み、表面割れを生じ疲労強度も十分でな
い。
In positive 1B (using steel T), Ni is insufficient and A2 is excessive, resulting in surface cracking and reduced fatigue strength. In No. 19 (using steel J), S and Ni are excessive, and Co
Due to the lack of hardness, the central part lacks hardness and fatigue strength is insufficient. In case of No. 20 (used for steel), due to excessive amounts of C and Co, hardening progresses, surface cracks occur, and fatigue strength is insufficient.

隘21 (鋼り使用)においてはSiが過多、MOおよ
びTiが不足のため、中心部硬度が十分でなく疲労強度
も不足している。階22(鋼M使用)においてはP、M
oおよび]iが過多のため、硬化が進んでいる。陽23
 (鋼N使用)においてはMnおよびNが過多のため、
疲労強度が不足し、11k124(mO使用)において
はOが過多のため、やはり疲労強度が不足している。
In case No. 21 (using steel), there is too much Si and not enough MO and Ti, so the center hardness is insufficient and the fatigue strength is also insufficient. P, M on floor 22 (using steel M)
Due to excessive amounts of o and ]i, curing progresses. positive 23
(Steel N used) has too much Mn and N,
The fatigue strength is insufficient, and 11k124 (using mO) has too much O, so the fatigue strength is also insufficient.

隘25は成分組成が本発明範囲外の汎用のマルエージM
Nをベルトに加工後、窒化処理として通常のガス窒化処
理(NH3ガス+50%RXガス使用、500℃X4h
r)を実施した従来例である。
Box 25 is a general-purpose Marage M whose component composition is outside the scope of the present invention.
After processing N into a belt, we perform the normal gas nitriding process (using NH3 gas + 50% RX gas, 500℃ x 4 hours).
This is a conventional example implementing r).

本発明例(11&11〜11)と比べると、表面割れを
生じており、硬度分布も目標から大きく外れ、疲労強度
も著しく低い。したがって、加工性は低く、材料強度、
疲労強度、耐摩耗性も著しく劣る。
Compared to the invention examples (11 & 11 to 11), surface cracks were generated, the hardness distribution was significantly off target, and the fatigue strength was also significantly low. Therefore, processability is low, material strength is low,
Fatigue strength and wear resistance are also significantly inferior.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の製造方法は継
目無金属ベルトに高度の加工性、材料強度、疲労強度お
よび耐摩耗性を付与するものであり、これらの特性につ
いて厳しい性能が要求される例えば自動車の無段変速機
用ベルトの製造に適用して、この種の変速機の耐久性向
上、小型軽量化等に多大の効果を奏するものである。
As is clear from the above description, the manufacturing method of the present invention provides a seamless metal belt with high workability, material strength, fatigue strength, and wear resistance, and strict performance is required for these properties. For example, it can be applied to the production of continuously variable transmission belts for automobiles, and has great effects in improving the durability of this type of transmission, making it smaller and lighter, and so on.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼中N量とC系清浄度との関係を示すグラフ、
第2図は耐久性確保に必要なベルト断面硬度分布を示す
グラフである。
Figure 1 is a graph showing the relationship between the amount of N in steel and the C-based cleanliness.
FIG. 2 is a graph showing the belt cross-sectional hardness distribution necessary to ensure durability.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%でC:0.01%以下、Si:0.05%
以下、Mn:0.05%以下、P:0.01%以下、S
:0.01%以下、Ni:16〜19%、Co:8〜1
5%、Mo:3〜6%、Ti:0.3〜1.2%、Al
:0.15%以下、N:0.0020%以下、O:0.
0015%以下を含み残部実質的にFeよりなる継目無
鋼管を金属ベルトに冷間で加工し、次いで800〜88
0℃で0.5〜2hrの固溶化処理を行った後、必要に
より420〜520℃で1〜6hrの時効処理を行い、
しかる後420〜520℃で1〜10hrの実質的にN
H_3ガス単独による窒化処理を行うことを特徴とする
継目無金属ベルトの製造方法。
(1) C: 0.01% or less, Si: 0.05% by weight
Below, Mn: 0.05% or less, P: 0.01% or less, S
: 0.01% or less, Ni: 16-19%, Co: 8-1
5%, Mo: 3-6%, Ti: 0.3-1.2%, Al
: 0.15% or less, N: 0.0020% or less, O: 0.
A seamless steel pipe containing 0.015% or less and the remainder substantially Fe is cold processed into a metal belt, and then 800 to 88
After performing solution treatment at 0°C for 0.5 to 2 hours, if necessary, aging treatment at 420 to 520°C for 1 to 6 hours,
After that, substantially N
A method for manufacturing a seamless metal belt, characterized by performing nitriding treatment using H_3 gas alone.
JP30048387A 1987-11-27 1987-11-27 Manufacture of seamless metallic belt Pending JPH01142022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30048387A JPH01142022A (en) 1987-11-27 1987-11-27 Manufacture of seamless metallic belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30048387A JPH01142022A (en) 1987-11-27 1987-11-27 Manufacture of seamless metallic belt

