JPH0114166B2 - - Google Patents

Info

Publication number
JPH0114166B2
JPH0114166B2 JP58055200A JP5520083A JPH0114166B2 JP H0114166 B2 JPH0114166 B2 JP H0114166B2 JP 58055200 A JP58055200 A JP 58055200A JP 5520083 A JP5520083 A JP 5520083A JP H0114166 B2 JPH0114166 B2 JP H0114166B2
Authority
JP
Japan
Prior art keywords
carbon
particles
organic polymer
manufacturing
pitches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58055200A
Other languages
Japanese (ja)
Other versions
JPS59207821A (en
Inventor
Takamasa Kawakubo
Mitsuru Yoshida
Yoshihisa Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58055200A priority Critical patent/JPS59207821A/en
Publication of JPS59207821A publication Critical patent/JPS59207821A/en
Publication of JPH0114166B2 publication Critical patent/JPH0114166B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は疎密構造を有する炭素製品の製造方法
に関する。詳しくは、本発明は疎構造炭素成形体
と密構造炭素成形体とが交互に構造を形成してい
る疎密構造を有する炭素製品の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon products having a dense and dense structure. More specifically, the present invention relates to a method for producing a carbon product having a dense and sparse structure in which sparsely structured carbon molded bodies and densely structured carbon molded bodies alternately form a structure.

本願明細書において、炭素と言う用語は炭素質
及び黒鉛質を包含し、疎構造とは炭素多孔体から
成る構造であり、また密構造とはバインダー及び
必要に応じてフイラーを加え常法によつて炭素前
駆体化処理を施した後不活性ガス雰囲気中で焼成
して成る炭素材の有する構造を言い、焼成過程で
必然的に生じるバインダー部分の微細クラツク等
の構造は多孔構造とは呼ばない。また、密構造を
得るための配合組成物を混合、混練した後、成形
機等を用いて任意の形状に賦形した状態や疎構造
を得るため有機高分子粒子の表面を溶かして点接
着を生じさせ、粒子同士を結合させた状態をグリ
ーン状態、と称する。さらに炭素前駆体化状態と
は、グリーン状態の成形体を、炭素化促進触媒ま
たは架橋剤または重合開始剤を添加する方法、酸
処理を施す方法、Cl2,O3、空気等の雰囲気中で
50〜300℃に加熱架橋する方法、紫外線、電子線
あるいはその他の放射線等を照射させて架橋硬化
させる方法等の手段によつて不溶、不融化処理し
た状態である。
In this specification, the term carbon includes carbonaceous and graphitic substances, a loose structure is a structure made of carbon porous material, and a dense structure is a structure made of carbon porous material, and a dense structure is a structure made by adding a binder and filler as necessary. This refers to the structure of a carbon material obtained by firing it in an inert gas atmosphere after being subjected to a carbon precursor treatment, and the structure such as fine cracks in the binder part that inevitably occurs during the firing process is not called a porous structure. . In addition, after mixing and kneading the compounded composition to obtain a dense structure, it can be shaped into an arbitrary shape using a molding machine or the like, or the surface of the organic polymer particles can be melted and point-bonded to obtain a loose structure. The state in which the particles are bonded together is called the green state. Furthermore, the carbon precursor state refers to a method in which a green compact is treated by adding a carbonization accelerating catalyst, a crosslinking agent, or a polymerization initiator, by acid treatment, or in an atmosphere of Cl 2 , O 3 , air, etc.
It is in a state in which it has been rendered insoluble or infusible by means such as heating crosslinking at 50 to 300°C or crosslinking and curing by irradiating with ultraviolet rays, electron beams, or other radiation.

炭素製品は耐酸化性、耐薬品性に優れ、非酸化
性雰囲気に於ては溶融変形することなく優れた耐
熱性、耐蝕性を示す。かかる優れた特性を有する
炭素からなる多孔体は、液体中の固体分離等の各
種フイルター、触媒担体としての利用、薬品賦活
処理等を行い活性炭あるいは吸着剤としての利
用、軽量構造体、断熱材、電池の電極、面状発熱
体等に使用が可能である。また密構造炭素成形体
は熱交換器、蒸留器、蒸発器、吸収器、濃縮器、
過器等に利用されている。
Carbon products have excellent oxidation resistance and chemical resistance, and exhibit excellent heat resistance and corrosion resistance without melting and deforming in non-oxidizing atmospheres. Porous bodies made of carbon with such excellent properties can be used as various filters for solid separation in liquids, catalyst carriers, activated carbon or adsorbents after chemical activation treatment, lightweight structures, heat insulation materials, etc. It can be used for battery electrodes, sheet heating elements, etc. In addition, dense structure carbon compacts can be used in heat exchangers, distillers, evaporators, absorbers, concentrators, etc.
It is used in overheating equipment, etc.

しかしながら今日までに多孔体からなる疎構造
炭素と密構造炭素とが一体化した炭素成形体は得
られていない。これが得られれば、さらに広分野
での利用が期待される。
However, to date, a carbon molded body in which a loose structure carbon and a dense structure carbon made of a porous body are integrated has not been obtained. If this is achieved, it is expected that it will be used in a wider range of fields.

そこで本発明の目的は、高強度かつ均一気孔分
布を有する炭素多孔体と、密構造炭素成形体とを
一体製造することにより設計通りの疎密構造を有
する連続不均質の炭素体を製造する方法を提供す
ることである。
Therefore, the object of the present invention is to provide a method for manufacturing a continuous heterogeneous carbon body having a designed sparse and dense structure by integrally manufacturing a carbon porous body having high strength and a uniform pore distribution and a dense structure carbon molded body. It is to provide.

本願発明者らは、この目的を達成するため鋭意
研究の結果、不活性ガス雰囲気中で焼成すること
により基本的に密構造炭素が得られる配合組成物
のグリーン状態成形体、またはその炭素前駆体化
状態成形体、または焼成炭化物と塩素化塩化ビニ
ル樹脂粒子とを、液状組成物を用い一体賦形した
複合体を、必要に応じ炭素前駆体化処理し、不活
性ガス雰囲気中で焼成することで疎密構造を有す
る炭素製品を製造する方法を提案した(特願昭57
−138347)。しかしながら、この方法は、疎構造
炭素部分が比較的薄いものしか製造し得ない、疎
構造炭素部・密構造炭素部に炭素前駆体化処理時
及び焼成時にクラツクが入り易い、両構造部の接
合が弱い等の欠点を有していた。
In order to achieve this objective, the inventors of the present application have conducted extensive research and have developed a green-state molded product of a compounded composition that basically produces dense carbon by firing in an inert gas atmosphere, or a carbon precursor thereof. The molded body in the oxidized state, or the composite formed by integrally molding the calcined carbide and chlorinated vinyl chloride resin particles using a liquid composition, is treated to become a carbon precursor if necessary, and then calcined in an inert gas atmosphere. proposed a method for producing carbon products with a dense and dense structure (patent application 1983).
−138347). However, this method can only produce a relatively thin carbon part with a relatively thin structure, cracks are likely to occur in the carbon part with a loose structure and a carbon part with a dense structure during carbon precursor treatment and during firing, and the joining of both structural parts is difficult. It had drawbacks such as weak

そこで、本願発明者らは、さらに鋭意研究の結
果、不活性ガス雰囲気中で焼成することにより密
構造炭素が得られる有機高分子物質及びアスフア
ルトピツチ類、乾留ピツチ類の1種または2種以
上の混合物もしくは必要に応じて微粒黒鉛粉末と
の配合物よりなる成形体と、不活性ガス雰囲気中
での焼成によつて粒状に焼結して疎構造炭素が得
られる有機高分子粒子表面層を溶かして粒子間に
点接着を生じさせた有機高分子多孔体とを、固化
後不活性ガス雰囲気で焼成して高い炭素残査を残
す有機質液状組成物を用いて一体賦形した複合体
を不活性ガス雰囲気中で焼成することからなる疎
密構造を有する炭素製品の製造方法に想到し前記
欠点を無くすことに成功した。なお黒鉛粉末の添
加は、成形安定性の向上に寄与する。
Therefore, as a result of further intensive research, the inventors of the present application have discovered that one or more types of organic polymer substances, asphalt pitches, and carbonized pitches, which can yield dense structure carbon by firing in an inert gas atmosphere, have been developed. A molded body made of a mixture or a blend with fine graphite powder if necessary, and a surface layer of organic polymer particles that are sintered into granules to obtain loose structure carbon by firing in an inert gas atmosphere are melted. After solidification, the organic polymer porous material with point adhesion between particles is formed into an inert composite using an organic liquid composition that leaves a high carbon residue and is fired in an inert gas atmosphere. We have succeeded in eliminating the above-mentioned drawbacks by devising a method for manufacturing carbon products having a dense and dense structure, which involves firing in a gas atmosphere. Note that the addition of graphite powder contributes to improving molding stability.

本発明の疎密構造を有する炭素製品の製造方法
について以下に具体的に説明する。
The method for producing a carbon product having a dense and dense structure according to the present invention will be specifically explained below.

まず、不活性ガス雰囲気中で焼成して密構造炭
素となるグリーン状態成形体を形成しておく。こ
れは、有機高分子物質及びアスフアルトピツチ
類、乾留ピツチ類等の1種または2種以上混合し
た混合物と微粒黒鉛粉末との配合物をヘンシエル
ミキサー等の混合機で均一に混合し、次にこの混
合物を加圧ニーダー、2本ロール、3本ロール、
コニーダー等の高度に剪断力がかけられる混練機
を用いて加熱下で混練し、混練物をカレンダーロ
ール、押出成形機、射出成形機等を用いて板状、
棒状等任意の形状に成形することによつて得られ
る。このグリーン状態成形体を炭素前駆体化処理
することで炭素前駆体化状態の成形体を得る。な
お、使用する有機高分子物質は、ポリ塩化ビニ
ル、ポリアクリロニトリル、ポリビニルアルコー
ル、ポリ塩化ビニル−酢酸ビニル共重合体等の熱
可塑性樹脂、フエノール樹脂、フラン樹脂、エポ
キシ樹脂、不飽和ポリエステル等の熱硬化性樹
脂、リグニン、セルロース等の天然高分子物質、
ナフタレンスルホン酸のホルマリン縮合物等の縮
合多環芳香族を分子の基本構造内に有する合成高
分子物質等を包含する。アスフアルト、ピツチ類
としては石油アスフアルト、コールタールピツ
チ、ナフサ分解ピツチ等や合成樹脂等の炭化水素
化合物の400℃以下の乾留物等がある。また黒鉛
とは平均粒度0.5〜15μmの黒鉛である。次に、こ
の密構造炭素が得られるグリーン状態の成形体、
炭素前駆体化状態の成形体いづれかと、疎構造炭
素が得られる、グリーン状態、炭素前駆体化状態
の多孔体とを炭素化した段階で結合させるため、
有機高分子物質アスフアルトピツチ類、乾留ピツ
チ類の1種または2種以上混合した混合物とを微
粒黒鉛粉末との配合よりなる有機質液状組成物を
塗布する。ここに有機高分子物質とはポリ塩化ビ
ニル、ポリアクリロニトリル等の熱可塑性樹脂、
フエノール樹脂、フラン樹脂等の熱硬化性樹脂、
トラガントガム等の天然高分子物質である。ま
た、アスフアルトピツチ類は石油アスフアルト、
コールタールピツチ等であり、黒鉛とは平均粒度
0.5〜15μmの黒鉛である。
First, a green-state molded body that becomes dense structure carbon is formed by firing in an inert gas atmosphere. This is done by uniformly mixing a mixture of one or more organic polymer substances, asphalt pitches, carbonized pitches, etc., and fine graphite powder using a mixer such as a Henschel mixer, and then This mixture is processed using a pressure kneader, two rolls, three rolls,
The kneaded material is kneaded under heat using a kneader that can apply a high shear force such as a co-kneader, and the kneaded product is shaped into a plate using a calender roll, an extrusion molding machine, an injection molding machine, etc.
It can be obtained by molding it into any shape such as a rod. By subjecting this green-state molded body to a carbon precursor treatment, a molded body in a carbon precursor state is obtained. The organic polymer substances used include thermoplastic resins such as polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-vinyl acetate copolymers, phenolic resins, furan resins, epoxy resins, and unsaturated polyesters. Natural polymer substances such as curable resins, lignin, and cellulose,
It includes synthetic polymer substances having a condensed polycyclic aromatic group in the basic structure of the molecule, such as a formalin condensate of naphthalene sulfonic acid. Examples of asphalt and pitch include petroleum asphalt, coal tar pitch, naphtha cracked pitch, etc., and carbonized products of hydrocarbon compounds such as synthetic resins at temperatures below 400°C. Moreover, graphite is graphite with an average particle size of 0.5 to 15 μm. Next, a molded body in a green state from which this dense structure carbon is obtained,
In order to combine either of the molded bodies in a carbon precursor state with a porous body in a green state and a carbon precursor state, from which loosely structured carbon can be obtained, at the stage of carbonization,
An organic liquid composition consisting of a mixture of one or more of organic polymeric substances asphalt pitches and carbonized pitches and fine graphite powder is applied. Organic polymer substances here include thermoplastic resins such as polyvinyl chloride and polyacrylonitrile,
Thermosetting resins such as phenolic resins and furan resins,
It is a natural polymeric substance such as gum tragacanth. In addition, asphalt pits are petroleum asphalt,
Coal tar pitch, etc., and graphite is the average particle size.
It is graphite with a thickness of 0.5 to 15 μm.

なお、使用する有機高分子物質、ピツチ、黒鉛
等は、密構造部分の形成に用いたものと同じもの
が結合力の増強につながるので好ましい。常温で
液状を呈さないものは、その樹脂の初期縮合物や
溶剤に溶解したものを使用する。この時、黒鉛は
5〜50重量部程度添加することによつて、炭素化
時に結合をより強固にすることができる。
The organic polymer material, pitch, graphite, etc. to be used is preferably the same as that used for forming the dense structure portion, since this leads to an increase in bonding strength. If the resin does not exhibit a liquid state at room temperature, use an initial condensate of the resin or a resin dissolved in a solvent. At this time, by adding about 5 to 50 parts by weight of graphite, the bond can be made stronger during carbonization.

次に、有機質液状組成物を接合剤とし、疎構造
部と密構造部との接合を行う。例えば、底面が正
方形の疎密構造の積層製品を作成する場合には、
底面正方形のグリーン状態または炭素前駆体状態
の有機高分子多孔体上に、有機質液状組成物を塗
布した底面正方形の密構造炭素が得られるグリー
ン状態成形体.炭素前駆体状態成形体のいづれか
を置き、この操作を希望積層数の状態まで繰返
す。また内部が密構造、外側が疎構造の製品を作
成する場合には、内部に希望形状の穴のある有機
高分子多孔体を用意し、その穴の中に有機質液状
組成物を塗布した密構造炭素を得られる柱状のグ
リーン状態または炭素前駆体状態の成形体を挿入
するなどの操作を行う。
Next, the sparse structure portion and the dense structure portion are bonded using an organic liquid composition as a bonding agent. For example, when creating a laminated product with a dense and dense structure with a square bottom,
A green-state molded body in which an organic liquid composition is coated on an organic polymer porous body in a green state or a carbon precursor state with a square-bottom surface to obtain a dense-structured carbon with a square-bottom surface. Place any of the carbon precursor molded bodies and repeat this operation until the desired number of layers is reached. In addition, when creating a product with a dense structure on the inside and a sparse structure on the outside, prepare a porous organic polymer with holes of the desired shape inside, and apply an organic liquid composition into the holes to create a dense structure. Operations such as inserting a columnar shaped body in a green state or a carbon precursor state from which carbon can be obtained are performed.

その後有機質液状組成物を、加熱、脱溶剤等の
処理を行い固化させることで疎構造部と密構造部
の接合を行う。このように形状調整操作の後、必
要に応じて炭素前駆体化処理を行いあるいは行う
ことなく、不活性ガス雰囲気中で800℃以上、好
ましくは1000℃以上に加熱昇温して炭素化を行
う。かくして、疎構造部と密構造部とが接合した
疎密構造を有する炭素製品が得られる。この時、
焼成温度には上限がなく、必要に応じ3000℃程度
まで加熱してもよい。有機高分子粒子よりなる多
孔体は、加熱昇温の過程で樹脂が完全には溶融す
ることなしに粒子同志が焼結して網状構造を形成
しそのままの形で炭素化するため、連続気孔を有
する強固な炭素多孔体が得られる。疎構造部分と
密構造部分との良好な接着を得るには、500℃ま
では昇温速度3〜100℃/hr、好ましくは5〜50
℃/hrで焼成するのが適当である。500℃以上か
らの昇温速度には特に制限はない。この操作によ
つて得られる炭素多孔体は高強度を示す。炭素多
孔体の気孔径を大きくするには粒子径の大きなも
のを、気孔径を小さくするには粒子径の小さなも
のを用いればよい。
Thereafter, the organic liquid composition is solidified by heating, solvent removal, etc., thereby joining the sparse structure portion and the dense structure portion. After the shape adjustment operation as described above, carbonization is carried out by heating and raising the temperature to 800°C or higher, preferably 1000°C or higher in an inert gas atmosphere, with or without performing carbon precursor treatment as necessary. . In this way, a carbon product having a sparse structure in which a sparse structure part and a dense structure part are joined is obtained. At this time,
There is no upper limit to the firing temperature, and it may be heated up to about 3000°C if necessary. Porous bodies made of organic polymer particles have continuous pores because the particles sinter together to form a network structure and carbonize in that form without completely melting the resin during the heating process. A strong carbon porous body having the following characteristics can be obtained. To obtain good adhesion between the sparsely structured part and the densely structured part, the heating rate is 3 to 100°C/hr up to 500°C, preferably 5 to 50°C.
It is appropriate to fire at ℃/hr. There is no particular restriction on the rate of temperature increase from 500°C or higher. The carbon porous body obtained by this operation exhibits high strength. In order to increase the pore diameter of the carbon porous material, a material with a large particle diameter may be used, and in order to reduce the pore diameter, a material with a small particle diameter may be used.

次に実施例により本発明をより具体的に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 フラン樹脂初期縮合物〔(株)日立化成製ヒタフラ
ンVF−302〕50重量部と塩素含有率67%重合度
740の塩素化塩化ビニル樹脂粉末〔(株)日本カーバ
イド製ニカテンプT−870〕30重量部平均粒度7μ
mの黒鉛粉末〔(株)日本黒鉛製CSP〕20重量部をヘ
ンシエルミキサーを用いて均一に混合した。次に
その混合物を加熱した2本ロールを用いて十分混
練した。混練後カレンダーロールを用いて成形し
1.5mmの厚さの板状体を得た。得られた板状体を
加熱オーブンに入れ150℃4時間、次に180℃8時
間の炭素前駆体化処理を行つて炭素前駆体を得
た。この板を縦50mm×横50mmの正方形に加工し、
その片面にフラン初期縮合物70部黒鉛粉末30重量
部よりなる有機質液状組成物を塗布した。次に塩
素化塩化ビニル樹脂粉末を黒鉛製箱にバイブレー
ターを用いて投入し、180℃加熱オーブン中で20
時間保持し、塩素化塩化ビニルの20mm厚さの多孔
体を作成し、この多孔体を縦50mm×横50mmに加工
した。その後、この多孔体と有機質液状組成物を
塗布した板とを接合し、エアバス中80℃で液状部
を固化した。その後窒素ガス雰囲気下で常温から
300℃迄は10℃/H,300℃〜500℃は30℃/H,
500℃以上1000℃迄は200℃/Hの昇温速度で焼成
し、冷却後疎密構造を有する炭素成形体を得た。
Example 1 Furan resin initial condensate [Hitafuran VF-302 manufactured by Hitachi Chemical Co., Ltd.] 50 parts by weight and chlorine content 67% polymerization degree
740 chlorinated vinyl chloride resin powder [Nicatemp T-870 manufactured by Nippon Carbide Co., Ltd.] 30 parts by weight Average particle size 7μ
20 parts by weight of graphite powder (CSP manufactured by Nippon Graphite Co., Ltd.) was uniformly mixed using a Henschel mixer. Next, the mixture was thoroughly kneaded using two heated rolls. After kneading, mold it using a calendar roll.
A plate with a thickness of 1.5 mm was obtained. The obtained plate-shaped body was placed in a heating oven and subjected to carbon precursor treatment at 150°C for 4 hours and then at 180°C for 8 hours to obtain a carbon precursor. Process this board into a square of 50 mm long x 50 mm wide,
An organic liquid composition consisting of 70 parts by weight of a furan initial condensate and 30 parts by weight of graphite powder was applied to one side of the film. Next, the chlorinated vinyl chloride resin powder was put into a graphite box using a vibrator, and placed in an oven heated at 180℃ for 20 minutes.
A porous body of chlorinated vinyl chloride with a thickness of 20 mm was prepared by holding it for a certain period of time, and this porous body was processed into a size of 50 mm in length and 50 mm in width. Thereafter, this porous body and a plate coated with an organic liquid composition were joined together, and the liquid part was solidified at 80°C in an air bath. Then, from room temperature under nitrogen gas atmosphere.
10℃/H up to 300℃, 30℃/H from 300℃ to 500℃,
Firing was performed at a temperature increase rate of 200°C/H from 500°C to 1000°C, and after cooling, a carbon molded body having a dense and dense structure was obtained.

得られた成形体は縦41mm×横41mm×高さ16mmで
あつた。
The obtained molded body had a length of 41 mm, a width of 41 mm, and a height of 16 mm.

実施例 2 実施例1の2本ロール混練物をペレタイザーに
てペレツト化し、スクリユー押出成形機を用いて
直径2mmφの棒状体を得た。これを加熱オーブン
に入れ、180℃10時間の炭素前駆体化処理を行つ
た後、50mmの長さに切断し、側面全体に実施例1
の有機質液状組成物を塗布した。次に実施例1の
塩素化塩化ビニル多孔体から外形20mmφ長さ50
mm、その内側に直径2mmφの穴をあけたパイプ状
多孔体を加工した。この多孔体中に有機質液状組
成物を塗布した棒状体を入れ接合後、エアバス中
80℃で液状部を固化した。これを、窒素ガス雰囲
気下で、常温から300℃迄10℃/H,300℃〜500
℃は20℃/H,500℃以上1000℃迄は100℃/Hの
昇温速度で焼成し、冷却後疎密構造を有する炭素
成形体を得た。
Example 2 The two-roll kneaded product of Example 1 was pelletized using a pelletizer, and a rod-shaped body with a diameter of 2 mm was obtained using a screw extruder. This was placed in a heating oven and subjected to carbon precursor treatment at 180°C for 10 hours, then cut into a length of 50 mm and coated with Example 1 on the entire side surface.
An organic liquid composition was applied. Next, from the chlorinated vinyl chloride porous material of Example 1,
A pipe-shaped porous body with a hole of 2 mmφ in diameter was fabricated. A rod-shaped body coated with an organic liquid composition is placed in this porous body, and after bonding, it is placed in an air bath.
The liquid part was solidified at 80°C. This is heated under a nitrogen gas atmosphere at 10°C/H from room temperature to 300°C, and from 300°C to 500°C.
C. was 20.degree. C./H, and firing was performed at a heating rate of 100.degree. C./H from 500.degree. C. to 1000.degree. C., and after cooling, a carbon molded body having a dense and dense structure was obtained.

得られた成形体は直径15.5mmφで長さ39mmであ
つた。
The obtained molded body had a diameter of 15.5 mmφ and a length of 39 mm.

実施例 3 塩素化塩化ビニル樹脂粒子〔(株)日本カーバイド
製T−025〕80重量部、平均粒度7μmの黒鉛粉末
〔(株)日本黒鉛CSP〕20重量部に、可塑剤としてフ
タル酸ジオクチル15重量部を加え、ヘンシエルミ
キサーで十分混合した。次にその混合物を2本ロ
ールを用いて十分混練した。混練後ペレタイザー
にてペレツト化し、プランジヤー型油圧成形機で
断面形状縦30mm×横5mmに押出し成形して、板状
体を得た。この板を50mmの長さに切断し、グリー
ン状成形体を得た。これを3枚用意し、1枚目は
表面に、2枚目は両面に、3枚目は裏面に、塩素
化塩化ビニル樹脂、黒鉛、テトラヒドロフランよ
りなる有機質液状組成物を塗布した。
Example 3 80 parts by weight of chlorinated vinyl chloride resin particles [T-025 manufactured by Nippon Carbide Co., Ltd.], 20 parts by weight of graphite powder with an average particle size of 7 μm [Nippon Graphite CSP Co., Ltd.], and 15 parts by weight of dioctyl phthalate as a plasticizer. Parts by weight were added and thoroughly mixed using a Henschel mixer. Next, the mixture was thoroughly kneaded using two rolls. After kneading, the mixture was pelletized using a pelletizer and extruded using a plunger-type hydraulic forming machine to a cross-sectional shape of 30 mm long x 5 mm wide to obtain a plate-shaped body. This plate was cut into a length of 50 mm to obtain a green molded product. Three sheets of this were prepared, and an organic liquid composition consisting of chlorinated vinyl chloride resin, graphite, and tetrahydrofuran was applied to the front side of the first sheet, both sides of the second sheet, and the back side of the third sheet.

