JPH01141895A - Method for growing single crystal of compound semiconductor - Google Patents

Method for growing single crystal of compound semiconductor

Info

Publication number
JPH01141895A
JPH01141895A JP29865987A JP29865987A JPH01141895A JP H01141895 A JPH01141895 A JP H01141895A JP 29865987 A JP29865987 A JP 29865987A JP 29865987 A JP29865987 A JP 29865987A JP H01141895 A JPH01141895 A JP H01141895A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
crystal
compound semiconductor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29865987A
Other languages
Japanese (ja)
Inventor
Fumihiko Sato
文彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29865987A priority Critical patent/JPH01141895A/en
Publication of JPH01141895A publication Critical patent/JPH01141895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enhance the convection suppressing effect of an applied magnetic field when a single crystal of a compd. semiconductor is grown by the Czochralski method with a sealing liq. by supplying electric current between upper and lower shafts. CONSTITUTION:When a single crystal 11 of a III-V compd. semiconductor is grown by the Czochralski method with a sealing liq., a magnetic field having 1-10X10<-2>weber/m<2> magnetic flux density is applied to the growing surface of the crystal 11 from a magnetic field generator 12 and electric current having 5X10<2>-5X10<4>A/m<2> current density is supplied between upper and lower shafts from a power source 14. By this method, the same effect as the effect of forced application of a magnetic field can be produced with the small magnetic field generator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は砒化ガリウム、リン化インジウム等の■−■族
化合物半導体を液体封止チョクラルスキー法により単結
晶成長させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing a single crystal of a ■-■ group compound semiconductor such as gallium arsenide or indium phosphide by a liquid-filled Czochralski method.

〔従来の技術〕[Conventional technology]

従来、この種の化合物半導体単結晶成長方法を第2図を
用いて説明する。一般に蒸気圧の高い■族元素の飛散を
防止するために、内部を数10気圧の高圧状態とするこ
とが可能な容器1内にサセプタ4を配しその内部に配置
したルツボ5内に、多結晶原料又は単体の■族元素(例
えばガリウム)及びV族元素(例えば砒素)を仕込み、
最上部には封止剤であ乞酸化ボロン7を置く。
A conventional method for growing compound semiconductor single crystals of this type will be explained with reference to FIG. Generally, in order to prevent the scattering of group (I) elements with high vapor pressure, a susceptor 4 is placed inside a container 1 that can be kept at a high pressure of several tens of atmospheres, and a crucible 5 is placed inside the container 1. Prepare a crystal raw material or a single group I element (e.g. gallium) and a group V element (e.g. arsenic),
Boron oxide 7 is placed on top as a sealant.

窒素、アルゴン等の不活性ガスにより容器1内を高圧状
態に保ちつつ、昇温して■−v族化合物半導体原料を溶
融させる。上軸9に取付けられた種結晶10を原料融液
8に接触後、上方に引き上げつつ温度を降ろすことによ
り過飽和分が種結晶を核として結晶成長する。3は下軸
2に支持されたペデスタル、6はヒータである。
While maintaining the inside of the container 1 in a high pressure state with an inert gas such as nitrogen or argon, the temperature is raised to melt the ①-V group compound semiconductor raw material. After the seed crystal 10 attached to the upper shaft 9 comes into contact with the raw material melt 8, the temperature is lowered while pulling the seed crystal 10 upward, so that the supersaturated component grows using the seed crystal as a nucleus. 3 is a pedestal supported by the lower shaft 2, and 6 is a heater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のm−v族化合物半導体単結晶成長方法は
融液中の温度変化に伴う固化・再融解の繰り返しが結晶
固液界面で発生し、微小領域での不均一さの原因となる
。そこで引き上げ軸方向に対して垂直又は水平方向に磁
場を印加することにより融液内にローレンツ力を発生さ
せ、対流を減少させていた。しかし砒化ガリウム融液を
例にとると、対流抑制効果が顕著化する磁場強度は10
00ガウス以上であり、磁場発生装置の大型化、高価格
化が避けられないという欠点がある。
In the conventional m-v group compound semiconductor single crystal growth method described above, repeated solidification and remelting occur at the crystal solid-liquid interface due to temperature changes in the melt, causing non-uniformity in minute regions. Therefore, by applying a magnetic field perpendicularly or horizontally to the pulling axis direction, a Lorentz force is generated within the melt, thereby reducing convection. However, if we take gallium arsenide melt as an example, the magnetic field strength at which the convection suppressing effect becomes noticeable is 10
00 Gauss or more, which has the disadvantage that the magnetic field generator inevitably becomes larger and more expensive.

