JPH01140778A - Thin-film photovoltaic element - Google Patents

Thin-film photovoltaic element

Info

Publication number
JPH01140778A
JPH01140778A JP62299280A JP29928087A JPH01140778A JP H01140778 A JPH01140778 A JP H01140778A JP 62299280 A JP62299280 A JP 62299280A JP 29928087 A JP29928087 A JP 29928087A JP H01140778 A JPH01140778 A JP H01140778A
Authority
JP
Japan
Prior art keywords
thin film
thin
film
type
cu2s
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299280A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujita
藤田 順彦
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62299280A priority Critical patent/JPH01140778A/en
Publication of JPH01140778A publication Critical patent/JPH01140778A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a thin-film photovoltaic element having high conversion rate and a low cost by providing a thin amorphous silicon film and a thin copper sulfide film laminated and bonded to each other and employing a material which can be increased in its area and decreased in its thickness. CONSTITUTION:A thin amorphous silicon film and a thin copper sulfide film laminated and bonded are provided. A heterojunction is largely affected by not only a combination of a band gap energy, but electron affinity, matching characteristic of a semiconductor material, such as continuity of energy band or a thin film forming method, etc., and device characteristics are resultantly largely varied. An a-Si thin film 3 and a Cu2S thin film 2 mostly have characteristics required for such a heterojunction. The band energy gap of the Cu2S is also adapted for a material for a photovoltaic element. Further, the a-Si and the Cu2S can be easily decreased in its thickness and increased in its area by a present thin film technique, component materials are inexpensive and its cost can be reduced. Thus, a large are and high conversion efficiency can be inexpensively obtained by a normal thin film technique.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池や光センサー等の薄膜光起電力素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to thin film photovoltaic devices such as solar cells and optical sensors.

〔従来の技術〕[Conventional technology]

、太陽光その他の光エネルギーを電気エネルギーに変換
する素子として、太陽電池や光センサー等の薄膜光起電
力素子が知られている。
2. Description of the Related Art Thin film photovoltaic elements such as solar cells and optical sensors are known as elements that convert sunlight and other light energy into electrical energy.

従来からかかる光起電力素子として、SiHガス等をグ
ロー放電分解して形成されるアモルファスシリコン(a
 −S i )の薄膜が安価で大面積化及び薄膜化が可
能であるため、a−3i薄膜を利用した素子が広く用い
られている。例えば特公昭53−37718号公報に開
示されているように、a−3iのp−1−n接合やショ
ットキ接合を利用した太陽電池がある。
Conventionally, such photovoltaic elements have been made of amorphous silicon (a
-S i ) thin films are inexpensive and can be made large in area and thin, so elements using a-3i thin films are widely used. For example, as disclosed in Japanese Patent Publication No. 53-37718, there is a solar cell using an a-3i p-1-n junction or a Schottky junction.

しかし、従来のa−3i太陽電池はa −S iのバン
ドギャップエネルギーが1.75 eV程度である為7
00 nm以上の波長の光に対しては感度がなく、従っ
て700 nm以上の長波長の光を多く含む太陽光に対
しては最適な材料とは云いえず、その変換効率は10%
以下に留まっていた。
However, in the conventional a-3i solar cell, the bandgap energy of a-Si is about 1.75 eV, so 7
It is not sensitive to light with a wavelength of 00 nm or more, so it cannot be said to be an optimal material for sunlight, which contains a lot of light with long wavelengths of 700 nm or more, and its conversion efficiency is only 10%.
It stayed below.

長波長の光に対する感度を向上させる為にa −81と
他の半導体材料とを組合わせた太陽電池も、例えばJa
panese 、Tournaj of Applie
d Physics、vo122、A9 (1983)
 L605〜L607に示されている。しかしながら、
こ−に示されたa−3iと単結晶S1を組合せた太陽電
池においても変換効率は10%程度であり、しかも単結
晶S1は大面積化が困難で材料コストも極めて高い蝉の
欠点かあった。
Solar cells that combine a-81 with other semiconductor materials to improve sensitivity to long wavelength light have also been developed, such as Ja
Panese, Tournaj of Applie
d Physics, vo122, A9 (1983)
It is shown in L605-L607. however,
Even in the solar cell shown here that combines A-3i and single-crystal S1, the conversion efficiency is about 10%, and single-crystal S1 is difficult to increase in area and has extremely high material costs. Ta.

又、硫化銅薄膜と硫化カドミウム薄膜とを積層した太陽
電池も、例えば「太陽光発電」1森北出版1980年2
月20日発行に記載されている。しかしながら、この太
陽電池も又変換効率が7%程度であって、電力用太陽電
池として使用するには変換効率が不充分であった。
In addition, solar cells in which a copper sulfide thin film and a cadmium sulfide thin film are laminated are also available, for example in "Solar Power Generation" 1 Morikita Publishing 1980 2
It is listed in the 20th issue of the month. However, this solar cell also had a conversion efficiency of about 7%, which was insufficient for use as a power solar cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はかかる従来の事情に鑑み、大面積化及び薄膜化
が可能な材料を用いて、変換効率が高く且つ低コストの
簿膜光起電力素子を提供することを目的とするものであ
る。
In view of such conventional circumstances, it is an object of the present invention to provide a thin film photovoltaic element with high conversion efficiency and low cost, using a material that can be made larger in area and thinner.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の薄膜光起電力素子は、互いに接合して積層すせ
たアモルファスシリコン薄膜と硫化銅薄膜とを具えたこ
とを特徴とする。
The thin film photovoltaic device of the present invention is characterized by comprising an amorphous silicon thin film and a copper sulfide thin film that are bonded to each other and laminated.

本発明ではアモルファスシリコン(a−3i) 薄膜と
硫化鋼(CuS)薄膜とがp−n接合を形成する限す、
a−8i薄膜はn−1−p−n構造などの多層構造であ
ってもよい。
In the present invention, as long as the amorphous silicon (a-3i) thin film and the sulfide steel (CuS) thin film form a p-n junction,
The a-8i thin film may have a multilayer structure such as an n-1-pn structure.

又、n型及びp型のa−3i薄膜は微結晶を含んでいて
も良い。
Further, the n-type and p-type a-3i thin films may contain microcrystals.

〔作用〕[Effect]

薄膜光起電力素子のへテロ接合を形成する半導体材料を
種々検討した結果、a−9i薄膜とOu S薄膜との組
合わせが最適であることが判明した。
As a result of examining various semiconductor materials for forming the heterojunction of a thin film photovoltaic device, it was found that the combination of an a-9i thin film and an OuS thin film is optimal.

即ち、ヘテロ接合はバンドギャップエネルギーの組合せ
のみならず、電子親和力、エネルギーバンドの連続性な
どの半導体材料のマツチング特性、あるいは薄膜形成方
法などにより大きく左右され、その結果デバイス特性も
大さく変動する。a−8i薄膜とCu S薄膜とはこの
様なヘテロ接合に要求される特性が最も整っている。又
、Cu Sのパンドエネルギーギャップも1.2 eV
と光起電力素子用材料として好適である。
That is, heterojunctions are greatly influenced not only by the combination of band gap energies, but also by the matching characteristics of semiconductor materials such as electron affinity and continuity of energy bands, and by the method of forming thin films, and as a result, the device characteristics also vary greatly. The a-8i thin film and the CuS thin film have the best characteristics required for such a heterojunction. Also, the pando energy gap of CuS is also 1.2 eV
It is suitable as a material for photovoltaic devices.

しかも、a−8iとOu Sは現在の薄膜技術により容
易に薄膜化及び大面積化することがでさ、構成材料も安
価であって低コスト化が可能である。
Furthermore, a-8i and OuS can be easily made thinner and larger in area using current thin film technology, and the constituent materials are inexpensive, making it possible to reduce costs.

a−8i薄膜とCuS薄膜とはいずれがp型でもn型で
もよいが、製造上はa−8i薄膜をn型とし、CuS薄
膜をp型とする方が容易であって変換動率も高い。この
場合、n型a−8i薄膜の膜厚は200′j、〜300
0χが好ましい。この膜厚が200 X未満では良好な
接合が得られず、3oooXe超えるとa−3i薄膜で
の光吸収が大きくなり、いずれも変換効率を著しく低下
させるからである。
Both the a-8i thin film and the CuS thin film may be p-type or n-type, but from a manufacturing standpoint, it is easier to make the a-8i thin film n-type and the CuS thin film p-type, and the conversion rate is higher. . In this case, the thickness of the n-type a-8i thin film is 200′j, ~300′
0χ is preferred. This is because if the film thickness is less than 200X, a good bond cannot be obtained, and if it exceeds 300Xe, the light absorption in the a-3i thin film becomes large, and in either case, the conversion efficiency is significantly reduced.

〔実施例〕〔Example〕

実施例1 第1図に示す太陽電池を製造した。 Example 1 A solar cell shown in FIG. 1 was manufactured.

ステンレス鋼の基板1上に、基板温度400Cで真空蒸
着法により膜厚0.4μmのp型Cu S薄膜2を形成
した。次に、このp型Ou S薄膜2上にn型a−3i
薄膜3を、基板温度200CでのSiH%PH及びHか
らなる原料ガスのグロー放電分解により、膜厚450x
に形成した。更に、錫とインジウムを酸化雰囲気(10
−’torr以下)で真空蒸着して、n型a−3i薄展
3上に膜厚0.2μmの酸化インジウム錫の金属電極4
を形成した。
A p-type CuS thin film 2 having a thickness of 0.4 μm was formed on a stainless steel substrate 1 by vacuum evaporation at a substrate temperature of 400C. Next, on this p-type OuS thin film 2, an n-type a-3i
The thin film 3 was formed to a film thickness of 450x by glow discharge decomposition of a raw material gas consisting of SiH%PH and H at a substrate temperature of 200C.
was formed. Furthermore, tin and indium were placed in an oxidizing atmosphere (10
A metal electrode 4 of indium tin oxide with a film thickness of 0.2 μm is deposited on the n-type a-3i thin spread 3 by vacuum evaporation at
was formed.

得られた太陽電池の出力特性をAMl、5で100mW
/Q%の光のもとで測定したところ、変換効率11%が
得られた。
The output characteristics of the obtained solar cell are 100 mW at AMl, 5.
When measured under light of /Q%, a conversion efficiency of 11% was obtained.

実施例2 第2図に示すn−1−p=n構造のa−8i薄膜とOu
 2 S薄膜とを具えた太陽電池を製造した。
Example 2 A-8i thin film with n-1-p=n structure shown in FIG. 2 and Ou
A solar cell with a 2S thin film was manufactured.

実施例1と同様にしてステンレス鋼の基板1上にCuS
薄膜2と第1のn型a−3i薄膜3′を形成した後、グ
ロー放電分解により膜厚200Rのp型a−3i薄膜5
、膜厚0.5μmの1型a−3i薄膜6、及び膜厚15
0xの第2のn型a−3i薄膜7を順次形成した。
CuS was deposited on the stainless steel substrate 1 in the same manner as in Example 1.
After forming the thin film 2 and the first n-type a-3i thin film 3', a p-type a-3i thin film 5 with a film thickness of 200R is formed by glow discharge decomposition.
, 1 type a-3i thin film 6 with a film thickness of 0.5 μm, and a film thickness of 15
A second n-type a-3i thin film 7 of 0x was sequentially formed.

使用した原料ガスは、p型a−3i薄膜5が5iH−。The raw material gas used was 5iH- for the p-type a-3i thin film 5.

BH及びH,i型a−8i薄瞑6がSiH及びH1第2
のn型a−3i薄膜7がSiH、PH及びHであった。
BH and H, i type a-8i thin 6 is SiH and H1 second
The n-type a-3i thin film 7 was SiH, PH and H.

更に、第2のn型a−8i薄膜7上に実施例1と同様に
金属電極4を形成した。
Furthermore, a metal electrode 4 was formed on the second n-type a-8i thin film 7 in the same manner as in Example 1.

得られた太陽電池の出力特性をAMl、’5で100m
W/備の光のもとで測定したところ、変換効率14%が
得られた。
The output characteristics of the obtained solar cell are AMl, 100 m at '5.
When measured under W/Bei light, a conversion efficiency of 14% was obtained.

尚、いずれの実施例においても、CuS薄膜成脱時の基
板温度がa−8i薄膜の基板温度よりも高い方が好まし
い。従って、成膜順序はC!uSN膜を先に成膜丁べさ
である。
Incidentally, in any of the examples, it is preferable that the substrate temperature during the deposition and desorption of the CuS thin film is higher than the substrate temperature of the a-8i thin film. Therefore, the film formation order is C! The uSN film is deposited first.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、通常の薄膜化技術により大面積で変換
効率の高い太陽電池などの薄膜光起電力累子を低コスト
で提供することができる。
According to the present invention, a thin film photovoltaic capacitor such as a solar cell having a large area and high conversion efficiency can be provided at low cost using ordinary thin film forming techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の太陽電池の一例を示す断面図であり、
第2図は本発明の太@電池の別の一例を示す断面図であ
る。 1・・基板 2・・p型Cu S薄膜 3・・n型a−3i薄膜 3′・・第1のn型a−3i薄膜 4・・金属電極 5・・p型a−3i、薄膜6・・1型
a−8i薄膜 7・・第2のn型a−8i薄膜 出願人  住友電気工業株式会社 、\ 代理人 弁理土中村勝成(外1名>  ;、lj・ 、
〕−デ 第1図 第2図
FIG. 1 is a cross-sectional view showing an example of the solar cell of the present invention,
FIG. 2 is a sectional view showing another example of the thick battery of the present invention. 1... Substrate 2... P-type Cu S thin film 3... N-type a-3i thin film 3'... First n-type a-3i thin film 4... Metal electrode 5... P-type a-3i, thin film 6 ...Type 1 A-8I thin film 7...Second N-type A-8I thin film Applicant: Sumitomo Electric Industries, Ltd.\ Agent: Patent Attorney Katsunari Donakamura (1 other person);, lj.
] - Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)互いに接合して積層させたアモルファスシリコン
薄膜と硫化銅薄膜とを具えたことを特徴とする薄膜光起
電力素子。
(1) A thin film photovoltaic device characterized by comprising an amorphous silicon thin film and a copper sulfide thin film bonded to each other and laminated.
(2)アモルファスシリコン薄膜がn型であり、硫化銅
薄膜がp型であることを特徴とする、特許請求の範囲(
1)項記載の薄膜光起電力素子。
(2) Claims characterized in that the amorphous silicon thin film is n-type and the copper sulfide thin film is p-type (
The thin film photovoltaic device described in item 1).
(3)n型アモルファスシリコン薄膜の膜厚が200Å
〜3000Åであることを特徴とする、特許請求の範囲
(2)項記載の薄膜光起電力素子。
(3) Thickness of n-type amorphous silicon thin film is 200 Å
The thin film photovoltaic device according to claim (2), characterized in that the thickness is 3000 Å.
JP62299280A 1987-11-27 1987-11-27 Thin-film photovoltaic element Pending JPH01140778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299280A JPH01140778A (en) 1987-11-27 1987-11-27 Thin-film photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299280A JPH01140778A (en) 1987-11-27 1987-11-27 Thin-film photovoltaic element

Publications (1)

Publication Number Publication Date
JPH01140778A true JPH01140778A (en) 1989-06-01

Family

ID=17870499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299280A Pending JPH01140778A (en) 1987-11-27 1987-11-27 Thin-film photovoltaic element

Country Status (1)

Country Link
JP (1) JPH01140778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979645A (en) * 2019-03-29 2019-07-05 合肥工业大学 A kind of p-type copper sulfide transparent conducting film and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979645A (en) * 2019-03-29 2019-07-05 合肥工业大学 A kind of p-type copper sulfide transparent conducting film and preparation method

Similar Documents

Publication Publication Date Title
US8907206B2 (en) Multi-junction solar cell devices
US4532373A (en) Amorphous photovoltaic solar cell
JP3490964B2 (en) Photovoltaic device
JP2589462B2 (en) Photoelectric device
US20150072464A1 (en) Method and structure for thin film tandem photovoltaic cell
US20110017257A1 (en) Multi-junction solar module and method for current matching between a plurality of first photovoltaic devices and second photovoltaic devices
JP2008182226A (en) Multilayered film-nanowire composite, bifacial, and tandem solar cells
US4479028A (en) Amorphous solar cell
JPS5846074B2 (en) Method of manufacturing photovoltaic device
US8569613B1 (en) Multi-terminal photovoltaic module including independent cells and related system
US4064522A (en) High efficiency selenium heterojunction solar cells
JPH0125235B2 (en)
US4857115A (en) Photovoltaic device
JPH01140778A (en) Thin-film photovoltaic element
JPH01146373A (en) Four-terminal-type thin film solar cell
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JP2946214B2 (en) Thin film solar cell
JP2936269B2 (en) Amorphous solar cell
JPS61135167A (en) Thin-film solar cell
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS6358974A (en) Amorphous phovoltaic element
JPS59181581A (en) Photoelectric converter
JPS58130578A (en) Selenium optical battery
TWI464889B (en) Solar cell with heterojunction and method of manufacturing the same
JP2884171B2 (en) Amorphous solar cell