次に、フラン初期縮合物〔(株)日立化成製ヒタフ
ランVF302〕に硬化剤を加え加熱した3本ロール
により架橋させ、150℃の軟化点を有するシート
状組成物を得、冷却後粉砕した。これを黒鉛製箱
にバイブレーターを用いて投入し、150℃の加熱
オーブン中に10時間保持し、フラン樹脂多孔体を
得た。この多孔体から縦30mm×横50mm×厚さ10mm
に加工した多孔板を2枚用意した。この多孔板
を、有機質液状組成物を塗布した板にはさみ接合
後エアバス中70℃で液状部を固化した。その後窒
素ガス雰囲気下で常温から300℃迄は10℃/H,
300〜500℃は20℃/H、500℃以上1500℃までは
50℃/Hの昇温速度で焼成し、冷却後、疎密構造
を有する炭素多層体を得た。
Next, a curing agent was added to a furan initial condensate (Hitafuran VF302, manufactured by Hitachi Chemical Co., Ltd.) and crosslinked using three heated rolls to obtain a sheet-like composition having a softening point of 150°C, which was cooled and crushed. This was placed in a graphite box using a vibrator and kept in a heating oven at 150°C for 10 hours to obtain a furan resin porous body. From this porous body, length 30mm x width 50mm x thickness 10mm
Two perforated plates were prepared. This porous plate was sandwiched and bonded to a plate coated with an organic liquid composition, and the liquid portion was solidified at 70°C in an air bath. After that, under nitrogen gas atmosphere, from room temperature to 300℃, 10℃/H,
20℃/H for 300 to 500℃, 20℃/H for 500℃ to 1500℃
Firing was performed at a temperature increase rate of 50° C./H, and after cooling, a carbon multilayer body having a dense and dense structure was obtained.

得られた成形体は、縦23.5mm×横41mm×高さ29
mmであつた。
The obtained molded body is 23.5mm long x 41mm wide x 29mm high.
It was warm in mm.

Claims (1)

【特許請求の範囲】 1 不活性ガス雰囲気中での焼成によつて密構造
炭素が得られる有機高分子物質及びアスフアルト
ピツチ類、乾溜ピツチ類の一種又は二種以上の混
合物と微粒子黒鉛粉末との配合物から成る成形体
と、不活性ガス雰囲気中での焼成によつて粒状に
焼結して疎構造炭素が得られる有機高分子粒子の
表面層を溶かして粒子間に点接着を生じさせたこ
とより成る有機高分子多孔体とを、同化後不活性
ガス雰囲気中での焼成により高い炭素残査を残す
有機質液状組成物を用いて一体賦形した複合体を
不活性ガス雰囲気中で焼成することから成る疎密
構造を有する炭素製品の製造方法。 2 成形体はグリーン状態または炭素前駆体化状
態である第1項の製造方法。 3 有機高分子粒子は直径または最大辺が1mm以
下であり、かつその粒子の90%以上が直径または
最大辺が30μm以上である第1項の製造方法。 4 有機高分子粒子は、塩素化塩化ビニル、ポリ
アクリロニトリル、ポリビニルアルコール、ポリ
フエニレンエーテル、ポリジビニルベンゼン等の
熱可塑性樹脂の粒子、フラン樹脂、フエノール樹
脂、ビスマレイミド・トリアジン樹脂等の熱硬化
性樹脂のモノマーまたは初期縮合体を熱変形可能
な程度、もしくは溶剤で溶解可能な程度まで硬化
させたものを粉砕した粒子、トラガントガム、ア
ラビアガム、糖類のごとき縮合多環芳香族を分子
の基本構造内に持つ天然高分子粒子、また縮合多
環芳香族を分子の基本構造内に持つ前記に含まれ
ない合成高分子粒子、石油アスフアルト、コール
タールピツチ、合成樹脂等の乾溜ピツチを300〜
500℃で熱処理し、低分子化合物を溶剤で除去し
たものを粉砕した粒子のうち、一種又は二種以上
の混合物である第1項の製造方法。 5 有機質液状組成物は、有機高分子物質及びア
スフアルトピツチ類、乾溜ピツチ類の一種又は二
種以上の混合物である第1項の製造方法。 6 有機質液状組成物は、有機高分子物質及びア
スフアルトピツチ類、乾溜ピツチ類の一種又は二
種以上の混合物に微粒黒鉛粉末が配合される第1
項の製造方法。 7 焼成は800℃以上に加熱昇温して行われる第
1項の製造方法。
[Scope of Claims] 1. A mixture of one or more of organic polymer substances, asphalt pitches, and dry distilled pitches, and fine-grained graphite powder, from which dense-structured carbon can be obtained by firing in an inert gas atmosphere. A molded body made of a compound and a surface layer of organic polymer particles, which are sintered into particles to obtain loose structure carbon by firing in an inert gas atmosphere, are melted to create point adhesion between the particles. After assimilation, a porous organic polymer consisting of the following materials is integrally shaped using an organic liquid composition that leaves a high carbon residue by firing in an inert gas atmosphere, and the composite is fired in an inert gas atmosphere. A method for producing a carbon product having a dense structure consisting of: 2. The manufacturing method of item 1, wherein the molded body is in a green state or a carbon precursor state. 3. The manufacturing method according to item 1, wherein the organic polymer particles have a diameter or maximum side of 1 mm or less, and 90% or more of the particles have a diameter or maximum side of 30 μm or more. 4 Organic polymer particles include particles of thermoplastic resins such as chlorinated vinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyphenylene ether, and polydivinylbenzene, thermosetting resins such as furan resins, phenolic resins, and bismaleimide/triazine resins. Particles obtained by curing resin monomers or initial condensates to the extent that they can be thermally deformed or soluble in solvents, and condensed polycyclic aromatics such as gum tragacanth, gum arabic, and sugars within the basic structure of the molecule. Natural polymer particles with a fused polycyclic aromatic group in the basic structure of the molecule, synthetic polymer particles not included in the above, petroleum asphalt, coal tar pitch, synthetic resin, etc.
The manufacturing method according to item 1, which is a mixture of one or more types of particles obtained by heat-treating at 500°C and removing low-molecular compounds with a solvent and then pulverizing them. 5. The manufacturing method according to item 1, wherein the organic liquid composition is one or a mixture of two or more of organic polymer substances, asphalt pitches, and dry distilled pitches. 6. The organic liquid composition is a first composition in which fine graphite powder is blended with a mixture of one or more of organic polymer substances, asphalt pitches, and dry distilled pitches.
Manufacturing method of section. 7. The manufacturing method of Paragraph 1, in which firing is performed by heating to a temperature of 800°C or higher.
JP58055200A 1983-04-01 1983-04-01 Production of carbon product having rough and dense structure Granted JPS59207821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055200A JPS59207821A (en) 1983-04-01 1983-04-01 Production of carbon product having rough and dense structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055200A JPS59207821A (en) 1983-04-01 1983-04-01 Production of carbon product having rough and dense structure

Publications (2)

Publication Number Publication Date
JPS59207821A JPS59207821A (en) 1984-11-26
JPH0114166B2 true JPH0114166B2 (en) 1989-03-09

Family

ID=12992032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055200A Granted JPS59207821A (en) 1983-04-01 1983-04-01 Production of carbon product having rough and dense structure

Country Status (1)

Country Link
JP (1) JPS59207821A (en)

Also Published As

Publication number Publication date
JPS59207821A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
CA1179808A (en) Shaped articles of porous carbon
JPH0136670B2 (en)
JPS6410470B2 (en)
US4894215A (en) Process for producing porous materials of carbon
US20060197063A1 (en) Shaped porous materials
US4950443A (en) Process for producing carbon product with coarse and dense structure
JPS5964511A (en) Preparation of porous carbon
KR100509348B1 (en) A manufacturing method of activated carbon structure having a frame
JPS6246909A (en) Production of carbonaceous sheet
US20060125131A1 (en) Carbonaceous porous material and method of manufacturing same
JPH09511982A (en) Activated carbon honeycomb with variable adsorption capacity and method for manufacturing the same
EP0365327B1 (en) Method of preparation of porous carbon material and material produced by the method
US4882103A (en) Process for producing carbon product having coarse and dense structure
JPH0114166B2 (en)
JPH0158623B2 (en)
JPS6059171B2 (en) Method for manufacturing carbon products with dense and dense structure
EP0188637B1 (en) Process for producing vitreous carton bodies
JPH0211546B2 (en)
JPH11139871A (en) Porous carbon material and its production
JPH0717449B2 (en) Method for producing impermeable carbon material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3559408B2 (en) SOLID ACTIVE CARBON, PROCESS FOR PRODUCING THE SAME, AND ELECTRIC DOUBLE LAYER CAPACITOR USING THE SAME
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
JP2963800B2 (en) Method for producing porous carbon material
JPH052625B2 (en)