JPH03217062A - Gas laser oscillator - Google Patents
Gas laser oscillatorInfo
- Publication number
- JPH03217062A JPH03217062A JP1186790A JP1186790A JPH03217062A JP H03217062 A JPH03217062 A JP H03217062A JP 1186790 A JP1186790 A JP 1186790A JP 1186790 A JP1186790 A JP 1186790A JP H03217062 A JPH03217062 A JP H03217062A
- Authority
- JP
- Japan
- Prior art keywords
- gas laser
- laser medium
- anode
- cathode
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 26
- 230000010355 oscillation Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 68
- 239000012535 impurity Substances 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/036—Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は陰極と陽極との間で発生する主放電によって
ガスレーザ媒質を励起してレーザ光を出力させるガスレ
ーザ発振装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas laser oscillation device that excites a gas laser medium by a main discharge generated between a cathode and an anode to output laser light.
(従来の技術)
一般に、TEA CO2レーザ、TEMA−CO■レ
ーザあるいはエキシマレーザなどのように大気圧もしく
はそれ以上の圧力で動作するガスレーザ発振装置は、大
電力のパルス放電によりガスレーザ媒質を励起してレー
ザ光を得ている。(Prior Art) In general, gas laser oscillators that operate at atmospheric pressure or higher pressure, such as TEA CO2 lasers, TEMA-CO lasers, or excimer lasers, excite the gas laser medium with high-power pulse discharge. Obtaining laser light.
従来、このようなガスレーザ発振装置は第4図と第5図
とに示すように構成されていた。すなわち、同図中1は
内部にガスレーザ媒質が収容された圧力容器である。こ
の圧力容器1内にはガスレザ媒質が流れる循環路2が形
成されている。この循環路2にはガスレーザ媒質を矢印
方向に循環させるための軸流ファンからなる送風機3が
設けられている。この送風機3は羽根部3aと、この羽
根部3aを回転駆動する駆動部3bとからなり、駆動部
3bは圧力容器1の外部に配置されている。Conventionally, such a gas laser oscillation device has been constructed as shown in FIGS. 4 and 5. That is, numeral 1 in the figure is a pressure vessel in which a gas laser medium is housed. A circulation path 2 through which a gas laser medium flows is formed within the pressure vessel 1 . This circulation path 2 is provided with a blower 3 consisting of an axial fan for circulating the gas laser medium in the direction of the arrow. The blower 3 includes a blade portion 3 a and a drive portion 3 b that rotationally drives the blade portion 3 a, and the drive portion 3 b is disposed outside the pressure vessel 1 .
上記循環路2にはガスレーザ媒質を冷却するための上流
側熱交換器4と、下流側熱交換器5とがガスレーザ媒質
の流れ方向に沿って所定間隔で配置されている。これら
一対の熱交換器4、5の間の部分には主電極を構成する
陰極6と陽極7とがガスレーザ媒質の流れ方向に対して
直交する方向に離間して配置されている。上記陰極6と
陽極7とは、それぞれ高圧電源8に接続され、この高圧
電源8から電気エネルギが供給されることによってこれ
らの先端面間の空間、つまり放電空間部に放電が発生す
るようになっている。放電空間部に放電が発生すると、
この放電空間部を流れるガスレーザ媒質が励起されるか
ら、それによってレザ光が出力されることになる。なお
、上記放電空間部は、陰極6と陽極7との間に放電が発
生する前に図示しない予備電離手段によって予備電離さ
れるようになっている。In the circulation path 2, an upstream heat exchanger 4 and a downstream heat exchanger 5 for cooling the gas laser medium are arranged at predetermined intervals along the flow direction of the gas laser medium. In a portion between the pair of heat exchangers 4 and 5, a cathode 6 and an anode 7 constituting a main electrode are arranged apart from each other in a direction perpendicular to the flow direction of the gas laser medium. The cathode 6 and the anode 7 are each connected to a high-voltage power source 8, and when electric energy is supplied from the high-voltage power source 8, a discharge is generated in the space between these end surfaces, that is, in the discharge space. ing. When a discharge occurs in the discharge space,
Since the gas laser medium flowing through this discharge space is excited, laser light is output. Note that the discharge space is pre-ionized by a pre-ionization means (not shown) before a discharge occurs between the cathode 6 and the anode 7.
上記循環路2の上記陰極6と陽極7とが設けられた箇所
には、第5図に示すようにガスレーザ媒質が陰極6と陽
極7との間の放電空間部に円滑に流れるようガイドする
ためのガイド体11が設けられている。このガイド体1
1は陰極6側に設けられた上部ガイド部材12aと、陽
極7側に設けられた下部ガイド部材12bとからなる。At the location where the cathode 6 and anode 7 of the circulation path 2 are provided, as shown in FIG. A guide body 11 is provided. This guide body 1
1 consists of an upper guide member 12a provided on the cathode 6 side and a lower guide member 12b provided on the anode 7 side.
上部ガイド部材12aと下部ガイド部材12bとの対向
間隔は、ガスレーザ媒質の流れ方向上流側が最も狭いチ
ョーク部13に形成され、このチョーク部13よりも下
流側は対向間隔が次第に大きくなるテーパ部14に形成
されている。このテーパ部14の角度θは渦の発生を極
力少なくするために11度に設定されている。また、上
記上部ガイド部材12aと下部ガイド部材12bとの対
向間隔が最も狭くなるチョーク部13の箇所にはそれぞ
れ挿入孔15a,15bが穿設され、これら挿入孔15
a,15bに上記陰極6と陽極7とがそれぞれ挿入配置
されている。The facing interval between the upper guide member 12a and the lower guide member 12b is formed in a choke part 13 which is narrowest on the upstream side in the flow direction of the gas laser medium, and is formed into a tapered part 14 where the facing interval becomes gradually larger downstream of this choke part 13. It is formed. The angle θ of the tapered portion 14 is set to 11 degrees in order to minimize the generation of vortices. Furthermore, insertion holes 15a and 15b are formed at the locations of the choke portion 13 where the opposing distance between the upper guide member 12a and the lower guide member 12b is the narrowest, respectively.
The cathode 6 and anode 7 are inserted into the holes a and 15b, respectively.
ところで、このような構成のガスレーザ発振装置におい
て、レーザ光を出力するために、陰極6と陽極7とに電
気エネルギを供給してこれらの間に放電を発生させると
、電気エネルギは熱となりて陰極6と陽極7との間のガ
スレーザ媒質を熱膨脹させる。それによって、膨脹した
ガスレーザ媒質はチョーク部13を境にして上流側と下
流側に流れる。上流側に流れたガスレーザ媒質は送風機
3によって放電空間部に送り込まれるガスレーザ媒質を
押し戻し、下流側に流れたガスレーザ媒質は下流側にお
けるガスレーザ媒質の流れを加速することになる。上記
陰極6と陽極7とはガイド体11の上流側の一端部に形
成されたチョーク部13に設けられているから、陰極6
と陽極7との間で熱膨張したガスレーザ媒質は循環路2
のガイド体11よりも上流側の部分2aに流れ易い。By the way, in a gas laser oscillator having such a configuration, when electric energy is supplied to the cathode 6 and anode 7 to generate a discharge between them in order to output laser light, the electric energy turns into heat and is generated at the cathode. The gas laser medium between the anode 6 and the anode 7 is thermally expanded. Thereby, the expanded gas laser medium flows upstream and downstream with the choke part 13 as a boundary. The gas laser medium flowing upstream pushes back the gas laser medium sent into the discharge space by the blower 3, and the gas laser medium flowing downstream accelerates the flow of the gas laser medium downstream. Since the cathode 6 and the anode 7 are provided in the choke part 13 formed at one end of the upstream side of the guide body 11, the cathode 6
The gas laser medium thermally expanded between the
It is easy to flow to the portion 2a on the upstream side of the guide body 11.