Publications (1)

Publication Number Publication Date
JPH01142022A true JPH01142022A (en) 1989-06-02

Family

ID=17885347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30048387A Pending JPH01142022A (en) 1987-11-27 1987-11-27 Manufacture of seamless metallic belt

Country Status (1)

Country Link
JP (1) JPH01142022A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056944A1 (en) * 1999-03-19 2000-09-28 Sumitomo Special Metals Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same
JP2002038251A (en) * 2000-07-24 2002-02-06 Dowa Mining Co Ltd Method for manufacturing endless ring for metal belt of continuously variable transmission
JP2003328109A (en) * 2002-05-14 2003-11-19 Nissan Motor Co Ltd Nitriding treatment method for maraging steel and belt for belt type continuously variable transmission subjected to nitriding treatment by the method
DE10010383B4 (en) * 1999-03-04 2004-09-16 Honda Giken Kogyo K.K. Process for the production of maraging steel
US7204892B2 (en) 2001-08-08 2007-04-17 Honda Giken Kogyo Kabushiki Kaisha Hoop for CVT belt and manufacturing method therefor
US7204005B2 (en) * 2002-08-30 2007-04-17 Nissan Motor Co., Ltd. Manufacturing method of endless metal belt and manufacturing apparatus of endless metal belt
US7326306B2 (en) 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010383B4 (en) * 1999-03-04 2004-09-16 Honda Giken Kogyo K.K. Process for the production of maraging steel
WO2000056944A1 (en) * 1999-03-19 2000-09-28 Sumitomo Special Metals Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same
US6776855B1 (en) 1999-03-19 2004-08-17 Honda Giken Kogyo Kabushiki Kaisha Maraging steel excellent in fatigue characteristics and method for producing the same
US7323070B2 (en) 1999-03-19 2008-01-29 Neomax Materials Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same
JP2002038251A (en) * 2000-07-24 2002-02-06 Dowa Mining Co Ltd Method for manufacturing endless ring for metal belt of continuously variable transmission
US7204892B2 (en) 2001-08-08 2007-04-17 Honda Giken Kogyo Kabushiki Kaisha Hoop for CVT belt and manufacturing method therefor
US7326306B2 (en) 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel
JP2003328109A (en) * 2002-05-14 2003-11-19 Nissan Motor Co Ltd Nitriding treatment method for maraging steel and belt for belt type continuously variable transmission subjected to nitriding treatment by the method
US7204005B2 (en) * 2002-08-30 2007-04-17 Nissan Motor Co., Ltd. Manufacturing method of endless metal belt and manufacturing apparatus of endless metal belt

Similar Documents

Publication Publication Date Title
EP2796587A1 (en) High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
KR100661789B1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JPH01142021A (en) Manufacture of seamless metallic belt
JPH10251804A (en) High strength spring steel
JPH01142022A (en) Manufacture of seamless metallic belt
JPH11131176A (en) Induction hardened parts and production thereof
JPH0971841A (en) Steel for soft-nitriding
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2000119805A (en) Steel wire rod excellent in wire drawability
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JPH01142052A (en) Seamless metallic belt and its production
JPH05271772A (en) Manufacture of steel pipe for oil well excellent in sulfide stress cracking resistance
JP6747623B1 (en) ERW steel pipe
JP2001032044A (en) Steel for high strength bolt and production of high strength bolt
JP3533034B2 (en) Cold forging-induction hardening steel
JPH08260039A (en) Production of carburized and case hardened steel
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JP2003064416A (en) Method for producing precipitation hardening type martensitic stainless steel having excellent cold forgeability and warm forgeability
JPH11131135A (en) Induction-hardened parts and production thereof
JPH09202921A (en) Production of wire for cold forging
US7662246B2 (en) Steel for components of chemical installations
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility