JPH01140678A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH01140678A
JPH01140678A JP62298384A JP29838487A JPH01140678A JP H01140678 A JPH01140678 A JP H01140678A JP 62298384 A JP62298384 A JP 62298384A JP 29838487 A JP29838487 A JP 29838487A JP H01140678 A JPH01140678 A JP H01140678A
Authority
JP
Japan
Prior art keywords
light
light absorption
light absorbing
substrate
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62298384A
Other languages
Japanese (ja)
Inventor
Kenichi Matsuda
賢一 松田
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62298384A priority Critical patent/JPH01140678A/en
Publication of JPH01140678A publication Critical patent/JPH01140678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photodetector operable at high speed and to facilitate application thereof in an photoelectronic integrated circuit, by inverting conductivity type of first and second light absorbing layers so that p-n junctions are formed vertically to a substrate. CONSTITUTION:A linear groove is formed in a semi-insulating semiconductor substrate 13. First and second n-type light absorbing layers 14, 15 are formed by crystal growth such that they border the groove vertically and that they have flat surfaces. A p-type dopant is diffused in a part of the first and second light absorbing layers 14, 15 so that p-n junctions 20, 21 are formed along the groove. Reverse bias is applied to the P-N junctions 20, 21 of the first and second light absorbing layers 14, 15, so that depletion layers are extended into optical guides and the first and second light absorbing layers 14, 15 are caused to function as a p-i-n photodiode. Namely, the conductivity type of the first and second light absorbing layers 14, 15 are inverted so that p-n junctions are formed along first and second optical guides 16, 17 vertically to the substrate 13. A photodetector thus constructed is allowed to operate at high speed and can be integrated easily with other electronic elements.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2波長以上の入射光に対して波長選11(W
能を有する受光素子の構造に関するものであり、高速で
かつ光電子集積回路への応用が容易な受光素子として利
用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides wavelength selection 11 (W) for incident light of two or more wavelengths.
This invention relates to the structure of a light-receiving element having a high speed and can be used as a light-receiving element that can be easily applied to optoelectronic integrated circuits.

従来の技術 2波長以−ヒの入射光に対して波長選択機能を有する受
ti子を含む構造としては、例えば特願昭Go−151
578号公報に示されている第5図の構造がある。本構
造では、ロー1nP基板1上にn −[n P第2エミ
ッタ2、p−(nGaAsP (l成波長λg=1.1
7zm)第2ベース3、n−1nGaAsP (組成波
長λg=1. 171m)第1エミツタ兼第2コレクタ
4、p−InGaAsP(g成波長λg=1.3μm)
第1ベース5、n −1tlP nクラッド兼第1コレ
クタ6、rnGaAsP(、[成波長λg=1.171
m)活性層7、I) −r n P pクラッド8が積
層されている。このうち、P−クラット8、活性層7、
nクラッド6が発光素子9を構成している。また、第1
コレクタ6、第1ペース5、第1エミツタ4が第1のホ
トトランジスタlOを構成し、第2コレクタ4、第2ベ
ース3、第2エミツタ2が第2のホトトラ、ンジスタ1
1を構成している。
Prior Art A structure including a receiver having a wavelength selection function for incident light of two or more wavelengths is disclosed in Japanese Patent Application No. 151, for example.
There is a structure shown in FIG. 5 shown in Japanese Patent No. 578. In this structure, n-[nP second emitter 2, p-(nGaAsP (l wavelength λg=1.1
7zm) Second base 3, n-1nGaAsP (composition wavelength λg = 1.171 m) First emitter and second collector 4, p-InGaAsP (g composition wavelength λg = 1.3 μm)
First base 5, n -1tlP n cladding and first collector 6, rnGaAsP (, [wavelength λg=1.171
m) active layer 7 and I) -r n P p cladding 8 are laminated. Among them, P-crat 8, active layer 7,
The n-cladding 6 constitutes a light emitting element 9. Also, the first
The collector 6, the first base 5, and the first emitter 4 constitute the first phototransistor 1O, and the second collector 4, the second base 3, and the second emitter 2 constitute the second phototransistor 1.
1.

ここで、発光素子9の機能は本発明と直接間係はないが
、第1および第2のホトトランジスタ1O1liが2波
長以上の入射光に対して波長選択機能を有する受光素子
として機能している。第1および第2のホトトランジス
タはワイド・バンド・ギャップ・エミッタ構造となって
おり、その受光可能な最長波長はベースのバンド・ギャ
ップによって決まり、最短波長はエミッタのバンド・ギ
ャップによって決まる。すなわち、第2のホトトランジ
スタは波長0.9−1.1μrnの光を選択的に受光し
、第1のホトトランジスタは波長1゜1−1.3μmの
光を選択的に受光することになる。従って、入射光12
として波長1.0μmおよび1.2μmの光が同時に入
射した場合、波長1.071mの光は第2のホトトラン
ジスタで電流に変換され、波長1. 2μmの光は第1
のホトトランジスタで電流に変換されることになる。
Here, although the function of the light emitting element 9 is not directly related to the present invention, the first and second phototransistors 1O1li function as a light receiving element having a wavelength selection function for incident light of two or more wavelengths. . The first and second phototransistors have a wide band gap emitter structure, the longest wavelength at which light can be received is determined by the band gap of the base, and the shortest wavelength is determined by the band gap of the emitter. That is, the second phototransistor selectively receives light with a wavelength of 0.9-1.1 μrn, and the first phototransistor selectively receives light with a wavelength of 1°1-1.3 μm. . Therefore, the incident light 12
When light with a wavelength of 1.0 μm and 1.2 μm is incident simultaneously, the light with a wavelength of 1.071 m is converted into a current by the second phototransistor, 2μm light is the first
The phototransistor converts the current into a current.

発明が解決しようとする問題点 第5図に示した受光素子はホトトランジスタによって光
電変換しているので、増幅機能を有するという利αがあ
るが、応答速度を速くすることは困難である。また、縦
型の集積構造をとっているために、例えば電子素子も集
積化した光電子集積回路にするといった応用が容易では
ない。
Problems to be Solved by the Invention Since the light receiving element shown in FIG. 5 performs photoelectric conversion using a phototransistor, it has the advantage of having an amplification function, but it is difficult to increase the response speed. Furthermore, since it has a vertical integrated structure, it is not easy to apply it to, for example, an optoelectronic integrated circuit that also integrates electronic elements.

問題点を解決するための手段 本発明は上記問題点を解決するために、半絶縁性半導体
基板と、前記基板の一部領域上に形成され前記基板より
も屈折率の高い半導体薄膜よりなりかつ第1の光導波路
を含む第1の光吸収層と、前記基板の前記第1の光吸収
層が形成された領域以外の領域ヒに前記第1の光吸収層
に接して形成され前記第1の光吸収層よりもバンド・ギ
ャップの小さいt導体薄膜よりなりかつ第2の光導波路
を含む第2の光吸収層とを含み、前記第1および第2の
光導波路が光学的に結合されており、かつ前記第1およ
び第2の光導波路に沿って前記基板に垂直にl) −n
接合が形成されるように前記第1および第2の光吸収層
の導電型が反転しているという構造で受光素子を構成す
るものである・作用 本発明の受光素子は、例えば半絶縁性半導体基板上にス
トライブ状に溝を形成しておき、この溝に垂直な方向に
境界を有するように共にn型の第1および第2の光吸収
層を表面が平坦になるように結晶成長した後、第1およ
び第2の光吸収層の一部にp型不純物を拡散して溝に沿
ってp−n接合を形成することによって作製される。こ
こで、溝の上に形成された第1および第2の光吸収層が
それぞれ第1および第2の光導波路になる。第1および
第2の光吸収層のp−n接合に逆バイアスを印加し、空
乏層を光導波路内に広げることで光吸収層をp−1−n
ホトダイオードとして機能させることができる。
Means for Solving the Problems In order to solve the above problems, the present invention provides a semi-insulating semiconductor substrate, and a semiconductor thin film formed on a partial region of the substrate and having a higher refractive index than the substrate. a first light absorption layer including a first optical waveguide; a second light absorption layer made of a t-conductor thin film having a band gap smaller than that of the light absorption layer and including a second optical waveguide, the first and second optical waveguides being optically coupled. and perpendicular to the substrate along the first and second optical waveguides l) -n
The light-receiving element has a structure in which the conductivity types of the first and second light absorption layers are reversed so that a junction is formed.Function The light-receiving element of the present invention is made of, for example, a semi-insulating semiconductor. Grooves were formed in stripes on the substrate, and the first and second light-absorbing layers, both of n-type, were crystal-grown so that their surfaces were flat, with boundaries perpendicular to the grooves. After that, p-type impurities are diffused into parts of the first and second light absorption layers to form p-n junctions along the grooves. Here, the first and second light absorption layers formed on the grooves become first and second optical waveguides, respectively. By applying a reverse bias to the p-n junction of the first and second light absorption layers and expanding the depletion layer into the optical waveguide, the light absorption layer becomes p-1-n.
It can function as a photodiode.

本受光素子では、第2の光吸収層の組成波長λ2が第1
の光吸収層の組成液長大1よりも大きいので、第1の光
吸収層では入1以下の波長の光が吸収され、第2の光吸
収層では入1以上λ2以下の波長の光が吸収される。す
なわち、波長選択が可能である。また、p −n接合の
面積が非常に小さいl) −i −nホトダイオードを
用いて光電変換を1rうので、高速動作が可能になる。
In this light receiving element, the composition wavelength λ2 of the second light absorption layer is the first wavelength.
Since the composition length of the light-absorbing layer is larger than 1, the first light-absorbing layer absorbs light with a wavelength of 1 or less, and the second light-absorbing layer absorbs light with a wavelength of 1 or more and less than λ2. be done. That is, wavelength selection is possible. Furthermore, since the photoelectric conversion is performed by using a l)-i-n photodiode whose p-n junction has a very small area, high-speed operation is possible.

さらに、本受光素子はブレーナ構造となることから、作
製が容易であり、他の電子素子との集積化も容易に実現
でき名 実施例 第1図は本発明の一実施例の受光素子の斜視図である。
Furthermore, since this photodetector has a Brener structure, it is easy to manufacture and can be easily integrated with other electronic devices. It is a diagram.

ストライブ状の溝が形成された半絶縁性[nP基板13
上にn−InGaAsPよりなる第1の光吸収層14(
組成波長λg=1.4μm)およびn−Inc;aAs
よりなる第2の光吸収層15が結晶成長されており、溝
上の第1の光吸収層14が第1の光導波路16となって
いる。一方、第2図は第1図に示すA−A’線に沿って
の断面図であるが、溝上の第2の光吸収層15が第2の
光導波路17となっている。また、第1および第2の光
吸収層14.15の一部はZn等が拡散された第1のp
型反転領域18および第2のp型反転領域19となって
おり、第1のp−n接合20が第1の光導波路16に沿
って形成され、第2のp−n接合21が第2の光導波路
17に沿って形成されている。さらに、第1および第2
のp型層転領域18.19上にp4’!’ITj、極2
2、それ以外の第1および第2の光吸収層14.15上
にn側電極23が設けられている。
Semi-insulating [nP substrate 13 with stripe-like grooves formed
A first light absorption layer 14 made of n-InGaAsP (
composition wavelength λg = 1.4 μm) and n-Inc; aAs
A second light absorption layer 15 made of the above is crystal-grown, and the first light absorption layer 14 on the groove serves as a first optical waveguide 16. On the other hand, FIG. 2 is a sectional view taken along the line AA' shown in FIG. 1, and the second light absorption layer 15 on the groove serves as the second optical waveguide 17. Further, a part of the first and second light absorption layers 14.15 is made of a first p-layer film in which Zn or the like is diffused.
A type inversion region 18 and a second p-type inversion region 19 are formed, a first p-n junction 20 is formed along the first optical waveguide 16, and a second p-n junction 21 is formed along the second optical waveguide 16. It is formed along the optical waveguide 17 of. Furthermore, the first and second
p4'! on the p-type layer transfer region 18.19. 'ITj, polar 2
2. An n-side electrode 23 is provided on the other first and second light absorption layers 14 and 15.

第1の光導波路16は波長1.41tm以上の光に対し
て透明となるので、例えば入射光24として波長1.3
μmと1. 5μmの光を同時に入射すると、波長1.
3μmの光のみが第1の光導波路16で吸収される。一
方、波長1.5μmの光は第1の光導波路16を透過し
て第2の光導波路17に入射し、ここで吸収される。こ
の時、光吸収層上に設けられたn側電極22とn側電極
23の間に逆バイアスを印加して、第1および第2の光
導波路16.17内に空乏層を広げておけば、吸収され
た入射光24が電流に変換される。本受光素子に必要と
されるp−n接合は光導波路に沿った57tm程度の長
さの部分だけであり、それ以外に付加的なp−n接合が
生じないように第1図に示す分離溝25によって電気的
分離を行う。こうずれは、[)−n接合の面積は光導波
路の厚さ(例えばIBtn程度)X5μmとなるので、
従来の受光素子のp −11接合の面積よりも大幅に低
減され、接合容量も非常に小さくなる。例えば光吸収層
のキャリア濃度を5 ×l Q I’l、印加電圧を1
0Vとすると接合容量は3. 2X 10−”Fとなり
、負荷抵抗の値を101(Ωとしても3dB遮断周波X
tは50 G Hzとなる。
Since the first optical waveguide 16 is transparent to light having a wavelength of 1.41 tm or more, for example, the incident light 24 has a wavelength of 1.3 tm.
μm and 1. When light of 5 μm is simultaneously incident, the wavelength is 1.
Only 3 μm light is absorbed by the first optical waveguide 16. On the other hand, light with a wavelength of 1.5 μm passes through the first optical waveguide 16, enters the second optical waveguide 17, and is absorbed there. At this time, if a reverse bias is applied between the n-side electrode 22 and the n-side electrode 23 provided on the light absorption layer, a depletion layer is expanded within the first and second optical waveguides 16 and 17. , the absorbed incident light 24 is converted into an electric current. The p-n junction required for this photodetector is only a portion with a length of approximately 57 tm along the optical waveguide, and the separation shown in Figure 1 is done to prevent additional p-n junctions from occurring. Electrical isolation is provided by grooves 25. This deviation is because the area of the [)-n junction is the thickness of the optical waveguide (for example, about IBtn) x 5 μm,
The area is much smaller than that of the p-11 junction of a conventional light-receiving element, and the junction capacitance is also very small. For example, the carrier concentration of the light absorption layer is 5 × l Q I'l, and the applied voltage is 1
If it is 0V, the junction capacitance is 3. 2X 10-”F, and the value of the load resistance is 101 (Ω), and the cutoff frequency is 3dB
t is 50 GHz.

また、本受光素子は表面が平坦ないわゆるブレーナ構造
となっていることから、光電子S積回路への応用も容易
である。電子素子を集積イヒするためには、例えば光吸
収層の光導波路以外の部分をFETのチャネル層として
利用すればよい。あるいはこの部分をコレクタ層として
、その上にp−InGaAsPベース層およびn−Tn
Pエミッタ層を積層してヘテロ接合バイポーラ・トラン
ジスタを構成することも可能である。
Furthermore, since the present photodetector has a so-called burener structure with a flat surface, it can be easily applied to optoelectronic S product circuits. In order to integrate electronic devices, for example, a portion of the light absorption layer other than the optical waveguide may be used as a channel layer of an FET. Alternatively, this part can be used as a collector layer, and a p-InGaAsP base layer and an n-Tn
It is also possible to construct a heterojunction bipolar transistor by stacking P emitter layers.

次に、本発明の第2の実施例の受光素子の断面図を第3
図に示す。第3図は第2図と同じ部分の断面図であり、
第2図と同じ機能を有する箇所には同一の番号を付して
いる。本実施例が第1の実施例と異なるのは、第1およ
び第2の光導波路がリッジ型となっている点のみである
。光導波路をリッジ型にすると表面がブレーナでなくな
るという欠点があるものの、平坦な基板玉に第1および
第2の光吸収層を結晶成長できるというメリットがある
Next, a sectional view of the light receiving element according to the second embodiment of the present invention is shown in the third embodiment.
As shown in the figure. Figure 3 is a sectional view of the same part as Figure 2;
Components having the same functions as those in FIG. 2 are given the same numbers. This embodiment differs from the first embodiment only in that the first and second optical waveguides are ridge-shaped. Although a ridge-type optical waveguide has the disadvantage that the surface is no longer a brainer, it has the advantage that the first and second light absorption layers can be crystal-grown on a flat substrate ball.

本発明の第3の実施例の受光素子の断面図を第4図に示
す。第4図も第2図と同じ部分の断面図であり、第2図
と同じ機能を有する箇所には同一の番号を付している。
A cross-sectional view of a light receiving element according to a third embodiment of the present invention is shown in FIG. FIG. 4 is also a sectional view of the same part as FIG. 2, and the same numbers are given to parts having the same functions as FIG. 2.

本実施例が第1の実施例と異なるのは、光吸収層の上に
クラッド層26が積層されている点のみである。クラッ
ドN26を積層するとp−n接合の面積が大きくなると
いう欠点があるものの、第1の光吸収層の導波損失が小
さくなるというメリットがある。
This embodiment differs from the first embodiment only in that a cladding layer 26 is laminated on the light absorption layer. Although there is a drawback that the area of the pn junction increases when the cladding N26 is stacked, there is an advantage that the waveguide loss of the first light absorption layer is reduced.

なお、以上の実施例の説明においては、本発明の受光素
子を構成する材料がInGaAs/InP系であるとし
たが、[nGaAlAs/lnP系、AlGaAs/G
aAs系等の他の半導体材料を用いてもよいことは言う
までもない。
In the above description of the embodiments, it is assumed that the material constituting the light receiving element of the present invention is InGaAs/InP, but [nGaAlAs/lnP, AlGaAs/G
It goes without saying that other semiconductor materials such as aAs-based materials may also be used.

発明の効果 以−ヒ述へてきたように、本発明を用いれば2波長以上
の入射光に対して波長選択機能を有する受光素子を容易
に構成できろ。この受光素子は高速動作が可能な上に、
他の電子素子とも集積化して光電子集積回路とするとい
った応用も容易である。
Effects of the Invention As described above, by using the present invention, it is possible to easily construct a light receiving element having a wavelength selection function for incident light of two or more wavelengths. This photodetector is capable of high-speed operation, and
Applications such as integration with other electronic elements to form an optoelectronic integrated circuit are also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の受光素子の斜視図、第2図
は第1図のA−A’線の断面図、第3図および第4図は
他の実施例の受光素子の断面図、第5図は従来の受光素
子の断面図である。 13・・・基板、14・・・第1の光吸収層、15・・
・第2の光吸収層、16・・・第1の光導波路、17・
・・第2の光導波路、20・・・第1のρ−n接合、2
I・・・第2のp−n接合。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 !4第1I?光吸収1 第 2 @ 第2の光砺しDρ曾    13石」及第 3(2N 第4図 光吸収層
FIG. 1 is a perspective view of a light receiving element according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA' in FIG. 1, and FIGS. 5 is a sectional view of a conventional light receiving element. 13... Substrate, 14... First light absorption layer, 15...
-Second light absorption layer, 16...first optical waveguide, 17.
...Second optical waveguide, 20...First ρ-n junction, 2
I...Second p-n junction. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1! 4 1st I? Light absorption 1 2nd @ 2nd light absorption layer

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性半導体基板と、前記基板の一部領域上に形成
され前記基板よりも屈折率の高い半導体薄膜よりなりか
つ第1の光導波路を含む第1の光吸収層と、前記基板の
前記第1の光吸収層が形成された領域以外の領域上に前
記第1の光吸収層に接して形成され前記第1の光吸収層
よりもバンド・ギャップの小さい半導体薄膜よりなりか
つ第2の光導波路を含む第2の光吸収層とを含み、前記
第1および第2の光導波路が光学的に結合されており、
かつ前記第1および第2の光導波路に沿って前記基板に
垂直にp−n接合が形成されるように前記第1および第
2の光吸収層の導電型が反転していることを特徴とする
受光素子。
a semi-insulating semiconductor substrate; a first light absorption layer formed on a partial region of the substrate and made of a semiconductor thin film having a higher refractive index than the substrate and including a first optical waveguide; a second light guide formed on a region other than the region where the first light absorption layer is formed, in contact with the first light absorption layer, and made of a semiconductor thin film having a band gap smaller than that of the first light absorption layer; a second light absorption layer including a waveguide, the first and second optical waveguides being optically coupled;
and the conductivity types of the first and second light absorption layers are reversed so that a pn junction is formed perpendicular to the substrate along the first and second optical waveguides. A light-receiving element.
JP62298384A 1987-11-26 1987-11-26 Photodetector Pending JPH01140678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298384A JPH01140678A (en) 1987-11-26 1987-11-26 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298384A JPH01140678A (en) 1987-11-26 1987-11-26 Photodetector

Publications (1)

Publication Number Publication Date
JPH01140678A true JPH01140678A (en) 1989-06-01

Family

ID=17859000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298384A Pending JPH01140678A (en) 1987-11-26 1987-11-26 Photodetector

Country Status (1)

Country Link
JP (1) JPH01140678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174503A (en) * 1989-12-04 1991-07-29 Canon Inc Optical wavelength filter and device using the same
JP2009117708A (en) * 2007-11-08 2009-05-28 Toshiba Corp Waveguide type light detecting device, and manufacturing method thereof
TWI404233B (en) * 2009-03-31 2013-08-01 Epistar Corp A photoelectronic element and the manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642386A (en) * 1979-09-14 1981-04-20 Agency Of Ind Science & Technol Semiconductor photodetector
JPS5762573A (en) * 1980-10-03 1982-04-15 Fujitsu Ltd Multiple wavelength photoelectric converter
JPS61204987A (en) * 1985-03-08 1986-09-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting and receiving device
JPS62165981A (en) * 1986-01-17 1987-07-22 Mitsubishi Electric Corp Photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642386A (en) * 1979-09-14 1981-04-20 Agency Of Ind Science & Technol Semiconductor photodetector
JPS5762573A (en) * 1980-10-03 1982-04-15 Fujitsu Ltd Multiple wavelength photoelectric converter
JPS61204987A (en) * 1985-03-08 1986-09-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting and receiving device
JPS62165981A (en) * 1986-01-17 1987-07-22 Mitsubishi Electric Corp Photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174503A (en) * 1989-12-04 1991-07-29 Canon Inc Optical wavelength filter and device using the same
JP2009117708A (en) * 2007-11-08 2009-05-28 Toshiba Corp Waveguide type light detecting device, and manufacturing method thereof
TWI404233B (en) * 2009-03-31 2013-08-01 Epistar Corp A photoelectronic element and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7471855B2 (en) Monlithically coupled waveguide and phototransistor
CA2985057C (en) Light-receiving element and optical integrated circuit
JP3016858B2 (en) Semiconductor device with silicon layer
JPH0338887A (en) Semiconductor photodetector
DE3876109D1 (en) MONOLITHICALLY INTEGRATED WAVE WIRE PHOTODIODE COMBINATION.
JP2661341B2 (en) Semiconductor light receiving element
JPH01140678A (en) Photodetector
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
CA2414293C (en) Semiconductor light receiving element in which a spacer layer for acceleration is interposed between a plurality of light absorbing layers and method for manufacturing the same
JP2003158290A (en) Photodiode
JPH09223805A (en) Semiconductor waveguide type light receiver
JPS5948963A (en) Photo transistor
JP3708758B2 (en) Semiconductor photo detector
JPH01138508A (en) Photodetector
JP3030394B2 (en) Semiconductor light receiving element
JP2004158763A (en) Semiconductor photo detector
Campbell Photodetectors and compatible low-noise amplifiers for long-wavelength light wave systems
JP3224192B2 (en) Semiconductor waveguide receiver
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
JPH0730141A (en) Semiconductor waveguide-type photodetector
JPS63124475A (en) Semiconductor photodetector
JPH05167096A (en) Semiconductor photosensor
Takahashi et al. A monolithic 1 x 10 array of InGaAsP/InP photodiodes with small dark current and uniform responsivities
JPH03239378A (en) Semiconductor photodetector
JPS61267376A (en) Semiconductor device