JPH01142021A - Manufacture of seamless metallic belt - Google Patents
Manufacture of seamless metallic beltInfo
- Publication number
- JPH01142021A JPH01142021A JP30048287A JP30048287A JPH01142021A JP H01142021 A JPH01142021 A JP H01142021A JP 30048287 A JP30048287 A JP 30048287A JP 30048287 A JP30048287 A JP 30048287A JP H01142021 A JPH01142021 A JP H01142021A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- less
- belt
- fatigue strength
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 27
- 239000010959 steel Substances 0.000 claims abstract description 27
- 238000005121 nitriding Methods 0.000 claims abstract description 26
- 230000032683 aging Effects 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 9
- 238000005482 strain hardening Methods 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000009987 spinning Methods 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910000851 Alloy steel Inorganic materials 0.000 abstract 1
- 238000001192 hot extrusion Methods 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000009826 distribution Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000003749 cleanliness Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 229910001240 Maraging steel Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 101100506443 Danio rerio helt gene Proteins 0.000 description 1
- 101100506445 Mus musculus Helt gene Proteins 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010313 vacuum arc remelting Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は自動車の無段変速機等に使用される動力−伝達
用継目無金属ヘルドの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a seamless metal heald for power transmission used in continuously variable transmissions of automobiles and the like.
自動車の無段変速機等においては、動力を伝達するため
のヘルドに優れた材料強度が要求されるため、金属製の
ベルトが使用され始めている。この場合、金属製のベル
トは弾性が小さいため、薄肉の継目無ヘルドを必要なト
ルクに応じ重ね合せて使用することが前提となる。した
がって、このような継目無金属ベルトには、薄く加工で
きること、材料強度および疲労強度が高いこと、耐摩耗
性の良好なことが要求される。BACKGROUND ART Metal belts have begun to be used in continuously variable transmissions for automobiles and the like, since excellent material strength is required for the healds used to transmit power. In this case, since metal belts have low elasticity, it is a prerequisite that thin seamless healds are used by overlapping them according to the required torque. Therefore, such a seamless metal belt is required to be able to be processed thinly, to have high material strength and fatigue strength, and to have good wear resistance.
このような要求に対し、材料面では加工性、材料強度お
よび疲労強度の優れた18%Ni系マルエージ鋼が従来
より使用されてきた。また製法面では、マルエージ鋼か
らなる円筒状の素材をスピニング加工等によってヘルド
として必要な肉厚および周長まで薄肉化する加工法が採
用され、ヘルドに加工された後は窒化処理にて疲労強度
を高めるのが通例となっている。In response to these demands, 18% Ni-based marage steel has been used in the past because of its excellent workability, material strength, and fatigue strength. In addition, in terms of the manufacturing method, a processing method is adopted in which a cylindrical material made of marage steel is thinned by spinning processing etc. to the required wall thickness and circumference for a heald, and after being processed into a heald, it is nitrided to improve fatigue strength. It is customary to increase the
しかしながら、自動車の無段変速機等においてはベルト
に対し、トルクに対する耐力のみならず小型軽量化が強
く求められ、しかも長期間にわたって破損のないことな
ど、極めて厳しい要求が加えられる。However, in continuously variable transmissions of automobiles, belts are required not only to withstand torque, but also to be small and lightweight, and extremely strict requirements are placed on the belts, such as not being damaged over a long period of time.
従来の方法で製造された継目無金属ベルトは、このよう
な要求を十分に満足させているとはぎい難く、加工性、
材料強度および疲労強度、耐摩耗性の全ての点で更に高
い性能が求められているのが現状である。It is difficult for seamless metal belts produced by conventional methods to fully satisfy these requirements, and their workability and
Currently, even higher performance is required in all aspects of material strength, fatigue strength, and wear resistance.
本発明は斯かる現状に鑑み、加工性、材料強度および疲
労強度、耐摩耗性の全てについて従来レベルを上回る継
目無金属ベルトの製造方法を提供するものである。In view of the current situation, the present invention provides a method for manufacturing a seamless metal belt that exceeds conventional levels in all of processability, material strength, fatigue strength, and wear resistance.
本発明者らは、従来の方法で製造された継目無金属ベル
トを種々調査したところ、主にその組成と加工後の窒化
処理に問題があり、この問題を解決すれば加工性、材料
強度および疲労強度、耐摩耗性が更に向上することを知
見した。The present inventors investigated various seamless metal belts manufactured by conventional methods and found that there were problems mainly with the composition and the nitriding treatment after processing. It was found that fatigue strength and wear resistance were further improved.
○ 加工性
本発明が対象とする継目無金属ベルトにおいては、晶述
したように弾性確保のため薄く加工できることが必要で
ある。従来よりこの種のベルト素材として使用さ耗てい
るマルエージ鋼は、ある程度の加工は可能であるが、肉
厚が0.2m以下になると、介在物による加工中の割れ
および表面欠陥(ふくれ、しわ)が発生しやすくなる。○ Processability As mentioned above, the seamless metal belt that is the object of the present invention needs to be able to be processed into a thin layer in order to ensure elasticity. Marage steel, which has traditionally been used as a material for this type of belt and has worn out, can be processed to a certain extent, but when the wall thickness becomes 0.2 m or less, cracks during processing due to inclusions and surface defects (blisters, wrinkles) occur. ) is more likely to occur.
ちなみに、自動車の無段変速機等に現在使用されている
ベルトの厚みは薄い程曲げ応力が減少するため、0.2
1)以下が好ましいとされている。By the way, the thinner the belts currently used in automobile continuously variable transmissions are, the lower the bending stress, so the thickness is 0.2.
1) The following are preferred.
本発明者らの調査によると、0.2mmm板厚に加工し
たときの割れおよび表面欠陥を防止するにはJ 、I
S G O555に規定されるB系、C系清浄度を0.
02%以下に抑制することが有効で、そのためにP、S
、N、0を十分に低く抑える必要のあることが判明した
。特にNはTiとともに硬質のTiNを形成し、割れお
よび表面欠陥の発生を助長するので、NおよびTiの少
なくとも一方については厳しい抑制を必要とする。According to the research conducted by the present inventors, J, I
The B and C system cleanliness specified in S G O555 is 0.
It is effective to suppress P and S to 0.2% or less.
It has been found that it is necessary to keep ,N,0 sufficiently low. In particular, N forms hard TiN together with Ti and promotes the occurrence of cracks and surface defects, so it is necessary to strictly control at least one of N and Ti.
○ 材料強度および疲労強度
自動車の無段変速機等を用途とした場合、使用中の引張
強度に耐えるためにはHv500以上の硬度が必要であ
る。しかし、HV650を超えると疲労強度が低下する
。マルエージ網においては、Ni、Co、Mo、Tiが
引張強度に寄与しているが、丁目よ前述したようにTi
Nの形成要因となる。Tiを使用しない場合、引張強度
の低下が懸念されるが、必要な引張強度が硬度でHV5
00〜600の範囲内であれば、特にTiに依存しなく
ても必要な引張強度を確保できることが、本発明者らの
実験から明らかとなった。Tiの添加が不必要になれば
、その分成分コストが節減できるのみならず、Nについ
ての厳しい制限が不要となり、成分コスト、製鋼コスト
の両面から大巾なコスト低下を図ることが可能となる。○ Material strength and fatigue strength When used in continuously variable transmissions of automobiles, etc., hardness of Hv500 or higher is required to withstand tensile strength during use. However, when the HV exceeds 650, the fatigue strength decreases. In the marage net, Ni, Co, Mo, and Ti contribute to the tensile strength, but as mentioned above, Ti
This is a factor in the formation of N. If Ti is not used, there is a concern that the tensile strength will decrease, but the required tensile strength is HV5 in terms of hardness.
It has become clear from experiments by the present inventors that within the range of 00 to 600, the necessary tensile strength can be ensured without depending on Ti in particular. If the addition of Ti becomes unnecessary, not only will the component cost be reduced accordingly, but strict restrictions on N will no longer be necessary, making it possible to achieve significant cost reductions in terms of both component costs and steel manufacturing costs. .
また、前述した介在物は、加工中の割れおよび表面欠陥
を招くばかりでなく、疲労破壊を発生させるので、N、
P、 S、 Oはこの両面がら制限を必要とし、
Cについても制限を加えることが必要となる。In addition, the inclusions mentioned above not only cause cracks and surface defects during processing, but also cause fatigue fracture, so N,
P, S, and O require restrictions on both sides,
It is also necessary to add restrictions to C.
そして介在物のうち、特に酸化物についてはO≦0.0
15%とすることにより、J r sco 555に規
定されるB+C系清浄度が急激に改善し、加工中の割れ
および表面欠陥の防止とともに疲労強度の向上が図られ
ることが判明した。Among inclusions, especially oxides, O≦0.0
It has been found that by increasing the content to 15%, the B+C system cleanliness specified in J r sco 555 is rapidly improved, cracks during processing and surface defects are prevented, and fatigue strength is improved.
第1図は基本成分が0.005C−0,0ISi −〇
、01Mn−0,005P−0,00l5−18Ni−
8,5Co−5,5Mo70.06Af−0,002N
であるマルエージ鋼において、鋼中0量を変化させたと
きのB+C系清浄度(J I 5G(1555)の推移
を示したものである。同図から明らかなように、B+C
系清浄度に対しては鋼中0量が支配的であり、鋼中O量
が0.0015%以下でB+C系清浄度が著しく改善さ
れる。In Figure 1, the basic components are 0.005C-0,0ISi-〇, 01Mn-0,005P-0,00l5-18Ni-
8,5Co-5,5Mo70.06Af-0,002N
This figure shows the change in B+C system cleanliness (J I 5G (1555)) when the amount of 0 in the steel is changed in maraging steel.As is clear from the figure, B+C
The amount of O in steel is dominant for system cleanliness, and when the amount of O in steel is 0.0015% or less, the cleanliness of the B+C system is significantly improved.
なお、疲労に対しては独立したC系介在物よりも点列状
に分布したB系介在物の方が悪影響が大きいが、Oを0
.0015%以下に制限することにより、B系介在物が
著しく減少し、0.0010%以下ではこれが完全に消
滅し疲労強度を著しく向上さセることも明らかとなった
。It should be noted that B-based inclusions distributed in a dot array have a greater negative impact on fatigue than independent C-based inclusions, but when O is 0.
.. It has also become clear that by limiting the content to 0.0015% or less, B-based inclusions are significantly reduced, and at 0.0010% or less, they completely disappear, resulting in a marked improvement in fatigue strength.
○ 耐摩耗性
耐摩耗性の付与と、表面への圧縮残留応力の付与とによ
って疲労強度を向上させることは既に知られた技術であ
る。マルエージ鋼に対しても表面窒化処理でこの効果を
引き出すことの可能なことが知られている。しかし、本
発明が対象とする継目無金属ヘルドのように大きい曲げ
歪みが加わる場合、従来の窒化処理(タフトライド処理
・・・塩浴窒化、イオン窒化、ガス軟窒化)はマルエー
ジ鋼に対し、かえって疲労寿命を低下さセることが判明
した。これは、従来の窒化処理ではベルト表面に不可避
的な化合物層(脆化層)が形成されてしまうためである
9
本発明者らは、このことからベルトの疲労寿命、耐久性
を向上させるには、ヘルド断面の硬度分布が重要と考え
、種々実験研究を行った結果、第2図に示すような硬度
分布を与えることが有効なことを知見した。○ Abrasion Resistance It is already known technology to improve fatigue strength by imparting abrasion resistance and imparting compressive residual stress to the surface. It is known that this effect can also be brought out by surface nitriding treatment of maraging steel. However, when large bending strains are applied, such as the seamless metal heald that is the object of the present invention, conventional nitriding treatment (tufftride treatment...salt bath nitriding, ion nitriding, gas nitrocarburizing) has a negative effect on maraging steel. It was found that fatigue life was reduced. This is because conventional nitriding treatment inevitably forms a compound layer (embrittlement layer) on the belt surface9. believed that the hardness distribution of the heald cross section was important, and as a result of various experimental studies, found that it was effective to provide a hardness distribution as shown in Figure 2.
すなわち、表面硬度はHv780未満では十分な耐摩耗
性と圧縮残留応力が得られff’Hv s 60を超す
と脆化層が形成され、曲げ歪みで早期破損をおこすので
、Hv780〜860とする。ヘルド厚さが0.2mm
程度であれば窒化層は20〜40μm(肉厚の10〜2
0%)の厚みを必要とする。窒化層が20μm未満では
窒化層が不足し、耐摩耗性と圧縮残留応力が不十分とな
り、40μmを超える曲げ歪みで早期破損を生じる。中
心部硬度については、前述したとおりHV500〜60
0とする。That is, if the surface hardness is less than 780 Hv, sufficient wear resistance and compressive residual stress will be obtained, but if it exceeds ff'Hv s 60, a brittle layer will be formed and early breakage will occur due to bending strain, so the surface hardness is set to 780 to 860 Hv. Heald thickness is 0.2mm
If the nitride layer is about 20 to 40 μm (10 to 2 μm thick)
0%) thickness is required. If the nitrided layer is less than 20 μm, the nitrided layer will be insufficient, the wear resistance and compressive residual stress will be insufficient, and a bending strain exceeding 40 μm will cause early failure. As for the center hardness, as mentioned above, HV500-60
Set to 0.
そして、窒化処理でこのような断面硬度分布を得ようと
した場合、従来のガス窒化では、Nの解離を促進するた
めのRXガスの混合は障害となる。When attempting to obtain such a cross-sectional hardness distribution by nitriding, mixing of RX gas to promote dissociation of N becomes an obstacle in conventional gas nitriding.
また、処理温度も従来のガス窒化における540〜57
0℃では、中心部に必要な硬度が与えられる前に表面に
脆化層を生してしまう。このようなことから好ましい窒
化処理はNH,ガス単独による420〜520℃の処理
であることが判明した。In addition, the processing temperature is 540 to 57 in conventional gas nitriding.
At 0°C, a brittle layer forms on the surface before the necessary hardness is achieved in the center. From these facts, it has been found that the preferred nitriding treatment is treatment at 420 to 520° C. using NH or gas alone.
本発明は、斯かる知見に基づきなされたもので、重量%
でc:o、o1%以下、Si:0.05%以下、Mrz
o、05%以下、P:0.01%以下、S;0゜01%
以下、Ni:16〜19%、Co:8〜15%、Mo:
3〜6%、Ti:0.01%以下、A1:0.15%以
下、N:0.003%以下、0:0゜0015%以下を
含み残部実質的にFeよりなる継目鋼管を金属ベルトに
冷間で加工し、次いで800〜880℃で0.5〜2h
rの固溶化処理を行った後、必要により420〜520
℃で1〜6hrの時効処理の行い、しかる後420〜5
20℃で1〜10hrの実質的にNH,ガス単独による
窒化処理を行うことを特徴とする継目無金属ベルトの製
造方法を要旨とする。The present invention was made based on this knowledge, and the weight %
c: o, o 1% or less, Si: 0.05% or less, Mrz
o, 05% or less, P: 0.01% or less, S; 0°01%
Below, Ni: 16-19%, Co: 8-15%, Mo:
3 to 6%, Ti: 0.01% or less, A1: 0.15% or less, N: 0.003% or less, 0:0゜0015% or less, and the remainder substantially consists of Fe as a metal belt. cold processing, then at 800-880℃ for 0.5-2h
After performing solid solution treatment of r, 420 to 520
Aging treatment for 1 to 6 hours at ℃, then 420 to 5 hours
The gist of the present invention is a method for manufacturing a seamless metal belt, which is characterized by carrying out a nitriding treatment using substantially NH gas alone at 20° C. for 1 to 10 hours.
以下、本発明の製造方法を成分組成、製法の順で詳述し
、その作用を明らかにする。Hereinafter, the manufacturing method of the present invention will be explained in detail in the order of component composition and manufacturing method, and its effects will be clarified.
○ 素材の成分組成
C:0.01%を超えると炭化物を形成し、金属間化合
物の析出量が減少して疲労強度を低下させる。○ Component composition C of the material: If it exceeds 0.01%, carbides are formed, the amount of precipitated intermetallic compounds is reduced, and fatigue strength is reduced.
このようなことから、Cは0.01%以下とし、望まし
くは0.005%以下である。For this reason, C should be 0.01% or less, preferably 0.005% or less.
Si、Mn:いずれもS io、、MnO,MnSなど
の介在物を形成し、疲労強度を低下させるので、0.0
5%以下に制限する。疲労強度上はSi。Si, Mn: Both form inclusions such as Sio, MnO, MnS, etc. and reduce fatigue strength, so 0.0
Limit to 5% or less. Si in terms of fatigue strength.
Mnが少ないほどよい。The lower the Mn content, the better.
P、S:粒界脆化や介在物形成のために疲労強度を低下
させる。したがって0.010%以下とする。P, S: Decreases fatigue strength due to grain boundary embrittlement and inclusion formation. Therefore, it should be 0.010% or less.
疲労強度はこれらが少ないほど有利となるので、少ない
程望ましい。The lower the fatigue strength, the more advantageous it becomes, so the lower the fatigue strength, the more desirable.
Ni:16%未満では材料の強度、靭性が低下し、19
%超えでは100%マルテンサイトが得られず強度低下
を住じる。したがってNiは16〜19%とする。Ni: If it is less than 16%, the strength and toughness of the material will decrease.
%, 100% martensite cannot be obtained and the strength will decrease. Therefore, Ni should be 16 to 19%.
Co:8%未満では強度低下を生じ、15%超では靭性
が低下するので、8〜15%とする。Co: If it is less than 8%, the strength will decrease, and if it exceeds 15%, the toughness will decrease, so it is set at 8 to 15%.
MO=3%未満ではHv≧500相当の強度が得られず
、6%超では靭性低下が著しいので、3〜6%とする。If MO is less than 3%, the strength equivalent to Hv≧500 cannot be obtained, and if it exceeds 6%, the toughness is significantly reduced, so it is set to 3 to 6%.
Ti:不純物で自然に混入してくる量ではTiNTiC
を形成し、疲労強度を低下させるので、0゜01%以下
に制限する。Ti: TiNTiC in the amount naturally mixed as an impurity
Since it forms and reduces fatigue strength, it is limited to 0°01% or less.
A2:脱酸に有効であるが、0.15%超ではアルミナ
系酸化物が多くなり、耐久性を低下させるので、0.1
5%以下とする。A2: It is effective in deoxidizing, but if it exceeds 0.15%, the amount of alumina-based oxide increases and the durability decreases, so 0.1%
5% or less.
N:TiNを形成する元素であるが、Tiをほとんど含
まないため極端に制限する必要はない。しかし0.00
3%を超えると、Ti以外の元素との間で窒化物を形成
し、靭性を低下させるので、0゜003%以下に制限す
る。N: This is an element that forms TiN, but since it hardly contains Ti, there is no need to limit it extremely. But 0.00
If it exceeds 3%, nitrides are formed with elements other than Ti, reducing toughness, so it is limited to 0°003% or less.
0:酸化物系(B、C系)介在物を形成し、0.001
5%以下と低くすることが重要であり、0.0015%
を超えると疲労強度が著しく低下する。0: Formation of oxide-based (B, C-based) inclusions, 0.001
It is important to keep it as low as 5% or less, 0.0015%
If it exceeds this, the fatigue strength will drop significantly.
疲労強度上は0が少ないほど有利となり、0.001%
以下とすることによりB系(点列状)の介在物が皆無と
なり疲労強度を著しく向上させる。In terms of fatigue strength, the less 0 is, the more advantageous it is, 0.001%
By doing the following, there will be no B-based (dot array) inclusions, and the fatigue strength will be significantly improved.
O製法 製法は基本的に造塊、加工、熱処理からなる。O manufacturing method The manufacturing method basically consists of ingot making, processing, and heat treatment.
■ 造塊
介在物を低くするために、VOD等の脱ガス処理でもよ
いが、なるべく真空誘導溶解を行うのがよい。溶解後、
高真空アークによる再溶解を行うのも有効である。(2) Degassing treatment such as VOD may be used to reduce agglomeration inclusions, but vacuum induction melting is preferably used. After dissolving,
It is also effective to perform remelting using a high vacuum arc.
■ 加工
造塊により得られた鋼塊を熱間鍛造あるいは熱間押出に
より厚肉の継目無管とし、これを直接あるいは固溶化処
理の後、冷間加工にて金属ヘルド用素管に成形する。■ The steel ingot obtained by processing ingots is hot-forged or hot-extruded into thick-walled seamless tubes, which are then formed directly or after solution treatment into raw tubes for metal healds by cold working. .
冷間加工としてはスピニング加工、ベルト圧延の2つが
良く知られており、通常はこれらを単独あるいは組合せ
て実施する。スピニング加工では素管の内径は変化せず
、肉厚のみを減少させ、加工後ヘルドとして必要な幅に
切断する。ベルト圧延では予め素管をヘルド状に切断し
たものを用い、肉厚減少と直径増加とを同時に生じさせ
る。Two well-known cold working methods are spinning processing and belt rolling, and these are usually carried out singly or in combination. In spinning processing, the inner diameter of the raw tube does not change, only the wall thickness is reduced, and after processing, it is cut to the width required for the heald. In belt rolling, a raw pipe is cut into heddles in advance, and the wall thickness is reduced and the diameter is increased at the same time.
冷間加工の形態、加工度等は最終製品の肉厚、直径、寸
法精度等により適宜選択される。The form of cold working, degree of working, etc. are appropriately selected depending on the wall thickness, diameter, dimensional accuracy, etc. of the final product.
■ 熱処理
(A)固溶化処理
この処理は冷間加工後に施すもので、冷間加工による加
工硬化を除去し、細粒のマルテンサイト組織を得るため
に実施する。(2) Heat treatment (A) Solution treatment This treatment is performed after cold working to remove work hardening caused by cold working and to obtain a fine-grained martensitic structure.
800℃未満、0.5 h r未満ではいずれの場合も
未固溶の金属間化合物が残り、強度と靭性が低下する。If the heating time is lower than 800° C. or 0.5 hr, undissolved intermetallic compounds remain in both cases, resulting in a decrease in strength and toughness.
逆に880℃超、2hr超ではいずれの場合も結晶粒の
粗大化が生じ、強度、靭性を低下させ、ベルトの変形も
大きくなる。したがって、固溶化処理は800〜880
℃で0.5〜2hrの処理とする。On the other hand, if the temperature exceeds 880° C. and the time exceeds 2 hours, the crystal grains will become coarser, reducing the strength and toughness and increasing the deformation of the belt. Therefore, the solution treatment is 800 to 880
The treatment time is 0.5 to 2 hours at ℃.
なお、この処理は、冷間加工による肉厚減少率が80%
以下なら省略することができる。この処理を省略した場
合、窒化処理条件が若干変化するが、その場合にあって
も本発明範囲内の条件で処理が可能である。In addition, this treatment reduces the wall thickness by 80% due to cold working.
The following can be omitted. If this treatment is omitted, the nitriding conditions will change slightly, but even in that case, the treatment can be carried out under conditions within the scope of the present invention.
(B)時効処理
420℃未満、lhr未満ではいずれの場合も十分な析
出強化(Hv≧500)を得ることができない。逆に5
20℃超、10hr超ではいずれの場合も過時効となり
、強度と延性がかえって低下する。したがって時効処理
は420〜520℃で1〜10時間の処理とする。(B) Aging treatment If the aging treatment is less than 420° C. or less than 1hr, sufficient precipitation strengthening (Hv≧500) cannot be obtained in either case. On the contrary, 5
If the temperature exceeds 20° C. and the time exceeds 10 hr, overaging will occur in any case, and the strength and ductility will actually decrease. Therefore, the aging treatment is carried out at 420 to 520°C for 1 to 10 hours.
なお、後で行う窒化処理が、この時効処理を満足する条
件で実施されるならば、この時効処理を省略することが
できる。Note that this aging treatment can be omitted if the nitriding treatment to be performed later is performed under conditions that satisfy this aging treatment.
(C)窒化処理
通常のガス窒化処理は、Nの解離を促進するためにNH
,ガスに50%程度のRXガスを混合して行うが、この
ような雰囲気で本発明が対象とする金属ベルトを処理し
た場合、ヘルド表面硬度がHv860を超え、脆化層が
形成されることから、かえって疲労寿命が低下する。し
たがって本発明では、実質的にNH3ガス単独で変化処
理を行う。(C) Nitriding process Normal gas nitriding process uses NH to promote the dissociation of N.
, by mixing about 50% RX gas with the gas, but if the metal belt targeted by the present invention is treated in such an atmosphere, the heald surface hardness will exceed Hv860 and a brittle layer will be formed. As a result, the fatigue life actually decreases. Therefore, in the present invention, the conversion process is substantially performed using NH3 gas alone.
この場合、10%程度までであればRXガスが混入され
ても、処理温度を低くし処理時間を短くすれば、脆化層
の形成は防止できる。実質的にとは、10%程度までR
Xガスが混入されてもよいことを意味する。In this case, even if RX gas is mixed up to about 10%, the formation of a brittle layer can be prevented by lowering the processing temperature and shortening the processing time. “Substantially” means R up to about 10%.
This means that X gas may be mixed.
処理温度については420℃未満ではNH,の分解が不
十分となり、必要な表面硬度および深さの窒化層が得ら
れない。逆に520℃超ではNH3の分解が過度に進み
、必要な窒化層が形成される前に表面硬度がHv860
を超え、脆化層が形成される結果になる。したがって4
20〜520℃とする。Regarding the treatment temperature, if it is lower than 420° C., the decomposition of NH becomes insufficient, and a nitrided layer with the required surface hardness and depth cannot be obtained. On the other hand, if the temperature exceeds 520°C, the decomposition of NH3 will proceed excessively, and the surface hardness will reach Hv860 before the necessary nitrided layer is formed.
This results in the formation of a brittle layer. Therefore 4
The temperature shall be 20-520°C.
処理時間についてはlhr未満では必要な窒化層が得ら
れず、耐摩耗性および圧縮残留応力が不足する。逆に1
0hr超では窒化層が厚くなり過ぎて曲げ歪みにより割
れを生じたり、表面硬度がHv860を超えて疲労強度
を著しく低下させる。If the treatment time is less than 1hr, the necessary nitrided layer will not be obtained, resulting in insufficient wear resistance and compressive residual stress. On the contrary, 1
If it exceeds 0 hr, the nitrided layer becomes too thick and cracks occur due to bending strain, and the surface hardness exceeds Hv860, significantly reducing fatigue strength.
したがって1〜]Ohrとする。Therefore, it is set as 1~]Ohr.
次に実施例を説明する。 Next, an example will be described.
第1表にA−Hで示す本発明範囲内の鋼、およびI〜N
で示す本発明範囲外の鋼を真空誘導溶解と高真空アーク
再溶解とにより各500 kg造塊した。その後、得ら
れた各鋼塊を熱間押出にて厚肉の継目無鋼管とし、しか
る後、スピニング加工で肉厚0.18〜0.51、内径
100〜250璽1のヘルド用薄肉素管とした。肉厚が
0.18■lに達しないものは更にヘルド圧延により肉
厚を0.181まで減少さゼた。Steels within the scope of the present invention indicated by A-H in Table 1, and I-N
500 kg each of steels outside the scope of the present invention shown in Table 1 were formed into ingots by vacuum induction melting and high vacuum arc remelting. Thereafter, the obtained steel ingots are hot extruded into thick-walled seamless steel tubes, and then spun into thin-walled raw tubes for healds with a wall thickness of 0.18 to 0.51 mm and an inner diameter of 100 to 250 mm. And so. For those whose wall thickness did not reach 0.18 μl, the wall thickness was further reduced to 0.181 by heald rolling.
そして、得られた各素管より幅10mmのへルトを切り
出し、これに第2表左欄に示す条件で固溶処理を行い、
必要に応し時効処理を行った後、NH,ガス単独による
窒化処理を行った。一部のヘルドについては比較のため
N H1ガス」−50%RXガスで通常のガス窒化処理
を行った。Then, a 10 mm wide helt was cut out from each of the obtained raw tubes, and it was subjected to solid solution treatment under the conditions shown in the left column of Table 2.
After performing aging treatment as necessary, nitriding treatment using NH and gas alone was performed. For comparison, some of the helds were subjected to normal gas nitriding treatment using NH1 gas-50% RX gas.
処理後のベルトについて表面割れの有無、断面硬度分布
、疲労強度を調査した。その結果を第2表右欄に示す。After the treatment, the belt was examined for surface cracks, cross-sectional hardness distribution, and fatigue strength. The results are shown in the right column of Table 2.
