JPH01139866A - Fluorine type fiber for composite material - Google Patents

Fluorine type fiber for composite material

Info

Publication number
JPH01139866A
JPH01139866A JP29724287A JP29724287A JPH01139866A JP H01139866 A JPH01139866 A JP H01139866A JP 29724287 A JP29724287 A JP 29724287A JP 29724287 A JP29724287 A JP 29724287A JP H01139866 A JPH01139866 A JP H01139866A
Authority
JP
Japan
Prior art keywords
fiber
oxygen
fibers
fluorine
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29724287A
Other languages
Japanese (ja)
Inventor
Masao Seki
昌夫 関
Fumiko Mihashi
三橋 富美子
Hideo Nagata
秀夫 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29724287A priority Critical patent/JPH01139866A/en
Publication of JPH01139866A publication Critical patent/JPH01139866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PURPOSE: To obtain the subject fibers with specific oxygen-contg. functional groups on the fiber surface, capable of giving composite materials having excellent high-frequency characteristics, mechanical strength and durability and also usable in ICs or the like through composite formation with matrix resins. CONSTITUTION: The fluorocarbon fibers are obtained by incorporating the fluorocarbon fiber surface with oxygen-contg. functional groups bound to the fiber-forming polymeric molecular chains pref. by low-temperature plasma treatment. In the above fibers, it is preferable that, for the oxygen-contg. functional groups, the atom number ratio O1s /C1s (the number of moles of oxygen atoms per mol of carbon atom) in terms of ESCA measurements is >=0.02 higher than that inside the fiber (at least >=0.5 μm in depth from the fiber surface).

Description

【発明の詳細な説明】 [技術分野] 本発明は高周波特性の優れた複合材料(FRP)用フッ
素系繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fluorine-based fiber for composite materials (FRP) having excellent high frequency properties.

[従来技術] 近年、FRP分野での伸展は目覚ましく、ゴルフクラブ
シャフト、釣竿などのプレミア・スポーツ用、レジャー
ボートなどの軽量船舶用、自動車、および航空渫用途な
ど広い分野で使用されるに至っている。
[Prior art] In recent years, the field of FRP has made remarkable progress, and has come to be used in a wide range of fields, including premium sports products such as golf club shafts and fishing rods, lightweight vessels such as leisure boats, automobiles, and aviation applications. .

しかし、フッ素系繊維を用いたFRPは接着性が余りに
も弱いことに基因して現在まで殆ど適用されていないの
が実情である。
However, the reality is that FRP using fluorine-based fibers has hardly been applied to date because its adhesiveness is too weak.

[発明が解決しようとする問題点] 本発明は、ポリテトラフロロエチレン(以下PTFEと
いう〉系繊維を低温プラズマ変性することにより、実用
可能にマトリックス樹脂との接着性を改善し得たもので
あり、この変性PTFE系繊維の分散性、均質性を改善
し、もって極めて優れた高周波特性を有する複合材料を
提供することができたものである。
[Problems to be Solved by the Invention] The present invention makes it possible to improve adhesion with a matrix resin in a practical manner by subjecting polytetrafluoroethylene (hereinafter referred to as PTFE) fibers to low-temperature plasma modification. By improving the dispersibility and homogeneity of this modified PTFE fiber, we were able to provide a composite material with extremely excellent high frequency properties.

[問題点を解決するための手段] 本発明はかかる目的を達成するために次のような構成を
有する。すなわち、 (1)フッ素系繊維表面に、該繊維形成ポリマー分子鎖
に結合した酸素含有官能基を有することを特徴とする複
合材料用フッ素系繊維。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, (1) A fluorine-based fiber for a composite material, which has an oxygen-containing functional group bonded to the fiber-forming polymer molecular chain on the surface of the fluorine-based fiber.

(2〉酸素含有官能基が、低温プラズマ処理されて生成
されたものである特許請求の範囲第(1)項記載の複合
材料用フッ素系繊維。
(2) The fluorine-based fiber for composite materials according to claim (1), wherein the oxygen-containing functional group is produced by low-temperature plasma treatment.

(3)前記酸素含有官能基の濃度が、ESCA測定値で
、01./C1,の原子数比(炭素原子1モルに対する
酸素原子のモル数)が、繊維内部(表面から少なくとも
0.5μm以上の深部)の値にくらべ、0.02以上高
い、特許請求の範囲第(1)項記載の複合材料用フッ素
系繊維である。
(3) The concentration of the oxygen-containing functional group is 01.0 as measured by ESCA. /C1, (the number of moles of oxygen atoms per mole of carbon atoms) is 0.02 or more higher than the value inside the fiber (at least 0.5 μm or more deep from the surface). The present invention is a fluorine-based fiber for composite materials as described in item (1).

本発明においては、低温プラ・ズマ処理により導入され
た酸素含有官能基からなる親水性基はフッ素ポリマー表
面に、イミド基、エポキシ基および不飽和基から選ばれ
た少なくとも1種の官能基を含有する特定な樹脂との複
合体として好都合に作用し、優れた高周波特性を有する
基材を提供し得たものである。かかる基材は本発明者ら
によって、初めて提供されたものである。
In the present invention, the hydrophilic group consisting of an oxygen-containing functional group introduced by low-temperature plasma treatment contains at least one functional group selected from an imide group, an epoxy group, and an unsaturated group on the surface of the fluoropolymer. The present invention has been able to provide a base material that functions favorably as a composite with a specific resin that has excellent high frequency properties. Such a base material was provided for the first time by the present inventors.

すなわち、低温プラズマ処理によって表面が活性化され
た該繊維の表面に空気中の酸素が反応し、該i維ポリマ
ー分子に直接結合した酸素含有官能基(たとえばパーオ
キサイド基)が形成される。
That is, oxygen in the air reacts with the surface of the fiber whose surface has been activated by low-temperature plasma treatment, and oxygen-containing functional groups (for example, peroxide groups) directly bonded to the i-fiber polymer molecules are formed.

この酸素含有官能基はイミド基、エポキシ基および不飽
和基から選ばれた少なくとも1種の官能基を含有する樹
脂と混合されて樹脂化反応が進行する際に、ラジカル重
合開始剤または樹n口に発生したラジカルにより強力な
化学結合力を発揮することを究明したものである。
When this oxygen-containing functional group is mixed with a resin containing at least one functional group selected from an imide group, an epoxy group, and an unsaturated group and a resin formation reaction proceeds, the oxygen-containing functional group is used as a radical polymerization initiator or a resin. It was discovered that the radicals generated in the process exert a strong chemical bonding force.

本発明のフッ素系繊維とは、主としてテトラフロロエチ
レンからなるフロロアルキレン系樹脂からなる繊維を指
す。すなわち、テトラフロロエチレンのホモポリマーま
たは全体の90モル%以上、好ましくは95モル%以上
がテトラフロロエチレンであるコポリマーからなる繊維
があげられる。
The fluorine-based fiber of the present invention refers to a fiber made of a fluoroalkylene resin mainly made of tetrafluoroethylene. That is, fibers made of a homopolymer of tetrafluoroethylene or a copolymer in which 90 mol% or more, preferably 95 mol% or more of the total amount is tetrafluoroethylene can be mentioned.

テトラフロロエチレンに対して共重合可能な単量体とし
ては、トリフロロエチレン、トリフロロクロロエチレン
、テトラフロロプロピレン、ヘキサフロロプロピレンな
どのフッ化ビニル化合物やさらにプロピレン、エチレン
、イソブチレン、スチレン、アクリロニトリルなどのビ
ニル化合物があげられるが、これらに限定する必要はな
い。 かかる七ツマ−の中でも、フッ化ビニル系化合物
、それも、弗素含有量の多い化合物であることが繊維特
性の上から好ましい。
Monomers that can be copolymerized with tetrafluoroethylene include fluorinated vinyl compounds such as trifluoroethylene, trifluorochloroethylene, tetrafluoropropylene, and hexafluoropropylene, as well as propylene, ethylene, isobutylene, styrene, acrylonitrile, etc. Examples include vinyl compounds, but there is no need to limit it to these. Among these seven polymers, vinyl fluoride compounds, especially compounds with a high fluorine content, are preferred from the viewpoint of fiber properties.

かかるPTFE系繊維合繊維する方法としては次の2通
りの方法がある。
There are the following two methods for producing such a PTFE fiber composite fiber.

(1)紡糸原液としてビスコースとPTFEデイスパー
ジョンとの混合液を用い、これを凝固浴中に吐出し、凝
固した後、水洗精練する。精練後アルカリ水に浸漬して
絞った俊、乾燥するか、そのまま焼成工程に導き、30
0〜450’Cで焼成すると共に、少なくとも5〜10
倍延伸する。次いでこの焼成繊維は300〜340℃の
高温雰囲気中で酸化熟成する方法で製造する。
(1) A mixed solution of viscose and PTFE dispersion is used as a spinning stock solution, which is discharged into a coagulation bath, coagulated, and then washed and refined with water. After scouring, the shuns are dipped in alkaline water and squeezed, then dried or sent directly to the firing process for 30 minutes.
Calcinate at 0-450'C and at least 5-10'C
Stretch twice. Next, this fired fiber is produced by oxidative aging in a high temperature atmosphere of 300 to 340°C.

<2)  P T F E系共重合樹脂の融点以上の温
度で溶融した1多、溶融紡糸して製造する。
<2) Produced by melt-spinning a polyurethane resin melted at a temperature higher than the melting point of the PTFE copolymer resin.

本発明のフッ素系繊維は上記いずれの方法で製造した繊
維でもよいが、(1)の方法によれば、3d以下、ざら
には1d以下の繊維を製造することができる。本発明の
複合材用としては、繊度が小ざい方が充填密度や高周波
特性の上から(1)の繊維が好ましく選択される。
The fluorine-based fiber of the present invention may be produced by any of the above methods, but according to the method (1), fibers with a diameter of 3 d or less, or even 1 d or less can be produced. For the composite material of the present invention, fibers of (1) are preferably selected because they have smaller fineness, packing density, and high frequency characteristics.

本発明においては、本発明の目的を阻害しない範囲で必
要に応じてPTFE系繊維以外の繊維を混用することが
できる。かかる混用繊維としては、たとえば、炭素繊維
、ガラス繊維などの無機繊維、木綿、麻、絹、羊毛など
の天然繊維、ポリエステル、ポリアミド、ポリアクリル
、ポリオレフィンなどの通常の熱可塑性合成繊維、ざら
にこれらを高倍率で延伸したものや仝芳香族ポリアミド
系繊維などの高強力熱可塑性合成繊維、ざらにポリアミ
ドイミド、ポリイミド、ポリスルホン、ポリスルフィド
などの熱硬化性合成繊維などが適用できる。高倍率延伸
熱可塑性合成繊維としては、ポリアクリル系、ポリエチ
レン系、ポリビニルアルコール系の繊維を少なくとも8
倍以上延伸して得られる繊維があげられる。
In the present invention, fibers other than PTFE fibers may be used in combination as necessary within a range that does not impede the object of the present invention. Such blended fibers include, for example, inorganic fibers such as carbon fibers and glass fibers, natural fibers such as cotton, hemp, silk, and wool, ordinary thermoplastic synthetic fibers such as polyester, polyamide, polyacrylic, and polyolefin; High strength thermoplastic synthetic fibers such as those drawn at a high magnification, aromatic polyamide fibers, and thermosetting synthetic fibers such as polyamideimide, polyimide, polysulfone, and polysulfide can be used. The high-strength drawn thermoplastic synthetic fibers include polyacrylic, polyethylene, and polyvinyl alcohol fibers of at least 8
Examples include fibers obtained by stretching more than twice as much.

本発明でいうエポキシ樹脂とは、グリシジルエ−チル基
(エポシ基)を少なくとも両末端に有する直鎖状の低分
子化合物であり、たとえば、ビスフェノールAとエピク
ロルヒドリンから’AMされる。上記ビスフェノールA
に代えてレゾルシノール、カシューナツト油のフェノー
ル、スルホンアミドなどを用いて製造することもできる
。かかる樹脂を製造する際にフェニルグリシジルエーテ
ル、アリルグリシジルエーテル、酸化スチレン、グリシ
ジルグリセロール、ビスグリシジルジフェニルプロパン
などのエポキシ基を分子中に少なくとも1個含有する共
重合可能な化合物を希釈剤として構成成分とする樹脂も
包含される。これらのエポキシ樹脂は硬化剤として、多
塩基酸とその酸無水物、無機および有機の塩基、ポリア
ミン類、ポリアミド類などが用いられる。たとえば、グ
アニジン、トリエチタノールアミン、ヘキサメチレンジ
アミンなどのポリアミン類、ジシアンジアミド、メラミ
ン、シアヌル酸トリメチル、ポリアミド、尿素樹脂のよ
うな初期縮合物などがあげられる。
The epoxy resin used in the present invention is a linear low-molecular compound having glycidyl ethyl groups (epoxy groups) at least at both ends, and is formed from, for example, bisphenol A and epichlorohydrin. The above bisphenol A
Instead, it can also be produced using resorcinol, cashew nut oil phenol, sulfonamide, etc. When producing such a resin, a copolymerizable compound containing at least one epoxy group in the molecule, such as phenylglycidyl ether, allylglycidyl ether, styrene oxide, glycidylglycerol, or bisglycidyl diphenylpropane, is used as a diluent and a constituent component. Also included are resins that. These epoxy resins use polybasic acids and their acid anhydrides, inorganic and organic bases, polyamines, polyamides, etc. as curing agents. Examples include polyamines such as guanidine, triethitanolamine, and hexamethylene diamine, initial condensates such as dicyandiamide, melamine, trimethyl cyanurate, polyamide, and urea resin.

本発明でいう不飽和基含有樹脂とは、ラジカル重合性不
飽和基を含有する樹脂で、マレイン酸、フマール酸、イ
タコン酸などの不飽和ジカルボン酸化合物と、エチレン
グリコール、プロピレングリコール、ネオペンチルグリ
コールなどのジオール化合物、およびテレフタル酸、イ
ソフタル酸などの飽和ジカルボン酸などを重合して得ら
れる不飽和ポリエステル樹脂、ビスフェノールA1エピ
クロルヒドリン重合物などを主体とするジビニルエステ
ルから成るビニルエステル樹脂、不飽和基を含有するシ
リコーン樹脂などを例示することができるがこれらに限
定されるものではない。
The unsaturated group-containing resin referred to in the present invention is a resin containing a radically polymerizable unsaturated group, and includes unsaturated dicarboxylic acid compounds such as maleic acid, fumaric acid, and itaconic acid, and ethylene glycol, propylene glycol, and neopentyl glycol. unsaturated polyester resin obtained by polymerizing diol compounds such as terephthalic acid, isophthalic acid, etc., and saturated dicarboxylic acids such as terephthalic acid and isophthalic acid; vinyl ester resin consisting of divinyl ester mainly composed of bisphenol A1 epichlorohydrin polymer; Examples include silicone resins contained therein, but are not limited thereto.

本発明のフッ素系繊維は上記2種の樹脂との複合に最も
適した素材であるが、さらにポリイミド樹脂との複合も
可能である。かかるポリイミド樹脂としては、たとえば
ピロメリット酸二無水物と芳香族ジアミン(ジアミノジ
フェニルエーテルなど)から誘導される重縮合体が例示
できるが、さらにトリメリット酸無水物と芳香族ジアミ
ンを基剤とするポリアミドイミド樹脂もこのポリイミド
樹脂に包含される。
The fluorine-based fiber of the present invention is the most suitable material for composite with the above two types of resins, but it is also possible to composite with polyimide resin. Examples of such polyimide resins include polycondensates derived from pyromellitic dianhydride and aromatic diamines (such as diaminodiphenyl ether), and polyamides based on trimellitic anhydride and aromatic diamines. Imide resin is also included in this polyimide resin.

本発明の低温プラズマ処理とは、特定のガス雰囲気下で
グロー放電に繊維を曝する処理である。
The low-temperature plasma treatment of the present invention is a treatment in which fibers are exposed to glow discharge in a specific gas atmosphere.

グロー放電は通常50丁orr以下、ざらには20TO
rr以下、特に好ましくは0.01〜10丁orrの減
圧下のガス雰囲気中で光電圧を印加して発生するもので
、処理時間は繊維の種類や処理装置によって選択される
が、通常数秒間から数分間であり、好ましくは1秒から
5分間程度である。
Glow discharge is usually less than 50 torr, roughly 20 torr.
It is generated by applying a photovoltage in a gas atmosphere under a reduced pressure of less than 10 mm, preferably 0.01 to 10 orr, and the treatment time is selected depending on the type of fiber and processing equipment, but it is usually a few seconds. to several minutes, preferably about 1 second to 5 minutes.

活性化作用を与えるガスとしては、たとえば、Ar、N
2.He、CO2,Co、02.H2O。
Examples of gases that give an activation effect include Ar, N,
2. He, CO2, Co, 02. H2O.

CF4.NH4,H2,空気などおよびこれらの混合さ
れたものを使用することができるが、特に強いエツチン
グ作用を有しないAr、He、N2゜H2,Co、NH
4などが好ましい。
CF4. NH4, H2, air, etc. and mixtures thereof can be used, but Ar, He, N2゜H2, Co, NH, which do not have a particularly strong etching effect, can be used.
4 etc. are preferable.

かかるプラズマ処理によってフッ素系繊維表面(300
0人以内)の分子鎖に結合する酸素含有官能基が増加す
る。かかる酸素含有官能基の種類を例示すれば、カルボ
ニル基、カルボキシル基、ヒドロオキシ基、ヒドロオキ
シパーオキサイド等がある。
Through such plasma treatment, the surface of the fluorine-based fiber (300
The number of oxygen-containing functional groups bonded to molecular chains (within 0) increases. Examples of such oxygen-containing functional groups include carbonyl groups, carboxyl groups, hydroxyl groups, and hydroxyperoxide.

かかる官能基の表面濃度は、下記の条件で測定した。The surface concentration of such functional groups was measured under the following conditions.

ESCA測定値で、01./C1,の原子数比(炭素原
子1モルに対する酸素原子のモル数)が0゜18以上、
0.35以下であることが好ましく、特に0.18〜0
.29が好ましい。
The ESCA measurement value is 01. /C1, the atomic ratio (number of moles of oxygen atoms per mole of carbon atoms) is 0°18 or more,
It is preferably 0.35 or less, particularly 0.18 to 0
.. 29 is preferred.

(ESCA測定条件) 装置・・・島津X線光電子分光装置ESCA750励起
X線””MCl−にC1,2線(1253,6e V 
)出力−8KV−30mA 測定真空度−1、OX 10−50a 測定温度・・・20℃ サンプリング・・・両面接着テープで試料台に固定横軸
補正・・・C1Sメインピークの結合エネルギー価を2
84.6eVに合せた。
(ESCA measurement conditions) Equipment: Shimadzu X-ray photoelectron spectrometer ESCA750
) Output -8KV-30mA Measurement vacuum -1, OX 10-50a Measurement temperature...20℃ Sampling...Fixed to sample stand with double-sided adhesive tape Horizontal axis correction...C1S main peak binding energy value 2
It was adjusted to 84.6 eV.

上記原子数比が0.18未満では十分な効果が得られ難
く、また0、35を越えても繊維表面層の強度低下等に
より不十分な効果は得られない。
If the atomic ratio is less than 0.18, it is difficult to obtain sufficient effects, and if it exceeds 0.35, insufficient effects may not be obtained due to a decrease in the strength of the fiber surface layer.

また、不飽和ポリエステル樹脂の樹脂化反応を促進する
ために添加するラジカル重合開始剤としては、ベゾイル
パーオキサイド、t−ブチルパーオキシイソブチレート
、t−ブチルパーオキシアセテート、t−ブチルパーオ
キシベンゾエート、メチルエチルケトンパーオキサイド
、ジクミルパーオキサイド、ジー1−ブチルヒドロパー
オキサイドなどがあるがこれに限定されるものではない
In addition, as radical polymerization initiators added to promote the resinization reaction of unsaturated polyester resin, bezoyl peroxide, t-butyl peroxyisobutyrate, t-butyl peroxy acetate, t-butyl peroxy Examples include, but are not limited to, benzoate, methyl ethyl ketone peroxide, dicumyl peroxide, and di-1-butyl hydroperoxide.

かかる低温プラズマ処理されたフッ素系繊維とイミド基
、エポキシ基、不飽和基の少なくとも1種を含有する樹
脂およびラジカル重合開始剤とからなる組成物は、通常
の方法で成形加工される。
A composition comprising such low-temperature plasma-treated fluorine-based fibers, a resin containing at least one of an imide group, an epoxy group, and an unsaturated group, and a radical polymerization initiator is molded by a conventional method.

即ち、押出成形法、射出成形法、ラミネート法などの方
法により、加熱することにより成形される。
That is, it is molded by heating using a method such as an extrusion molding method, an injection molding method, or a lamination method.

本発明のPTFE系繊維は、フィラメントあるいはステ
ーブルや、ステープルから成る紡績糸、またはこれから
成る織編物、不織布等の繊維状物などの形で適用可能で
ある。なお、PTFE系繊維糸繊維糸条かけることによ
り、所望の腰を有する複合材料が得られる。
The PTFE fibers of the present invention can be applied in the form of filaments, stables, spun yarns made of staples, or fibrous materials such as woven or knitted fabrics or nonwoven fabrics made of these. Note that by applying PTFE fiber yarn, a composite material having a desired stiffness can be obtained.

以下実施例によって本発明をざらに詳しく説明するが、
本発明はこれに限定されるものではない。
The present invention will be explained in detail below with reference to Examples.
The present invention is not limited to this.

[実施例] トヨフロン(束し■製、ポリテトラフルオロエチレン、
300マルチフイラメント)からなる織布(平織、タテ
、ヨコ密度 60本/インチ)を製織し、以下の条件で
精練を行ない、繊維に付着した油剤及び糊剤を除去した
[Example] Toyoflon (manufactured by Bunshi ■, polytetrafluoroethylene,
A woven fabric (plain weave, vertical and horizontal density: 60 fibers/inch) consisting of 300 multifilaments was woven, and scouring was performed under the following conditions to remove the oil and sizing agent adhering to the fibers.

(精練条件) 非イオン系活性剤        2Q/nソーダ灰 
           2(17/ffの浴中で80℃
で20分間処理した俊、湯・水洗を2回繰り返した後、
乾燥した。
(Scouring conditions) Nonionic activator 2Q/n soda ash
2 (80°C in a 17/ff bath)
Shun was treated for 20 minutes, then washed twice with hot water and cold water.
Dry.

この織物を次の条件で低温プラズマ処理を行なった。This fabric was subjected to low temperature plasma treatment under the following conditions.

(低温プラズマ処理条件) 使用ガス       アルゴン 処理圧力       0.7丁orr周波数    
    110KH2 印加電圧       2.5 KV 処理時間  3,5,7.15,30,60゜600秒 次に、この処理された織布に、不飽和ポリエステル樹脂
(#4500、束し■製〉を含浸した後、成形加工し、
繊維含有率60%の成型品を得た。
(Low temperature plasma processing conditions) Gas used Argon processing pressure 0.7 torr frequency
110 KH2 Applied voltage: 2.5 KV Processing time: 3, 5, 7.15, 30, 60° 600 seconds Next, this treated woven fabric was impregnated with unsaturated polyester resin (#4500, manufactured by Bunsashi ■). After that, it is molded,
A molded product with a fiber content of 60% was obtained.

同時にプラズマ処理を行なっていない織布についても同
様の成形加工を行ない繊維と樹脂との接着性をJ Is
−に−7203に基づいて曲げ強度を測定することによ
り評価し、表1に示した。
At the same time, the same molding process was performed on the woven fabric that was not subjected to plasma treatment to improve the adhesion between the fiber and resin.
The bending strength was evaluated based on -7203 and is shown in Table 1.

表1 上記からO15/C1,の原子数比増加が比較例のもの
はOで曲げ強度は低い。また本発明の実施例の中でも0
.02以上となると、大幅な接着性向上効果が得られた
。かかるPTFE系戴維からなる複合材は優れた高周波
特性を示し、高特性のIC基板、LSI基板用素材であ
ることがわかった。
Table 1 From the above, the comparison example has an increase in the atomic ratio of O15/C1, and the bending strength is low. Also, among the embodiments of the present invention, 0
.. 02 or higher, a significant effect of improving adhesiveness was obtained. It has been found that the composite material made of such PTFE-based fibers exhibits excellent high frequency characteristics and is a material for high-performance IC substrates and LSI substrates.

[発明の効果] 本発明の複合材料用PTFE系繊維はマトリックス樹脂
と複合して優れた高周波特性を発揮し、強度ならびに使
用時の耐久性にも優れ、IC,LSIの高密度化が可能
な信頼性の高い素材を提供するものである。
[Effects of the invention] The PTFE fiber for composite materials of the present invention exhibits excellent high frequency characteristics when combined with a matrix resin, has excellent strength and durability during use, and is capable of increasing the density of ICs and LSIs. It provides highly reliable materials.

Claims (3)

【特許請求の範囲】[Claims] (1)フッ素繊維表面に、該繊維形成ポリマー分子鎖に
結合した酸素含有官能基を有することを特徴とする複合
材料用フッ素系繊維。
(1) A fluorine-based fiber for composite materials, which has an oxygen-containing functional group bonded to the fiber-forming polymer molecular chain on the surface of the fluorine-based fiber.
(2)酸素含有官能基が、低温プラズマ処理されて生成
されたものである特許請求の範囲第(1)項記載の複合
材料用フッ素系繊維。
(2) The fluorine-based fiber for composite materials according to claim (1), wherein the oxygen-containing functional group is generated by low-temperature plasma treatment.
(3)前記酸素含有官能基の濃度が、ESCA測定値で
、O_1_s/C_1_sの原子数比(炭素原子1モル
に対する酸素原子のモル数)が、繊維内部(表面から少
なくとも0.5μm以上の深部)の値にくらべ、0.0
2以上高い、特許請求の範囲第(1)項記載の複合材料
用フッ素系繊維。
(3) The concentration of the oxygen-containing functional group is an ESCA measurement value, and the atomic ratio of O_1_s/C_1_s (the number of moles of oxygen atoms per mole of carbon atoms) is within the fiber (at least 0.5 μm or more deep from the surface). ) is 0.0 compared to the value of
The fluorine-based fiber for composite materials according to claim (1), which is higher than 2 or more.
JP29724287A 1987-11-24 1987-11-24 Fluorine type fiber for composite material Pending JPH01139866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29724287A JPH01139866A (en) 1987-11-24 1987-11-24 Fluorine type fiber for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29724287A JPH01139866A (en) 1987-11-24 1987-11-24 Fluorine type fiber for composite material

Publications (1)

Publication Number Publication Date
JPH01139866A true JPH01139866A (en) 1989-06-01

Family

ID=17844003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29724287A Pending JPH01139866A (en) 1987-11-24 1987-11-24 Fluorine type fiber for composite material

Country Status (1)

Country Link
JP (1) JPH01139866A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106389A (en) * 2006-10-25 2008-05-08 Toray Ind Inc Fiber structure and method for producing the same
JP4809475B2 (en) * 2006-06-06 2011-11-09 シーファー アーゲー Textiles, in particular textile structures and / or textiles for coating
KR20140072082A (en) * 2011-09-06 2014-06-12 허니웰 인터내셔널 인코포레이티드 Low bfs composite and process for making the same
US9718237B2 (en) 2011-09-06 2017-08-01 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9821515B2 (en) 2011-09-06 2017-11-21 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9880080B2 (en) 2011-09-06 2018-01-30 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343197A (en) * 1976-09-30 1978-04-19 Toshiba Corp Radiotherapy device
JPS62184110A (en) * 1986-02-06 1987-08-12 Toray Ind Inc Novel polyethylene filament
JPS62263376A (en) * 1986-05-09 1987-11-16 東レ株式会社 Fiber for composte material and production of composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343197A (en) * 1976-09-30 1978-04-19 Toshiba Corp Radiotherapy device
JPS62184110A (en) * 1986-02-06 1987-08-12 Toray Ind Inc Novel polyethylene filament
JPS62263376A (en) * 1986-05-09 1987-11-16 東レ株式会社 Fiber for composte material and production of composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809475B2 (en) * 2006-06-06 2011-11-09 シーファー アーゲー Textiles, in particular textile structures and / or textiles for coating
JP2008106389A (en) * 2006-10-25 2008-05-08 Toray Ind Inc Fiber structure and method for producing the same
KR20140072082A (en) * 2011-09-06 2014-06-12 허니웰 인터내셔널 인코포레이티드 Low bfs composite and process for making the same
JP2014529691A (en) * 2011-09-06 2014-11-13 ハネウェル・インターナショナル・インコーポレーテッド Low BFS composite material and method for producing the same
US9718237B2 (en) 2011-09-06 2017-08-01 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9821515B2 (en) 2011-09-06 2017-11-21 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9880080B2 (en) 2011-09-06 2018-01-30 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US10562238B2 (en) 2011-09-06 2020-02-18 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US11027501B2 (en) 2011-09-06 2021-06-08 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making

Similar Documents

Publication Publication Date Title
US4756925A (en) Plasma and ion plating treatment of polymer fibers to improve adhesion to RFL rubber
Brown et al. Plasma surface modification of advanced organic fibres: Part V Effects on the mechanical properties of aramid/phenolic composites
JP5967334B1 (en) Sizing agent coated carbon fiber bundle and method for producing the same, prepreg and carbon fiber reinforced composite material
US5183701A (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
KR910000813B1 (en) Polyolefins of ultrahigh molecular weight process for their manufacture and their use
JP2005179826A (en) Sizing coated carbon fiber and method for producing the same
TW200400299A (en) Compound material composed of heat-resistant fiber and siloxane polymer
JPH01139866A (en) Fluorine type fiber for composite material
TW200951256A (en) High strength and highly elastic sheet material
US3993829A (en) Production of pervious low density carbon fiber reinforced composite articles
JPS62263376A (en) Fiber for composte material and production of composite material
KR101959111B1 (en) Sizing agent for carbon fiber and carbon fiber using the same
JP2006183173A (en) Carbon fiber and method for producing the same
KR0181175B1 (en) Organic polymers having a modified surface and process therefor
JPH0726415A (en) Polybenzobisoxazole fiber having improved adhesiveness and its production
JPS62289642A (en) Water absorbable polyester synthetic fiber knitted fabric
US3779789A (en) Production of pervious low density carbon fiber reinforced composite articles
JP4190663B2 (en) Manufacturing method of polyester fiber for rubber reinforcement
Gorjanc Plasma treatment of high-performance fibrous materials
CN115045104B (en) Stretch-proof waterproof, oil-proof and antifouling fabric
JP2002069777A (en) Polyethylene naphthalate fiber for rubber reinforcement
JPWO2019131219A1 (en) Surface-modified total aromatic polyester fiber and its manufacturing method
JPH01156538A (en) Combination of polyolefin filament or yarn of low humidity and low bonding force, and filament or yarn of high humidity and high bonding strength
CA2043056A1 (en) Organic polymers having a modified surface and process therefor
Gaifami Plasma technology application on tyre reinforcing materials