本発明の目的は前記問題点を解消した化合物半導体単結
晶成長方法を提供することにある。
An object of the present invention is to provide a compound semiconductor single crystal growth method that eliminates the above-mentioned problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の化合物半導体単結晶成長方法に対し、本
発明は磁場印加に加えて種結晶が取付けられている上軸
と、ルツボを支持する下軸との間に電流を流すことによ
り、ローレンツ力による対流抑制を一層効果的にすると
いう相違点を有する。
In contrast to the conventional compound semiconductor single crystal growth method described above, the present invention applies a magnetic field and also flows a current between the upper shaft on which the seed crystal is attached and the lower shaft that supports the crucible, thereby reducing the Lorentz force. The difference is that convection suppression is more effective.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は液体封止チョクラルスキー法による■−V族化
合物半導体単結晶成長において、結晶成長界面に1〜1
0 X 10″″2%+eber/−の磁束密度の磁場
を印加しつつ、5×102〜5 X 10’A/n?の
電流密度の電流を流すことを特徴とする化合物半導体単
結晶成長方法である。
The present invention relates to the growth of single crystals of -V group compound semiconductors using the liquid-sealed Czochralski method.
While applying a magnetic field with a magnetic flux density of 0 x 10''''2%+ever/-, 5 x 102 to 5 x 10'A/n? This is a compound semiconductor single crystal growth method characterized by flowing a current with a current density of .

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図に本発明の実施例1としてInnドープ絶絶縁砒
化ガリウム単結晶成長装置の縦断面図を示す。
(Example 1) FIG. 1 shows a longitudinal cross-sectional view of an Inn-doped insulated gallium arsenide single crystal growth apparatus as Example 1 of the present invention.

高圧容器1内の下軸2に取付けられたペデスタル3によ
ってサセプタ4を支持している。サセプタ内にはPBN
製ルツルツボ5り、ルツボ5内には砒化ガリウム原料及
び封止剤酸化ボロンを配置する。容器1内を窒素、アル
ゴン等の不活性ガスで加圧後、抵抗加熱ヒータ6に通電
し、ルツボ内を砒化ガリウムの融点である1238℃以
上に昇温する。
A susceptor 4 is supported by a pedestal 3 attached to a lower shaft 2 inside the high-pressure vessel 1. PBN inside the susceptor
A gallium arsenide raw material and a boron oxide sealant are placed in the crucible 5. After pressurizing the inside of the container 1 with an inert gas such as nitrogen or argon, electricity is applied to the resistance heater 6 to raise the temperature inside the crucible to 1238° C. or higher, which is the melting point of gallium arsenide.

昇温後、封止剤である酸化ボロン7に覆われた砒化ガリ
ウム融液8の表面に、上軸9に取付けた種結晶10の先
端をつける。
After raising the temperature, the tip of the seed crystal 10 attached to the upper shaft 9 is attached to the surface of the gallium arsenide melt 8 covered with boron oxide 7 as a sealant.

ヒータ6の温度を降ろすことにより、融液8内に過飽和
状態を生成し、種結晶10を回転しながら上方へと引き
上げ、単結晶11を成長させる。
By lowering the temperature of the heater 6, a supersaturated state is generated in the melt 8, and the seed crystal 10 is pulled upward while rotating, thereby growing a single crystal 11.

結晶引き上げ成長開始直後に電磁石コイル12に通電し
てルツボ内部に700ガウス(=7XIO−2webe
r/m2)の磁場を印加しつつ電流源14によって上・
下軸2,9間に2Aの電流を流しながら結晶成長した。
Immediately after starting the crystal pulling growth, the electromagnetic coil 12 is energized to create a temperature of 700 Gauss (=7XIO-2web) inside the crucible.
r/m2) while applying a magnetic field of
Crystal growth was performed while passing a current of 2 A between the lower shafts 2 and 9.

単結晶引き上げ時の固液界面形状として下に凸である場
合、結晶性が良好であることが半経験的に知られている
。固液界面を下に凸にするには強制対流を抑制する必要
がある。このことは結晶直下の上方向の対流を抑制する
ことであり水平磁場印加が有効である。
It is semi-empirically known that when the solid-liquid interface shape during single crystal pulling is convex downward, the crystallinity is good. To make the solid-liquid interface convex downward, it is necessary to suppress forced convection. This is to suppress upward convection directly below the crystal, and applying a horizontal magnetic field is effective.

砒化ガリウム結晶の真性キャリア濃度は室温で約1.8
×102c++−3と小さくその抵抗率は10’Ω・1
台である。しかし1000”K=727℃では真性キャ
リア濃度は約3 X 10” am−’であり抵抗率は
数Ω・口と小さくなる。補助ヒータ13を用いて固化後
の結晶を80θ℃以上の状態に保持することにより上・
下軸間に大電圧を印加せず、固液界面に電流を流すこと
が可能である。
The intrinsic carrier concentration of gallium arsenide crystal is approximately 1.8 at room temperature.
As small as ×102c++-3, its resistivity is 10'Ω・1
It is a stand. However, at 1000''K=727°C, the intrinsic carrier concentration is about 3 x 10''am-' and the resistivity is as small as several ohms. By using the auxiliary heater 13 to maintain the solidified crystal at a temperature of 80θ°C or higher,
It is possible to flow current through the solid-liquid interface without applying a large voltage between the lower shafts.

本発明による方法で成長させたInドープGaAs結晶
をX線トポグラフにより観察した。従来技術によるIn
ドープGaAs結晶に比較し、成長縞が著しく低減され
、対流抑止効果が認められた。
An In-doped GaAs crystal grown by the method of the present invention was observed by X-ray topography. In according to the prior art
Compared to doped GaAs crystals, growth striations were significantly reduced, and a convection suppressing effect was observed.

(実施例2) 次に実施例の2としてSiドープInP結晶成長を説、
明する。
(Example 2) Next, as Example 2, Si-doped InP crystal growth will be explained.
I will clarify.

SiがInP結晶中に10”an−’台ドープされる成
長条件を例に説明すると、上・下軸2,9間に電流を1
OA流し磁場を400ガウス(=4X10−”webe
r/rrr)印加して直径2インチの結晶を成長した。
Taking as an example the growth conditions in which Si is doped in the InP crystal on the order of 10"an-', a current of 1 is applied between the upper and lower axes 2 and 9.
OA flowing magnetic field is 400 Gauss (=4X10-”web
r/rrr) to grow a crystal with a diameter of 2 inches.

本成長条件の結晶は室温付近で低抵抗を示すので、結晶
を高温状態に保持する工夫は特に必要としない。
Since the crystal under these growth conditions exhibits low resistance near room temperature, no special measures are required to maintain the crystal at a high temperature.

従来技術によるSiドープInP結晶に比べて、本実施
例のSiドープInP結晶は成長縞が減少するとともに
結晶周辺部のすべり転位も減少していた。
Compared to the Si-doped InP crystal according to the prior art, the Si-doped InP crystal of this example had fewer growth striations and fewer slip dislocations in the crystal periphery.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は化合物半導体単結晶を引き
上げ法によって成長する場合に磁場印加に加えて上・下
軸間に電流を流すことにより、磁場印加による対流抑制
を、より一層効果的となし、小さな磁場発生装置で強制
磁場印加と同じ効果を得ることができる効果を有するも
のである。
As explained above, the present invention makes convection suppression by applying a magnetic field even more effective by passing a current between the upper and lower axes in addition to applying a magnetic field when growing a compound semiconductor single crystal by the pulling method. , which has the effect of being able to obtain the same effect as applying a forced magnetic field with a small magnetic field generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化合物半導体単結晶成長方法を説明す
る縦断面図、第2図は従来の化合物半導体単結晶成長方
法を説明する縦断面図である。
FIG. 1 is a vertical cross-sectional view illustrating the compound semiconductor single crystal growth method of the present invention, and FIG. 2 is a vertical cross-sectional view illustrating the conventional compound semiconductor single crystal growth method.

Claims (1)

【特許請求の範囲】[Claims] (1)液体封止チョクラルスキー法によるIII−V族化
合物半導体単結晶成長において、結晶成長界面に1〜1
0×10^−^2weber/m^2の磁束密度の磁場
を印加しつつ、5×10^2〜5×10^4A/m^2
の電流密度の電流を流すことを特徴とする化合物半導体
単結晶成長方法。
(1) In III-V group compound semiconductor single crystal growth using the liquid-sealed Czochralski method, 1 to 1
While applying a magnetic field with a magnetic flux density of 0 x 10^-^2 weber/m^2, 5 x 10^2 to 5 x 10^4 A/m^2
A compound semiconductor single crystal growth method characterized by flowing a current with a current density of .
JP29865987A 1987-11-26 1987-11-26 Method for growing single crystal of compound semiconductor Pending JPH01141895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29865987A JPH01141895A (en) 1987-11-26 1987-11-26 Method for growing single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29865987A JPH01141895A (en) 1987-11-26 1987-11-26 Method for growing single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH01141895A true JPH01141895A (en) 1989-06-02

Family

ID=17862601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29865987A Pending JPH01141895A (en) 1987-11-26 1987-11-26 Method for growing single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01141895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307991B1 (en) * 1997-12-12 2002-02-19 가네꼬 히사시 Semiconductor single crystal growing apparatus and crystal growing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307991B1 (en) * 1997-12-12 2002-02-19 가네꼬 히사시 Semiconductor single crystal growing apparatus and crystal growing method

Similar Documents

Publication Publication Date Title
US10519563B2 (en) Device and method for continuous VGF crystal growth through rotation after horizontal injection synthesis
JPH0212920B2 (en)
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JPH01141895A (en) Method for growing single crystal of compound semiconductor
EP0194051B1 (en) Method for manufacturing single crystal
JPH10130100A (en) Apparatus for production of semiconductor single crystal and its production
JP3719341B2 (en) Liquid phase epitaxial growth method of SiC crystal
JPS6259598A (en) Indium phosphide single crystal and production thereof
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6317289A (en) Production of semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS59102893A (en) Crystal growth method
JP2758038B2 (en) Single crystal manufacturing equipment
JP2612897B2 (en) Single crystal growing equipment
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JPS6033797B2 (en) How to grow single crystals
KR950000645B1 (en) High quality n-type gasa single crystal growing method by horizontal bridgeman
JP3557690B2 (en) Crystal growth method
JPS6163594A (en) Pruduction unit for single crystal
JPH10261813A (en) Substrate for long-wavelength photodetector and epitaxial wafer
JPS6033297A (en) Pulling device for single crystal semiconductor
JPS62167286A (en) Heating device
GATOS et al. Microscale defect kinetics in melt-grown GaAs(Final Technical Report, 1 Aug. 1983- 31 Aug. 1986)
JP2004323271A (en) Si-DOPED GALLIUM ARSENIDE SINGLE CRYSTAL SUBSTRATE