そのため、循環路2の上記上流側の部分2aの圧力上昇
が非常に高くなり、その圧力が送風機3によって送り込
まれるガスレーザ媒質の圧力とほぼ同じになるまでにか
なりの時間が掛かるから、陰極6と陽極7との間の放電
空間部から放電によって生じた不純ガスやスバツタなど
の生成物が除5
去されずらい。それによって、放電の繰返し数を高くす
ると、その放電が不安定となって高出力のレーザ光を出
力させることができないという問題が生じる。Therefore, the pressure rise in the upstream portion 2a of the circulation path 2 becomes extremely high, and it takes a considerable amount of time for the pressure to become almost the same as the pressure of the gas laser medium fed by the blower 3. Products such as impure gas and soot generated by discharge from the discharge space between the anode 7 and the anode 7 are difficult to remove. As a result, if the number of repetitions of discharge is increased, the discharge becomes unstable and a problem arises in that high-output laser light cannot be output.
また、熱膨張したガスレーザ媒質と同様、放電によって
発生する衝撃波や音響波などの圧力波も、循環路2のガ
イド体11よりも上流側の部分2aに伝播し易い。その
ため、上記上流側の部分2aにレーザガス媒質密度の粗
密あるいは揺らぎをつくり、それが収斂するまでに時間
が掛かるから、そのことによっても放電の繰返し数を高
くすることができない。Further, like the thermally expanded gas laser medium, pressure waves such as shock waves and acoustic waves generated by discharge also tend to propagate to the portion 2a of the circulation path 2 upstream of the guide body 11. Therefore, the density of the laser gas medium becomes uneven or fluctuates in the upstream portion 2a, and it takes time for the density to converge, which also makes it impossible to increase the number of repetitions of discharge.
(発明が解決しようとする課題)
このように、従来は陰極と陽極とがガスレーザ媒質の流
れをガイドするガイド体の上流側の一端部に形成された
チョーク部の箇所に設けられていたので、放電の熱で膨
脹したガスレーザ媒質がガイド体より上流側に流れ晶い
ぼかりか、放電によって発生する圧力波もガイド体より
上流側に伝播し易いので、これらのことによって放電の
繰返6
し数を高くすることができないということがあった。(Problems to be Solved by the Invention) As described above, conventionally, the cathode and the anode were provided at the choke part formed at one end on the upstream side of the guide body that guides the flow of the gas laser medium. The gas laser medium expanded by the heat of the discharge flows upstream from the guide body, causing crystal blur, and the pressure waves generated by the discharge also tend to propagate upstream from the guide body, so these things reduce the number of repetitions of the discharge. There were times when it was not possible to raise the temperature.
この発明は上記事情にもとずきなされたもので、その目
的とするところは、放電によって熱膨脹したガスレーザ
媒質がガイド体の下流側へ流れずらいようにし、それに
よって放電の繰返し数を高くすることができるようにし
たガスレーザ発振装置を提供することにある。This invention was made based on the above circumstances, and its purpose is to prevent the gas laser medium thermally expanded by the discharge from flowing downstream of the guide body, thereby increasing the number of repetitions of the discharge. An object of the present invention is to provide a gas laser oscillation device that can perform the following functions.
[発明の構成〕
(課題を解決するための手段及び作用)上記課題を解決
するためにこの発明は、圧力容器と、この圧力容器内に
収容されたガスレーザ媒質を循環させる送風機と、上記
圧力容器内に対向して配置された陰極と陽極とからなる
主電極と、上記送風機によって循環させられるガスレー
ザ媒質が上記陰極と陽極との間を流れるようガイドする
ガイド体とを具備し、このガイド体はガスレザ媒質の流
れ方向上流側に最も対向間隔が狭くなるチョーク部が形
成され、このチョーク部から下流側は対向間隔が次第に
広くなるテーパ部に形成されているとともに、上記陰極
と陽極とは上記チョーク部よりも下流側のテーパ部に配
置される。[Structure of the Invention] (Means and Effects for Solving the Problems) In order to solve the above problems, the present invention provides a pressure vessel, a blower for circulating a gas laser medium housed in the pressure vessel, and a blower for circulating a gas laser medium housed in the pressure vessel. A main electrode consisting of a cathode and an anode arranged opposite each other, and a guide body for guiding a gas laser medium circulated by the blower to flow between the cathode and the anode, the guide body A choke part where the facing distance is narrowest is formed on the upstream side in the flow direction of the gas laser medium, and a tapered part is formed where the facing distance becomes gradually wider downstream from this choke part. It is arranged in the tapered part on the downstream side of the part.
このような構成によれば、放電によって熱膨張したガス
レーザ媒質はガイド体の下流側の方向に流れ易く、また
放電によって生じる圧力波も下流側に伝播し易い。その
ため、送風機によって送られてくるガスレーザ媒質はガ
イド体の上流側から下流側へ流れ易くなるから、放電に
よって生成される不純ガスや生成物が陰極と陽極との間
の部分から短時間で除去され、放電の繰返し数を高くす
ることができる。According to such a configuration, the gas laser medium thermally expanded by the discharge tends to flow downstream of the guide body, and the pressure waves generated by the discharge also tend to propagate downstream. Therefore, the gas laser medium sent by the blower easily flows from the upstream side to the downstream side of the guide body, so impurity gases and products generated by discharge are removed from the area between the cathode and anode in a short time. , the number of repetitions of discharge can be increased.
(実施例)
以下、この発明の一実施例を第1図乃至第3図を参照し
て説明する。なお、第4図と第5図に示す従来構造と同
一部分には同一記号を付して説明を省略する。(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Incidentally, the same parts as those in the conventional structure shown in FIGS. 4 and 5 are given the same symbols, and the explanation thereof will be omitted.
すなわち、この発明においては、ガイド体11の上部ガ
イド部材12aと、下部ガイド部材12bとのチョーク
部13よりも下流側であるテパ部14の中途部に挿入孔
15c、15dが形成され、これら挿入孔15c,15
dに陰極6と陽極7とが挿入されている。That is, in this invention, the insertion holes 15c and 15d are formed in the middle of the tapered part 14 of the upper guide member 12a and the lower guide member 12b of the guide body 11, which is downstream of the choke part 13, and these insertion holes 15c and 15d are Hole 15c, 15
A cathode 6 and an anode 7 are inserted in d.
このような構成によれば、陰極6と陽極7とに電気エネ
ルギを供給して放電を発生させると、上記電気エネルギ
が熱になり、陰極6と陽極7との間のガスレーザ媒質が
熱膨張する。テーパ部14の中途部で熱膨脹したガスレ
ーザ媒質は、上流のチョーク部13側より下流のテーパ
部14の開放端側へ流れ易い。そのため、送風機3によ
ってガイド体11の上流側に送り込まれるガスレーザ媒
質は熱膨脹したガスレーザ媒質によって大きく押し戻さ
れることなく下流側へ流れる。その結果、陰極6と陽極
7との間の放電空間部に放電によって発生した不純ガス
や生成物は、送風機3によるガスレーザ媒質の流れによ
って迅速に除去される。According to such a configuration, when electric energy is supplied to the cathode 6 and the anode 7 to generate a discharge, the electric energy turns into heat, and the gas laser medium between the cathode 6 and the anode 7 thermally expands. . The gas laser medium thermally expanded in the middle of the tapered portion 14 tends to flow from the upstream choke portion 13 side to the downstream open end side of the tapered portion 14 . Therefore, the gas laser medium sent to the upstream side of the guide body 11 by the blower 3 flows downstream without being pushed back significantly by the thermally expanded gas laser medium. As a result, impurity gas and products generated by the discharge in the discharge space between the cathode 6 and the anode 7 are quickly removed by the flow of the gas laser medium by the blower 3.