表面割れは脆化層の有無および加工性の指標となるもの
で、D=]5t(D=曲げ棒の直径、t:ヘルド肉厚)
の丸棒にベルトを巻きつけ、180℃曲げた際の表面割
れの有無で判定し、割れが生したものについては疲労試
験を省略した。Surface cracking is an indicator of the presence or absence of a brittle layer and workability, and D =]5t (D = diameter of bending rod, t: heald wall thickness)
A belt was wrapped around a round bar, and the presence or absence of surface cracks was determined when the belt was bent at 180°C, and the fatigue test was omitted for those with cracks.
硬度分布については表面硬度、窒化層深さ、中心部硬度
を測定し、耐久性を確保する上で必要な条件は第2図に
示されるように表面硬度がHv780〜860、窒化層
深さが20〜40μm、中心部硬度がHv500〜65
0であるので、この範囲に入るか否かで判定した。Regarding the hardness distribution, we measured the surface hardness, nitrided layer depth, and center hardness.The conditions necessary to ensure durability are as shown in Figure 2, when the surface hardness is Hv780-860 and the nitrided layer depth is 20~40μm, center hardness Hv500~65
Since it is 0, it was determined whether it falls within this range or not.
疲労強度はヘルドをブーグーに収め、これを回転させて
一定の曲げ応力(片振、2〜50 ktr f /寵2
)下で繰り返し曲げを行い、その限界回数Nで評価し、
N≧107を合格とした。Fatigue strength is measured by placing the heald in a Boogu, rotating it, and applying a constant bending stress (pulsating vibration, 2 to 50 ktr f/cm2).
), and evaluate it by the limit number of times N.
N≧107 was considered to be a pass.
第2表において、階1〜1)は成分組成が本発明範囲内
の鋼A−Hをベルトに加工後、本発明範囲内の条件で熱
処理した本発明例である。In Table 2, floors 1 to 1) are examples of the present invention in which steels A to H having compositions within the range of the present invention were processed into belts and then heat-treated under conditions within the range of the present invention.
いずれにおいても表面割れは生じず、脆化層は形成され
ていない。ヘルド断面の硬度分布についても、表面硬度
はHv780〜860、窒化層深さは20〜40μm、
中心部硬度はHv500〜650の各範囲内にあり、第
2図に示す目標硬度分布を満足している。疲労強度はい
ずれも合格ラインであるN=IX107を超えている。In either case, no surface cracks occurred and no brittle layer was formed. Regarding the hardness distribution of the heald cross section, the surface hardness is Hv780 to 860, the nitrided layer depth is 20 to 40 μm,
The center hardness is within the range of Hv500 to Hv650 and satisfies the target hardness distribution shown in FIG. All fatigue strengths exceed the passing line of N=IX107.
hh12〜17は成分組成が本発明範囲内の鋼A。hh12 to 17 are steels A whose component compositions are within the range of the present invention.
Eをベルトに加工後、本発明範囲外の条件で熱処理した
比較例である。This is a comparative example in which E was processed into a belt and then heat-treated under conditions outside the scope of the present invention.
隘12においては固溶化処理での処理温度が高すぎ、か
つ、窒化処理での処理温度が高すぎるため、表面硬度が
過大で表面割れを生し、疲労強度も十分でない。陽13
においては窒化処理温度が低すぎるため、表面硬度およ
び窒化層深さが不足し、疲労強度も十分でない。No、
+4においては窒化処理時間が長すぎるため、脆化層を
生じている。隘15においては時効処理温度が低く、ま
た窒化処理温度も低いため、析出強化を得られず、窒化
層深さも浅いため充分な疲労強度が得られていない。In case 12, the treatment temperature in the solution treatment is too high and the treatment temperature in the nitriding treatment is too high, resulting in excessive surface hardness and surface cracking, and insufficient fatigue strength. positive 13
Since the nitriding temperature is too low, the surface hardness and depth of the nitrided layer are insufficient, and the fatigue strength is also insufficient. No,
At +4, the nitriding time was too long, resulting in a brittle layer. In No. 15, the aging treatment temperature is low and the nitriding treatment temperature is also low, so precipitation strengthening cannot be obtained, and the depth of the nitriding layer is also shallow, so sufficient fatigue strength cannot be obtained.
階16においては時効処理温度および時間が過多のため
に過時効となり強度と延性がかえって低下している。1
lh17においては固溶化処理温度が低すぎるため、強
度と靭性の低下を生じ、表面割れおよび中心部の硬度不
足が生じている。In floor 16, the aging treatment temperature and time were too high, resulting in overaging, which resulted in a decrease in strength and ductility. 1
In lh17, the solution treatment temperature was too low, resulting in a decrease in strength and toughness, resulting in surface cracks and insufficient hardness in the center.
階18〜23は成分組成が本発明範囲外の鋼■〜Nをヘ
ルドに加工後、本発明範囲内の条件で熱処理した別の比
較例である。Grades 18 to 23 are other comparative examples in which steels 1 to 2 whose compositions are outside the range of the present invention were processed using a held and then heat-treated under conditions within the range of the present invention.
陽18(鋼I使用)においてはNiが不足し、A1が過
多のため、表面割れを生じ疲労強度が低下している。隘
19(鋼J使用)においてはSおよびNiが過多、Co
が不足のため中心部硬度が不足し疲労強度も十分でない
。隘20(鋼に使用)においてはCおよびCoが過多の
ため、硬化が進み、表面割れを生じ疲労強度も十分でな
い。In positive 18 (using steel I), Ni was insufficient and A1 was excessive, resulting in surface cracking and reduced fatigue strength. In No. 19 (using steel J), S and Ni are excessive, and Co
Due to the lack of hardness, the central part lacks hardness and fatigue strength is insufficient. In case of No. 20 (used for steel), due to excessive amounts of C and Co, hardening progresses, surface cracks occur, and fatigue strength is insufficient.
Th21(鋼り使用)においてはSiおよび0が過多、
MOが不足のため、中心部硬度が十分でなく疲労強度も
不足している。阻22(鋼M使用)においてはP、Mo
およびTiが過多のため、硬化が進んでいる。隘23(
鋼N使用)においてはMnおよびNが過多のため、疲労
強度が不足している。In Th21 (using steel), Si and 0 are excessive,
Due to the lack of MO, the center hardness is insufficient and the fatigue strength is also insufficient. In case 22 (using steel M), P, Mo
Also, due to excessive Ti content, hardening progresses. Number 23 (
In steel (using N), fatigue strength is insufficient due to excess Mn and N.
1)h24は成分組成が本発明範囲外の汎用のマルエー
ジ鋼Nをベルトに加工後、窒化処理として通常のガス窒
化処理(NH,ガス+5註
使用、500℃X4hr)を実施した従来例である。1) h24 is a conventional example in which general-purpose marage steel N, whose composition is outside the scope of the present invention, is processed into a belt and then subjected to normal gas nitriding treatment (NH, gas + 5 notes used, 500°C x 4 hours). .
本発明例(隘1〜1))と比べると、表面割れを生じて
おり、硬度分布も目標から大きく外れ、疲労強度も著し
く低い。したがって、加工性は低く、材料強度、疲労強
度、耐摩耗性も著しく劣る。Compared to the invention examples (numbers 1 to 1)), surface cracks were generated, the hardness distribution was far off target, and the fatigue strength was also extremely low. Therefore, the workability is low, and the material strength, fatigue strength, and wear resistance are also significantly inferior.
以上の説明から明らかなように、本発明の製造方法は継
目無金属ベルトに高度の加工性、材料強度、疲労強度お
よび耐摩耗性を付与するものであり、これらの特性につ
いて厳しい性能が要求される例えば自動車の無段変速機
用ヘルドの製造に適用して、この種の変速機の耐久性向
上、小型軽量化等に多大の効果を奏するものである。As is clear from the above description, the manufacturing method of the present invention provides a seamless metal belt with high workability, material strength, fatigue strength, and wear resistance, and strict performance is required for these properties. For example, it can be applied to the manufacture of healds for continuously variable transmissions in automobiles, and has great effects in improving the durability and reducing the size and weight of this type of transmission.
第1図は鋼中O量とB+C系清浄度との関係を示すグラ
フ、第2図は耐久性確保に必要なベルト断面硬度分布を
示すグラフである。FIG. 1 is a graph showing the relationship between the O content in steel and the B+C system cleanliness, and FIG. 2 is a graph showing the belt cross-sectional hardness distribution necessary to ensure durability.
Claims (1)
以下、Mn:0.05%以下、P:0.01%以下、S
:0.01%以下、Ni:16〜19%、Co:8〜1
5%、Mo:3〜6%、Ti:0.01%以下、Al:
0.15%以下、N:0.003%以下、O:0.00
15%以下を含み残部実質的にFeよりなる継目無鋼管
を金属ベルトに冷間で加工し、次いで800〜880℃
で0.5〜2hrの固溶化処理を行った後、必要により
420〜520℃で1〜6hrの時効処理を行い、しか
る後420〜520℃で1〜10hrの実質的にNH_
3ガス単独による窒化処理を行うことを特徴とする継目
無金属ベルトの製造方法。(1) C: 0.01% or less, Si: 0.05% by weight
Below, Mn: 0.05% or less, P: 0.01% or less, S
: 0.01% or less, Ni: 16-19%, Co: 8-1
5%, Mo: 3-6%, Ti: 0.01% or less, Al:
0.15% or less, N: 0.003% or less, O: 0.00
A seamless steel pipe containing 15% or less and the remainder substantially Fe is cold processed into a metal belt, and then heated at 800 to 880°C.
After performing solution treatment for 0.5 to 2 hours at 420 to 520℃, if necessary, aging treatment for 1 to 6 hours at 420 to 520℃, followed by substantially NH_
A method for producing a seamless metal belt, characterized by performing nitriding treatment using three gases alone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30048287A JPH01142021A (en) | 1987-11-27 | 1987-11-27 | Manufacture of seamless metallic belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30048287A JPH01142021A (en) | 1987-11-27 | 1987-11-27 | Manufacture of seamless metallic belt |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01142021A true JPH01142021A (en) | 1989-06-02 |
Family
ID=17885335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30048287A Pending JPH01142021A (en) | 1987-11-27 | 1987-11-27 | Manufacture of seamless metallic belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01142021A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0799668A2 (en) * | 1996-04-01 | 1997-10-08 | Idemitsu Petrochemical Co., Ltd. | Method for producing a seamless metallic belt |
JP2001140019A (en) * | 1999-11-12 | 2001-05-22 | Honda Motor Co Ltd | Method for producing endless metallic belt |
WO2002040722A1 (en) * | 2000-11-17 | 2002-05-23 | Imphy Ugine Precision | Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip |
US6767414B2 (en) | 1999-12-24 | 2004-07-27 | Hitachi Metals, Ltd. | Maraging steel having high fatigue strength and maraging steel strip made of same |
WO2005111253A1 (en) * | 2004-05-19 | 2005-11-24 | Robert Bosch Gmbh | Push belt and manufacturing method therefor |
US7204005B2 (en) * | 2002-08-30 | 2007-04-17 | Nissan Motor Co., Ltd. | Manufacturing method of endless metal belt and manufacturing apparatus of endless metal belt |
JP2007186780A (en) * | 2005-12-13 | 2007-07-26 | Hitachi Metals Ltd | Maraging steel with high fatigue strength, and maraging steel strip using it |
JP2008537661A (en) * | 2005-03-30 | 2008-09-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Portable electronic device with rotating camera unit |
US9541943B2 (en) | 2013-07-22 | 2017-01-10 | Kubota Corporation | Operation lever and grip |
WO2017064684A1 (en) * | 2015-10-15 | 2017-04-20 | Aperam | Steel, product created from said steel, and manufacturing method thereof |
US9631410B2 (en) | 2012-04-20 | 2017-04-25 | The Yokohama Rubber Co., Ltd. | Door opening/closing device |
-
1987
- 1987-11-27 JP JP30048287A patent/JPH01142021A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0799668A3 (en) * | 1996-04-01 | 1998-04-01 | Idemitsu Petrochemical Co., Ltd. | Method for producing a seamless metallic belt |
EP0799668A2 (en) * | 1996-04-01 | 1997-10-08 | Idemitsu Petrochemical Co., Ltd. | Method for producing a seamless metallic belt |
JP2001140019A (en) * | 1999-11-12 | 2001-05-22 | Honda Motor Co Ltd | Method for producing endless metallic belt |
US6767414B2 (en) | 1999-12-24 | 2004-07-27 | Hitachi Metals, Ltd. | Maraging steel having high fatigue strength and maraging steel strip made of same |
JP2008274436A (en) * | 2000-11-17 | 2008-11-13 | Imphy Ugine Precision | Method for producing cold-rolled maraging strip steel or steel slab cut into strip state |
WO2002040722A1 (en) * | 2000-11-17 | 2002-05-23 | Imphy Ugine Precision | Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip |
FR2816959A1 (en) * | 2000-11-17 | 2002-05-24 | Imphy Ugine Precision | Fabrication of strip or workpiece cut from cold rolled maraging steel and hardened by cold plastic deformation followed by recrystallization annealing treatment |
CN1298869C (en) * | 2000-11-17 | 2007-02-07 | 伊菲尤金精度公司 | Maraging steel and process for manufacturing a strip or a part cut out of a strip of cold-rolled maraging steel |
KR100884639B1 (en) * | 2000-11-17 | 2009-02-23 | 임피 위진느 프레씨지옹 | Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip |
US7204005B2 (en) * | 2002-08-30 | 2007-04-17 | Nissan Motor Co., Ltd. | Manufacturing method of endless metal belt and manufacturing apparatus of endless metal belt |
WO2005111253A1 (en) * | 2004-05-19 | 2005-11-24 | Robert Bosch Gmbh | Push belt and manufacturing method therefor |
JP2008537661A (en) * | 2005-03-30 | 2008-09-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Portable electronic device with rotating camera unit |
JP2007186780A (en) * | 2005-12-13 | 2007-07-26 | Hitachi Metals Ltd | Maraging steel with high fatigue strength, and maraging steel strip using it |
US9631410B2 (en) | 2012-04-20 | 2017-04-25 | The Yokohama Rubber Co., Ltd. | Door opening/closing device |
US9541943B2 (en) | 2013-07-22 | 2017-01-10 | Kubota Corporation | Operation lever and grip |
US10296035B2 (en) | 2013-07-22 | 2019-05-21 | Kubota Corporation | Operation lever and grip |
WO2017064684A1 (en) * | 2015-10-15 | 2017-04-20 | Aperam | Steel, product created from said steel, and manufacturing method thereof |
WO2017064537A1 (en) * | 2015-10-15 | 2017-04-20 | Aperam | Steel, product created from said steel, and manufacturing method thereof |
CN108138286A (en) * | 2015-10-15 | 2018-06-08 | 艾普伦 | Steel, the product of the steel making and its manufacturing method |
JP2018535316A (en) * | 2015-10-15 | 2018-11-29 | アペラム | Steel, product made from said steel, and manufacturing method thereof |
US10731231B2 (en) | 2015-10-15 | 2020-08-04 | Aperam | Steel, product created from said steel, and manufacturing method thereof |
CN116024505A (en) * | 2015-10-15 | 2023-04-28 | 艾普伦 | Steel, product made of said steel and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100661789B1 (en) | High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same | |
JP2735647B2 (en) | High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire | |
EP1158065A1 (en) | High-strength, high-toughness stainless steel excellent in resistance to delayed fracture | |
JP5937973B2 (en) | Si-killed steel wire rod having excellent fatigue characteristics and spring using the same | |
WO2007052775A1 (en) | High-strength steel excellent in delayed fracture resistance characteristics and metal bolts | |
MXPA06012591A (en) | Seamless steel pipe and method for production thereof. | |
JP3562192B2 (en) | Component for induction hardening and method of manufacturing the same | |
WO2007023873A1 (en) | Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof | |
JPH01142021A (en) | Manufacture of seamless metallic belt | |
JP4773106B2 (en) | Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts | |
JP2003147485A (en) | High toughness high carbon steel sheet having excellent workability, and production method therefor | |
JPH10251804A (en) | High strength spring steel | |
JPH07188834A (en) | High strength steel sheet having high ductility and its production | |
JPH11131176A (en) | Induction hardened parts and production thereof | |
JPH01142052A (en) | Seamless metallic belt and its production | |
JPH01142022A (en) | Manufacture of seamless metallic belt | |
JP2001131697A (en) | Steel wire rod, steel wire and producing method therefor | |
JP4976985B2 (en) | Manufacturing method of wire rod and steel bar with excellent low-temperature torsional characteristics | |
JP2001032044A (en) | Steel for high strength bolt and production of high strength bolt | |
JP2007277654A (en) | Cold forged components, manufacturing method for obtaining the same, and steel material | |
JP4976986B2 (en) | Manufacturing method of steel wire with excellent low-temperature torsional characteristics | |
JPH08260039A (en) | Production of carburized and case hardened steel | |
JPH06145895A (en) | High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire | |
JPH11117020A (en) | Production of heat resistant parts | |
JPH09202921A (en) | Production of wire for cold forging |