JPH01140689A - Gas laser apparatus - Google Patents

Gas laser apparatus

Info

Publication number
JPH01140689A
JPH01140689A JP62299462A JP29946287A JPH01140689A JP H01140689 A JPH01140689 A JP H01140689A JP 62299462 A JP62299462 A JP 62299462A JP 29946287 A JP29946287 A JP 29946287A JP H01140689 A JPH01140689 A JP H01140689A
Authority
JP
Japan
Prior art keywords
medium gas
laser medium
laser
flow path
main discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299462A
Other languages
Japanese (ja)
Inventor
Noriaki Itou
伊藤 仙聡
Junichi Fujimoto
准一 藤本
Masakazu Kobayashi
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62299462A priority Critical patent/JPH01140689A/en
Publication of JPH01140689A publication Critical patent/JPH01140689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain high flow rate of laser medium gas, by providing a blower on each of the upstream and downstreatm sides of a position in a passage where loss of pressure is maximum. CONSTITUTION:A pair of cross flow fans 108a, 108b are arranged at the positions in a laser medium gas circulating passage where loss of pressure is maximum, namely they are arranged one by one on the opposite sides of a heat exchanger 109. Thus, laser medium gas fed into the heat exchanger 109 by the cross flow fan 108b is again accelerated by the other cross flow fan 108a and fed into a space between principal discharge electrodes 105a and 105b. In this manner, flow rate of the laser medium gas can be increased and high output can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) エキシマレーザなどの横方向放電励起ガスレーザ装置な
どに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a lateral discharge-excited gas laser device such as an excimer laser.

(従来の技術) 近年レーザ光をエネルギー源とするレーザ加工機が実用
化されてむνるがその加工性能はレーザ出力に大きく依
存する。特にエキシマレーザ等のガスレーザ装置はその
応用分野が広く特に高出力化が要求されている。
(Prior Art) In recent years, laser processing machines that use laser light as an energy source have been put into practical use, but their processing performance largely depends on the laser output. In particular, gas laser devices such as excimer lasers have a wide range of applications, and are particularly required to have high output.

従来の横方向放電励起ガスレーザ装置の構造と高出力化
を進めるための問題点等をエキシマレーザを例にとって
説明する。
The structure of a conventional lateral discharge-excited gas laser device and problems associated with increasing its output will be explained using an excimer laser as an example.

第3図は従来のエキシマレーザ装置を示すものである。FIG. 3 shows a conventional excimer laser device.

第3図に於いてレーザチャンバ301内に予備電離電極
304a、304bが設けられその近傍に主放電々極3
05a、305bが設けられ、主放電々極305a、3
05bの間はレーザ媒質ガスが流れる流路となっている
。309はレーザ媒質ガスを冷却する熱交換器°であり
、308はレーザ媒質ガスを循環させるための貫流ファ
ンであり、レーザ媒質ガスを矢印Aの方向に循環させる
In FIG. 3, preliminary ionization electrodes 304a and 304b are provided in the laser chamber 301, and a main discharge electrode 3 is provided in the vicinity thereof.
05a, 305b are provided, main discharge electrodes 305a, 3
05b serves as a flow path through which the laser medium gas flows. 309 is a heat exchanger for cooling the laser medium gas, and 308 is a cross-flow fan for circulating the laser medium gas in the direction of arrow A.

この様な構成において、予0!電離電極304a、30
4bにアーク放電を発生させ紫外線予備電離を行わせる
In such a configuration, the prediction is 0! Ionization electrodes 304a, 30
4b to generate arc discharge and perform ultraviolet preliminary ionization.

図示していない放電コンデンサの噌端子間電圧があるし
きい値に達すると主放電々極305a、305bの間で
主放電がおこり主放電々極305a、305bの間のレ
ーザ媒質ガスが励起され、レーザチャンバ301の両端
に設置された図示されていないレーザ共振器の間で増巾
しレーザ発振される。
When the voltage between the terminals of a discharge capacitor (not shown) reaches a certain threshold, a main discharge occurs between the main discharge poles 305a and 305b, and the laser medium gas between the main discharge poles 305a and 305b is excited. Laser oscillation is amplified between laser resonators (not shown) installed at both ends of the laser chamber 301.

レーザ媒質ガスは予備電離電極304a、304b及び
主放電々極305a、305bにより劣化するため貫流
ファン308により矢印Aの方向に循環され、熱交換器
309で冷却される。
Since the laser medium gas is degraded by the pre-ionization electrodes 304a, 304b and the main discharge electrodes 305a, 305b, it is circulated in the direction of arrow A by a cross-flow fan 308 and cooled by a heat exchanger 309.

冷却、再生されたレーザ媒質ガスは貫流ファン308に
より再度放電領域すなわち予(1wt離電極電極304
a、304b主放電々極305a05bの間に送られる
The cooled and regenerated laser medium gas is transferred to the discharge region, that is, the pre-(1wt separation electrode 304
a, 304b is sent between the main discharge electrodes 305a05b.

エキシマレーザの場合は一般的にはレーザ媒質ガスを数
+n5ecという短時間に強励起し、パルス発振させる
ため、1パルス発振ごとのレーザ媒質ガスの劣化が著し
く、再生にある程度の時間を要する。
In the case of an excimer laser, the laser medium gas is generally strongly excited in a short period of several + n5 ec to cause pulse oscillation, so the laser medium gas deteriorates significantly with each pulse oscillation, and regeneration requires a certain amount of time.

従って主放電によって劣化したレーザ媒質ガスを主放電
領域から完全に除去し終らないまま次の主放電を行うと
主放電が不安定となりパルスレーザ出力が低下する。
Therefore, if the next main discharge is performed before the laser medium gas deteriorated by the main discharge is completely removed from the main discharge region, the main discharge becomes unstable and the pulsed laser output decreases.

従ってレーザ媒質ガスを高速で循環する必要が生ずる。Therefore, it becomes necessary to circulate the laser medium gas at high speed.

すなわち、主放電々極近辺でのレーザ媒質ガス流速を高
めるため (1)貫流ファンを高速度で回転させる。
That is, in order to increase the flow velocity of the laser medium gas near the main discharge poles, (1) the once-through fan is rotated at high speed;

(2)貫流ファンを大型化する。(2) Increase the size of the once-through fan.

(3)貫流ファンの位置、ガス流路を最適化する。(3) Optimize the position of the once-through fan and the gas flow path.

等の対策が行なわれている。Measures such as these are being taken.

上記(3)の対策を行った従来例を第4図に示す。第4
図に於いて、レーザチャンバ401内に外側ガイド40
2a、402bを設け、外側ガイド402a、402b
と主放電々極4゜5aとでレーザ媒質ガス流路の外側壁
を形成している。
FIG. 4 shows a conventional example in which the measure (3) above is taken. Fourth
In the figure, an outer guide 40 is placed inside a laser chamber 401.
2a, 402b are provided, and outer guides 402a, 402b are provided.
and the main discharge pole 4.degree. 5a form the outer wall of the laser medium gas flow path.

又主放電々Bi405 bと内側ガイド407とでレー
ザ媒質ガス流路の内側壁を形成している。
Moreover, the main discharge Bi 405b and the inner guide 407 form the inner wall of the laser medium gas flow path.

この様な構成にして貫流ファン408を回転させレーザ
媒質ガスを矢印A方向に循環させ熱交換器409で冷却
している。
With this configuration, the once-through fan 408 is rotated to circulate the laser medium gas in the direction of arrow A, and the heat exchanger 409 cools it.

(発明が解決しようとする問題点) しかしながら、このような従来のガスレーザ装置は種々
の対策が行なわれているが (a)ガス流路中に熱交換器を入れるのでレーザ媒質ガ
スの流れを妨害する。
(Problems to be Solved by the Invention) However, various countermeasures have been taken in such conventional gas laser devices, but (a) a heat exchanger is inserted in the gas flow path, which obstructs the flow of the laser medium gas; do.

(b)ガス流路と比較して主放電々極との間隔が極端に
狭く流路内の圧力損失が大きくなる。
(b) Compared to the gas flow path, the distance between the main discharge electrodes is extremely narrow and the pressure loss in the flow path becomes large.

(C)主放電々極付近にはエキシマレーザの構造上予備
電離電極など突起物があるため乱流等が発生し流路内の
圧力損失が大きくなる等の問題があった。
(C) Due to the structure of the excimer laser, there are protrusions such as pre-ionization electrodes near the main discharge poles, which causes problems such as turbulence and increased pressure loss in the flow path.

しかも上記(a)の場合、レーザ媒質ガスを冷却し再生
する必要上熱交換器を除去、あるいはレーザ媒質ガス流
路からはずすことは不可能であり、(b)、(C)につ
いてもレーザチャンバ放電回路等の大きさ形状等の問題
から流路内の圧力損失の改善には限界があった。
Moreover, in the case of (a) above, it is impossible to remove the heat exchanger or remove it from the laser medium gas flow path because it is necessary to cool and regenerate the laser medium gas, and in cases of (b) and (C), it is impossible to remove the heat exchanger from the laser medium gas flow path. There has been a limit to the improvement of pressure loss in the flow path due to problems such as the size and shape of the discharge circuit, etc.

特に貫流ファンは他の送風器とくらべると揚程が小さく
わずかな流路内圧力損失でも性能が大きく低下してしま
うため圧力損失の改善は大きな問題であった。
In particular, once-through fans have a small head compared to other blowers, and even a small pressure loss in the flow path can cause a significant drop in performance, so improving pressure loss has been a big problem.

(問題点を解決するための手段) 本発明はレーザ媒質ガス流路内にある障害物、突起物、
流路抵抗等により発生した流路内圧力損失を貫流ファン
を追加することにより補償しレーザ媒質ガスの高い流速
を得ようというものである。
(Means for Solving the Problems) The present invention solves the problem by eliminating obstacles, protrusions, etc. in the laser medium gas flow path.
The idea is to compensate for the pressure loss in the flow path caused by flow path resistance, etc. by adding a cross-flow fan, and to obtain a high flow rate of the laser medium gas.

即ち従来1台であった貫流ファンを増設し最も圧力損失
の大きい点をはさんで設置して、上記の問題点を解決す
る。
That is, the above-mentioned problem is solved by adding more cross-flow fans than the conventional one and installing them across the point where the pressure loss is greatest.

(作用) 最も圧力損失の大きい点の上流側にある貫流ファンはレ
ーザ媒質ガスを送りこむように作用し、下流側に設置さ
れた貫流ファンは上述の圧力損失の大きい点を通過した
ことによって低下したレーザ媒質ガスの流速を高めるよ
うに作用する。
(Function) The once-through fan located upstream of the point with the largest pressure loss acts to send the laser medium gas, and the once-through fan installed downstream reduces the pressure as it passes through the point with the largest pressure loss. It acts to increase the flow rate of the laser medium gas.

(実施例) 二の発明の第1実施例を第1図に基づいて説明する。(Example) A first embodiment of the second invention will be described based on FIG.

第1図に於てレーザチャンバ101内に外側ガイド10
2a、103a、102b、1.03bと予備電離電極
104a、104b主放電々極105a、105bが設
けてあり、外側ガイド  102a、    103a
、    102b、    103b  と主放電々
極105aとでレーザ媒質ガス流路の外側壁を形成して
いる。
In FIG. 1, an outer guide 10 is placed inside a laser chamber 101.
2a, 103a, 102b, 1.03b, preliminary ionization electrodes 104a, 104b, main discharge electrodes 105a, 105b, and outer guides 102a, 103a.
, 102b, 103b and the main discharge electrode 105a form the outer wall of the laser medium gas flow path.

又主放電々極105bとその下方に設けられている内側
ガイド107でレーザ媒質ガス流路の内側壁を形成して
いる。
Further, the main discharge electrode 105b and the inner guide 107 provided below it form the inner wall of the laser medium gas flow path.

108a、108bは貫流ファンで熱交換器109の両
側にそれぞれ設けてあり、レーザ媒質ガスを矢印A、B
の方向に循環させる。
Reference numerals 108a and 108b indicate once-through fans, which are installed on both sides of the heat exchanger 109, and direct the laser medium gas in the directions indicated by arrows A and B.
Circulate in the direction of.

以上の様な構成でレーザの1パルス当りのエネルギーを
大きくするためにレーザ媒質ガスの励起強度を高めると
レーザ媒質ガスの劣化が著しくなり、再生のための熱交
換器109が大がかりなものとなる。
In the above configuration, if the excitation intensity of the laser medium gas is increased in order to increase the energy per pulse of the laser, the deterioration of the laser medium gas will be significant, and the heat exchanger 109 for regeneration will become large-scale. .

従って熱交換器109により循環するレーザ媒質ガスの
圧力損失が大きくなり、レーザ媒質ガスの流速が低下し
高繰り返し発振が困難になる。
Therefore, the pressure loss of the laser medium gas circulating through the heat exchanger 109 increases, the flow rate of the laser medium gas decreases, and high repetition oscillation becomes difficult.

そこでレーザ媒質ガスが循環する流路で最も圧力損失の
大きくなる点すなわち熱交換器109の両側に1台づつ
計2台の貫流ファン108a、108bを設置し、貫流
ファン108bにより熱交換器109に送り込まれたレ
ーザ媒質ガスは貫流ファン108aで再度加速され主放
電電極105a、105bの間に送り込まれる。
Therefore, a total of two cross-flow fans 108a and 108b are installed, one on each side of the heat exchanger 109, at the point where the pressure loss is greatest in the flow path where the laser medium gas circulates. The fed laser medium gas is accelerated again by the cross-flow fan 108a and sent between the main discharge electrodes 105a and 105b.

本実施例において貫流ファン108a、108bの径お
よび回転数はそれぞれ異なってもかまわない。
In this embodiment, the diameters and rotation speeds of the cross-flow fans 108a and 108b may be different from each other.

この発明の第2実施例を第2図に基づいて説明する。A second embodiment of the invention will be described based on FIG. 2.

第2図に於てレーザチャンバ201内に外側ガイド20
2a、203a、、202b、203bと予備電離電極
204a、204b主放電々極205a、205bが設
けてあり、外側ガイド202a、203a、202b、
203bと主放電電極205aとでレーザ媒質ガス流路
の・外側壁を形成している。
In FIG. 2, an outer guide 20 is placed inside the laser chamber 201.
2a, 203a, 202b, 203b and pre-ionization electrodes 204a, 204b main discharge electrodes 205a, 205b are provided, and outer guides 202a, 203a, 202b,
203b and the main discharge electrode 205a form the outer wall of the laser medium gas flow path.

又主放電々極205bとその周辺に設けられている内側
ガイド207a、207b、207Cでレーザ媒質ガス
流路の内側壁を形成している。
Further, the main discharge electrode 205b and the inner guides 207a, 207b, and 207C provided around it form the inner wall of the laser medium gas flow path.

208a、208b、208Cは貫流ファンで、主放電
々極205a、205bが作るギャップの両側に1台ず
つ貫流ファン208a、208bが設置されており、熱
交換器209に接近した位置に1台貫流ファン208C
が設置されレーザ媒質ガスを矢印A、B、Cの方向に循
環させる。
208a, 208b, and 208C are cross-flow fans, and one cross-flow fan 208a, 208b is installed on each side of the gap created by the main discharge electrodes 205a and 205b, and one cross-flow fan is installed near the heat exchanger 209. 208C
is installed to circulate the laser medium gas in the directions of arrows A, B, and C.

本実施例のレーザチャンバ201は大きさに厳しい制限
がなく巾Wが第1実施例のものと比較して大きいもので
ある。
The laser chamber 201 of this embodiment has a size that is not strictly limited and has a width W that is larger than that of the first embodiment.

又1パルス当りのエネルギーも小さい場合であり熱交換
器2o9’+大ががりにする必要はなく圧力損失が少な
く、むしろ主放電々極205a、205bがレーザ媒質
ガス流路内で絞りとして作用するためこの点が圧力損失
が最大となる。
In addition, since the energy per pulse is small, there is no need to make the heat exchanger 2o9' large and the pressure loss is small. Rather, the main discharge electrodes 205a and 205b act as a throttle in the laser medium gas flow path. Therefore, pressure loss is maximum at this point.

従ってこの点の両側に貫流ファン208a。Therefore, cross-flow fans 208a on both sides of this point.

208bを設置して圧力損失を貫流しファン208bで
回復させている。
208b is installed to allow pressure loss to flow through and be recovered by the fan 208b.

また本実施例の場合レーザチャンバ201のrll W
が長くレーザ媒質ガス流路が長くなり流路抵抗が大きく
なるので熱交換器209の風下側゛′を流ファン208
cを設置している。
In addition, in this embodiment, rll W of the laser chamber 201
Since the laser medium gas flow path becomes longer and the flow path resistance increases, the flow fan 208
c is installed.

本実施例においても各貫流ファン208a、208b、
208Cの径および回転数が各々異なっても良い。
Also in this embodiment, each cross-flow fan 208a, 208b,
208C may have different diameters and rotational speeds.

(発明の効果) 本発明によりレーザ媒質ガスの流速が高まりレーザを高
出力とすることが可能となった。
(Effects of the Invention) According to the present invention, the flow velocity of the laser medium gas is increased and it becomes possible to make the laser output high.

特にエキシマレーザのようなパルスガスレーザではlパ
ルス当たりのエネルギーを高くしたまま高繰り返し発振
が可能となったため半導体製造装置などへの適用ができ
るようになった。
In particular, pulsed gas lasers such as excimer lasers have become capable of high repetition oscillation while maintaining high energy per pulse, making them applicable to semiconductor manufacturing equipment and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す図、第2図は本発明
の第2実施例を示す図、第3図、第4図は従来技術を示
す図である。 図中、101.201.301.401はレーザチャン
バ、102a、102b、202a。 203a、202b、203b、402a、402bは
外側ガイド、105a、105b、205a、205b
は主放電々極、107.207a、207b、407は
内側ガイ1゛、108a、108b、208a、208
b、208 c。 308.408は貫流ファン、109.209.309
.409は熱交換器である。 出願人     株式会社小松製作所 代理人 (弁理士) 岡 1)和 喜 第1図 第2図
FIG. 1 shows a first embodiment of the invention, FIG. 2 shows a second embodiment of the invention, and FIGS. 3 and 4 show a prior art. In the figure, 101.201.301.401 are laser chambers, 102a, 102b, and 202a. 203a, 202b, 203b, 402a, 402b are outer guides, 105a, 105b, 205a, 205b
are the main discharge electrodes, 107.207a, 207b, 407 are the inner guides 1, 108a, 108b, 208a, 208
b, 208 c. 308.408 is a cross-flow fan, 109.209.309
.. 409 is a heat exchanger. Applicant: Komatsu Ltd. Agent (Patent Attorney) Oka 1) Kazuyuki Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] レーザチャンバ内に設けた外側ガイドと内側ガイドによ
り主放電々極間にレーザ媒質ガスを循環させる流路を形
成し、流路内に熱交換器、送風機を設けたガスレーザ装
置に於て、該流路の圧力損失最大位置の上流側と下流側
に送風機を設けたことを特徴とするガスレーザ装置。
In a gas laser device in which a flow path for circulating laser medium gas between the main discharge electrodes is formed by an outer guide and an inner guide provided in the laser chamber, and a heat exchanger and a blower are provided in the flow path, the flow is A gas laser device characterized in that a blower is provided upstream and downstream of the position of maximum pressure loss in the path.
JP62299462A 1987-11-26 1987-11-26 Gas laser apparatus Pending JPH01140689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299462A JPH01140689A (en) 1987-11-26 1987-11-26 Gas laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299462A JPH01140689A (en) 1987-11-26 1987-11-26 Gas laser apparatus

Publications (1)

Publication Number Publication Date
JPH01140689A true JPH01140689A (en) 1989-06-01

Family

ID=17872885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299462A Pending JPH01140689A (en) 1987-11-26 1987-11-26 Gas laser apparatus

Country Status (1)

Country Link
JP (1) JPH01140689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205485A (en) * 1988-02-10 1989-08-17 Hamamatsu Photonics Kk Laser oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205485A (en) * 1988-02-10 1989-08-17 Hamamatsu Photonics Kk Laser oscillator

Similar Documents

Publication Publication Date Title
US4504954A (en) Laser apparatus
US7715454B2 (en) Method and apparatus for cooling a laser
JPH0141263B2 (en)
JPH01140689A (en) Gas laser apparatus
JP4899026B2 (en) Laser equipment
JPS6331958B2 (en)
JP2923022B2 (en) Pulse oscillation type gas laser oscillation device
NL8203305A (en) DEVICE FOR GENERATING A LASER-ACTIVE STATE IN A FAST SUB-SONIC FLOW.
JP3090796B2 (en) Excimer laser oscillation device
JP2997606B2 (en) Narrowband excimer laser equipment
KR20000061407A (en) Process and device for the excitation of an electrical discharge at high frequency in a gas laser
JPS6295884A (en) Gas laser oscillator
JPS58124284A (en) Gas laser excited in lateral direction
JPH065957A (en) Transversely-pumped laser oscillator
JPS63181387A (en) Pulse gas laser
JPH03217062A (en) Gas laser oscillator
JPS63227084A (en) Highly repetitive pulse laser oscillator
JP2693004B2 (en) Gas laser oscillation device
JP2746080B2 (en) Laser oscillator
JPH04196186A (en) Gas laser
JP3248577B2 (en) Laser amplifier
JPS63228775A (en) Gas laser device
JPH06237029A (en) Discharge excited excimer laser device
JPH0335837B2 (en)
JPH02184089A (en) Gas circulation type pulse laser