また、放電によって発生した圧力波も熱膨脹したガスレ
ーザ媒質と同様ガイド体11の下流側に伝播し易いから
、ガイド体11のテーパ部14におけるガスレーザ媒質
の密度が粗密になったり、揺ぐこともほとんどない。In addition, since the pressure waves generated by the discharge also tend to propagate downstream of the guide body 11 in the same manner as the thermally expanded gas laser medium, the density of the gas laser medium in the tapered portion 14 of the guide body 11 rarely becomes dense or fluctuates. do not have.
9
したがって、これらのことにより、陰極6と陽極7との
間の放電の繰返し数を高くしても安定させることができ
るから、レーザ光の出力を高めることができる。9. Therefore, due to these things, even if the number of repetitions of the discharge between the cathode 6 and the anode 7 is increased, it can be stabilized, so that the output of the laser beam can be increased.
第2図の曲線Pは、送風機3によって循環路2を循環さ
せられるガスレーザ媒質の圧力状態を示す。つまり、第
1図に示すようにガイド体11よりも上流側の箇所をa
点、チョーク部13の箇所をb点、陰極6と陽極7とが
設けられた箇所をC点、テーパ部14の開放端の箇所を
d点とすると、これらa−d点における圧力分布は上記
曲線Pに示すようにa点からb点の間が最も高く、b点
からd点にゆくにしたがって低くなる。また、同図に示
す曲線Vはa点〜d点における速度分布である。A curve P in FIG. 2 shows the pressure state of the gas laser medium that is circulated through the circulation path 2 by the blower 3. In other words, as shown in FIG.
Assuming that the location of the choke portion 13 is point b, the location where the cathode 6 and anode 7 are provided is point C, and the open end of the tapered portion 14 is point d, the pressure distribution at these points a to d is as described above. As shown by the curve P, it is highest between points a and b, and decreases from point b to point d. Further, a curve V shown in the figure is a velocity distribution at points a to d.
このような圧力分布において、陰極6と陽極7との間で
放電が点弧されると、陰極6と陽極7との間のガスレー
ザ媒質は瞬時に断熱膨脹して第3図にP1で示すように
圧力が高くなる。P1の圧力に断熱膨脹したガスレーザ
媒質は上流側と下流10
側に体積を増大させながら急速に拡散する。下流側に拡
散したガスレーザ媒質はガイド体11のテパ部14から
流出し、上流側に拡散したガスレザ媒質は曲線Pと接す
る圧力P2になるまで膨脹する。断熱膨脹したガスレー
ザ媒質が曲線Pに接する圧力P2まで低下すれば、その
ガスレーザ媒質は送風機3から送られてくるガスレーザ
媒質によって下流側に押し流されることになる。つまり
、陰極6と陽極7とがテーパ部14の中途部に設けられ
ていることにより、放電によって断熱膨脹したガスレー
ザ媒質が上記テーバ部14の上流側に拡散しずらい。そ
のため、送風機3から送られてくるガスレーザ媒質が流
れずらくなる時間が非常に短くなる。In such a pressure distribution, when a discharge is ignited between the cathode 6 and anode 7, the gas laser medium between the cathode 6 and anode 7 instantaneously expands adiabatically, as shown by P1 in FIG. pressure increases. The gas laser medium adiabatically expanded to a pressure of P1 rapidly diffuses while increasing its volume on the upstream and downstream sides. The gas laser medium that has diffused to the downstream side flows out from the tapered portion 14 of the guide body 11, and the gas laser medium that has diffused to the upstream side expands until it reaches a pressure P2 in contact with the curve P. When the adiabatically expanded gas laser medium decreases to a pressure P2 that is in contact with the curve P, the gas laser medium is swept downstream by the gas laser medium sent from the blower 3. That is, since the cathode 6 and the anode 7 are provided in the middle of the tapered portion 14, the gas laser medium adiabatically expanded by discharge is difficult to diffuse upstream of the tapered portion 14. Therefore, the time during which the gas laser medium sent from the blower 3 becomes difficult to flow becomes extremely short.
つぎに、実験結果について説明する。陰極6と陽極7と
の間隔を20+nII1,各電極の長さを300+++
+n,幅を3 0 am s先端部の形状をチャン型と
した。また、ガイド体11の全長を約500關、テーパ
部14の開き角度は11度に設定するとともに、b点(
チョーク部13)の上下方向の間隔(間口)を16mm
s11
d点の間隔を112 mmSb点から陰極6と陽極7と
の中心であるC点までの距離を約20mmに設定した。Next, the experimental results will be explained. The distance between the cathode 6 and anode 7 is 20+nII1, and the length of each electrode is 300+++.
+n, the width was 30 ams, and the shape of the tip was chang-shaped. In addition, the total length of the guide body 11 is set to approximately 500 degrees, the opening angle of the tapered portion 14 is set to 11 degrees, and the point b (
The vertical interval (frontage) of the choke part 13) is 16 mm.
s11 The distance between the d points was set to 112 mm, and the distance from the Sb point to the C point, which is the center of the cathode 6 and the anode 7, was set to about 20 mm.
そして、C点でのガスレーザ媒質の流速を1. 0 0
m / sにしたところ、放電の最大繰返し数は5
kHzを記録することができた。Then, the flow velocity of the gas laser medium at point C is set to 1. 0 0
m/s, the maximum number of discharge repetitions is 5
I was able to record kHz.
また、陰極6と陽極7への注入エネルギを10J1ガス
レーザ媒質の成分をキセノン(Xe) 1.5%、塩化
水素(IC+)0.1%、およびネオン(Ne) 98
.4%とし、2,75気圧で圧力容器1に封入した場合
、放電体積は、10mm(幅)X20mm(高さ)X2
80mm(長さ)になる。この放電体積はIOJのエネ
ルギが注入されると瞬時に断熱膨脹して約6気圧(第3
図にP1て示す圧力)に上昇し、膨脹した後、上流側と
下流側に向かって体積を増しながら急速に拡散する。そ
して、第2図にP2て示す圧力になるまで膨脹すると、
送風機3からのガスレー4ザ媒質の流れによって下流側
へ押し戻される。このときの体積は、30+n+n (
幅)x20m(高さ)x280mm (長さ)となり、
放電体積の約3倍であった。In addition, the energy injected into the cathode 6 and anode 7 is 10J1.The components of the gas laser medium are xenon (Xe) 1.5%, hydrogen chloride (IC+) 0.1%, and neon (Ne) 98%.
.. 4% and sealed in pressure vessel 1 at 2,75 atm, the discharge volume is 10 mm (width) x 20 mm (height) x 2
It will be 80mm (length). When the IOJ energy is injected, this discharge volume instantly expands adiabatically to about 6 atmospheres (3
After the pressure rises to a pressure indicated by P1 in the figure and expands, it rapidly diffuses while increasing its volume toward the upstream and downstream sides. Then, when it expands to the pressure shown as P2 in Figure 2,
The gas laser 4 from the blower 3 is pushed back downstream by the flow of the laser medium. The volume at this time is 30+n+n (
Width) x 20m (height) x 280mm (length),
It was about three times the discharge volume.
つまり、陰極6と陽極7とをチョーク部13より12
も20mm(b−c間の距離)下流側に設置したので、
断熱膨脹したガスレーザ媒質がチョーク部13よりも上
流側へ流れるのを阻止することができた。In other words, since the cathode 6 and the anode 7 are installed 12 and 20 mm (distance between b and c) downstream of the choke part 13,
It was possible to prevent the adiabatically expanded gas laser medium from flowing upstream of the choke part 13.
なお、陰極6と陽極7とを設ける位置、つまりチョーク
部14からの距離はガスレーザ媒質の成分と注入エネル
ギとによって異なる。つまり、これらの条件が変化すれ
ば、断熱膨脹時におけるガスレーザ媒質の圧力変化も異
なってくるからである。したがって、陰極6と陽極7と
の設置位置はガスレーザ媒質の成分と注入エネルギとに
よって変えなければならない。Note that the positions at which the cathode 6 and the anode 7 are provided, that is, the distances from the choke portion 14, vary depending on the components of the gas laser medium and the injection energy. In other words, if these conditions change, the pressure change of the gas laser medium during adiabatic expansion also changes. Therefore, the installation positions of the cathode 6 and anode 7 must be changed depending on the composition of the gas laser medium and the injection energy.
また、ガイド体11のテーパ部14の角度を11度とし
たが、それに限定されるものでなく、l1度よりも大き
くすれば、断熱膨脹したガスレーザ媒質が上流側に流れ
ずらくなること勿論である。Furthermore, although the angle of the tapered portion 14 of the guide body 11 is set to 11 degrees, the angle is not limited to this, and if it is made larger than 11 degrees, it goes without saying that the adiabatically expanded gas laser medium will have a hard time flowing upstream. be.
[発明の効果コ
以上述べたようにこの発明は、ガスレーザ媒質をガイド
するガイド体に、チョーク部とテーパ部とを設けるとと
もに、陰極と陽極とを上記チョク部よりも下流側のテー
バ部に設けるようにし13
た。したがって、上記陰極と陽極との間の放電によって
断熱膨脹したガスレーザ媒質は、上記テーパ部によって
上流側へ流れるのが規制されるから、新鮮なガスレーザ
媒質がガイド体に流れ易い。つまり、放電によって生じ
る不純ガスや生成物などを短時間で陰極と陽極との間か
ら除去することができる。しかも、放電によって発生す
る衝撃波や音響波も陰極と陽極とがチョーク部よりも下
流側に設けられていることにより、上流側には伝播しず
らい。そのため、これらのことにより、放電の繰返し数
を高くしてレーザ出力を上げることができる。[Effects of the Invention] As described above, in the present invention, a guide body for guiding a gas laser medium is provided with a choke portion and a tapered portion, and a cathode and an anode are provided in a tapered portion downstream of the choke portion. It was 13 years ago. Therefore, since the gas laser medium adiabatically expanded by the discharge between the cathode and the anode is restricted from flowing upstream by the tapered portion, fresh gas laser medium can easily flow to the guide body. In other words, impurity gas, products, etc. generated by discharge can be removed from between the cathode and the anode in a short time. Furthermore, shock waves and acoustic waves generated by discharge are difficult to propagate upstream because the cathode and anode are provided downstream of the choke section. Therefore, these things make it possible to increase the number of discharge repetitions and increase the laser output.
第1図はこの発明の一実施例を示すガイド体の部分の拡
大断面図、第2図は同じくガイド体を流れるガスレーザ
媒質の圧力と速度の状態の説明図、第3図は同じく全体
構成の概略図、第4図は従来のガスレーザ発振装置の概
略図、第5図は同じくガイド体の部分の拡大断面図であ
る。
1・・・圧力容器、3・・・送風機、6・・・陰極、1
4
7・・・陽極、
1
1・・・ガイ
ド体、
13・・・チョーク部、
1
4・・・テ
バ部。Fig. 1 is an enlarged cross-sectional view of a portion of a guide body showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the pressure and velocity states of the gas laser medium flowing through the guide body, and Fig. 3 is an illustration of the overall configuration. 4 is a schematic diagram of a conventional gas laser oscillation device, and FIG. 5 is an enlarged sectional view of a guide body portion. 1...Pressure vessel, 3...Blower, 6...Cathode, 1
4 7... Anode, 1 1... Guide body, 13... Choke part, 1 4... Tever part.
Claims (1)
媒質を循環させる送風機と、上記圧力容器内に対向して
配置された陰極と陽極とからなる主電極と、上記送風機
によって循環させられるガスレーザ媒質が上記陰極と陽
極との間を流れるようガイドするガイド体とを具備し、
このガイド体はガスレーザ媒質の流れ方向上流側に対向
間隔が最も狭くなるチョーク部が形成され、このチョー
ク部から下流側は対向間隔が次第に広くなるテーパ部に
形成されているとともに、上記陰極と陽極とは上記チョ
ーク部よりも下流側のテーパ部に配置されてなることを
特徴とするガスレーザ発振装置。A pressure vessel, a blower for circulating a gas laser medium contained in the pressure vessel, a main electrode consisting of a cathode and an anode disposed facing each other in the pressure vessel, and a gas laser medium circulated by the blower. A guide body that guides the flow between the cathode and the anode,
This guide body is formed with a choke part where the facing distance is the narrowest on the upstream side in the flow direction of the gas laser medium, and a tapered part where the facing distance becomes gradually wider downstream from the choke part. A gas laser oscillation device characterized in that the gas laser oscillation device is disposed at a tapered portion downstream of the choke portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011867A JP2735339B2 (en) | 1990-01-23 | 1990-01-23 | Gas laser oscillation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011867A JP2735339B2 (en) | 1990-01-23 | 1990-01-23 | Gas laser oscillation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03217062A true JPH03217062A (en) | 1991-09-24 |
JP2735339B2 JP2735339B2 (en) | 1998-04-02 |
Family
ID=11789674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011867A Expired - Fee Related JP2735339B2 (en) | 1990-01-23 | 1990-01-23 | Gas laser oscillation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2735339B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321607B2 (en) | 2005-11-01 | 2008-01-22 | Cymer, Inc. | External optics and chamber support system |
US7706424B2 (en) | 2005-09-29 | 2010-04-27 | Cymer, Inc. | Gas discharge laser system electrodes and power supply for delivering electrical energy to same |
US8379687B2 (en) | 2005-06-30 | 2013-02-19 | Cymer, Inc. | Gas discharge laser line narrowing module |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229769A (en) * | 1987-03-19 | 1988-09-26 | Toshiba Corp | Highly repetitive pulse laser oscillator |
-
1990
- 1990-01-23 JP JP2011867A patent/JP2735339B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229769A (en) * | 1987-03-19 | 1988-09-26 | Toshiba Corp | Highly repetitive pulse laser oscillator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8379687B2 (en) | 2005-06-30 | 2013-02-19 | Cymer, Inc. | Gas discharge laser line narrowing module |
US7706424B2 (en) | 2005-09-29 | 2010-04-27 | Cymer, Inc. | Gas discharge laser system electrodes and power supply for delivering electrical energy to same |
US7321607B2 (en) | 2005-11-01 | 2008-01-22 | Cymer, Inc. | External optics and chamber support system |
Also Published As
Publication number | Publication date |
---|---|
JP2735339B2 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6466599B1 (en) | Discharge unit for a high repetition rate excimer or molecular fluorine laser | |
US6212211B1 (en) | Shock wave dissipating laser chamber | |
US4099143A (en) | Gas recirculating stabilized laser | |
US6636545B2 (en) | Supersonic and subsonic laser with radio frequency excitation | |
JPH03217062A (en) | Gas laser oscillator | |
US3860887A (en) | Electrically excited high power flowing gas devices such as lasers and the like | |
US4058778A (en) | High power gas transport laser | |
US3735284A (en) | Aerodynamic large volume gaseous electric discharge system | |
JP3171899B2 (en) | Gas laser equipment | |
TW569511B (en) | Laser apparatus | |
JPH11214771A (en) | Gas laser oscillator | |
JPH01246881A (en) | Gas laser oscillating device | |
JP3065681B2 (en) | Gas laser oscillation device | |
JPH06283780A (en) | Gas layer oscillator | |
von Bergmann | High-Repetition-Rate and High-Power Lasers | |
JP2923022B2 (en) | Pulse oscillation type gas laser oscillation device | |
JPS6316686A (en) | 3-axis orthogonal laser oscillator | |
JPS6339113B2 (en) | ||
SU492059A1 (en) | Apparatus for producing low-temperature plasma | |
JPH03225980A (en) | Gas laser oscillation apparatus | |
JPH03225978A (en) | Gas laser oscillation apparatus | |
JPH02130883A (en) | Gas dynamic laser equipment using microwave excitation | |
JPS6388877A (en) | Gas laser device | |
JPH0716040B2 (en) | Gas laser oscillator | |
JPH05259537A (en) | Excimer laser equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |