JPH0726415A - Polybenzobisoxazole fiber having improved adhesiveness and its production - Google Patents

Polybenzobisoxazole fiber having improved adhesiveness and its production

Info

Publication number
JPH0726415A
JPH0726415A JP16711493A JP16711493A JPH0726415A JP H0726415 A JPH0726415 A JP H0726415A JP 16711493 A JP16711493 A JP 16711493A JP 16711493 A JP16711493 A JP 16711493A JP H0726415 A JPH0726415 A JP H0726415A
Authority
JP
Japan
Prior art keywords
fiber
polybenzobisoxazole
elastic modulus
gpa
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16711493A
Other languages
Japanese (ja)
Inventor
Hirotsugu Hirata
裕嗣 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16711493A priority Critical patent/JPH0726415A/en
Publication of JPH0726415A publication Critical patent/JPH0726415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a polybenzobisoxazole fiber having high strength, elastic modulus and heat-resistance and excellent adhesiveness by specifying the tensile strength, the tensile elastic modulus and the O/C ratio on the surface of filament. CONSTITUTION:The O/C ratio on the surface of a polybenzobisoxazole fiber filament having a tensile strength of >=4.0GPa and a tensile elastic modulus of >=140GPa is adjusted to >=0.20. The adjustment of the 0/C ratio on the filament surface can be carried out by corona discharge treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接着性の改良されたポリ
ベンゾビスオキサゾール繊維及びその製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a polybenzobisoxazole fiber having improved adhesion and a method for producing the same.

【0002】[0002]

【従来の技術】従来、タイヤや伝動ベルトの如きゴム資
材の補強材として使用される繊維に関してはポリエステ
ル繊維、ナイロン繊維及びスチール繊維が中心であった
が、ケブラーに代表される芳香族ポリアミド繊維の出現
により、高強度、高弾性率、さらには耐熱性が要求され
る分野においては、この芳香族ポリアミドが一部の用途
においては使用されている。
2. Description of the Related Art Conventionally, polyester fibers, nylon fibers and steel fibers have been the main fibers used as a reinforcing material for rubber materials such as tires and transmission belts, but aromatic polyamide fibers such as Kevlar have been used. With the advent, this aromatic polyamide is used in some applications in fields where high strength, high modulus and heat resistance are required.

【0003】しかしながら、例えばこの芳香族ポリアミ
ドを、タイヤ重量の軽量化のために、スチールコードの
代替材料として使用する試みもなされたが、芳香族ポリ
アミド繊維の強度及び耐摩耗性が不十分なため、その実
現にいたっていない。
However, attempts have been made to use this aromatic polyamide as a substitute material for steel cords in order to reduce the weight of tires, but the strength and abrasion resistance of aromatic polyamide fibers are insufficient. , It has not been realized yet.

【0004】この芳香族ポリアミド繊維を越える素材と
して、ポリベンゾビスオキサゾール繊維が注目されてい
る。ポリベンゾビスオキサゾール繊維は芳香族ポリアミ
ド繊維よりもさらに優れた強度、弾性率及び耐熱性を有
し、芳香族ポリアミド繊維によって実現出来なかったス
チールコードの代替素材として、さらには、ベルト等の
ゴム資材分野において、より高強度、高耐熱性が要求さ
れる用途分野での補強用繊維として使用が検討されてい
る。
Polybenzobisoxazole fibers have been attracting attention as a material exceeding the aromatic polyamide fibers. Polybenzobisoxazole fiber has higher strength, elastic modulus and heat resistance than aromatic polyamide fiber, and as a substitute material for steel cord which could not be realized by aromatic polyamide fiber, and further, rubber material such as belt. In the field, its use as a reinforcing fiber is being investigated in the field of application where higher strength and higher heat resistance are required.

【0005】さらに、繊維強化複合材料の分野において
は、軽量でかつ優れた機械的特性を有する複合材料が望
まれており、このポリベンゾビスオキサゾール繊維の優
れた機械的特性は、新規な高性能繊維強化複合材料とし
て、極めて有望な素材である。
Further, in the field of fiber reinforced composite materials, there is a demand for a composite material which is lightweight and has excellent mechanical properties. The excellent mechanical properties of the polybenzobisoxazole fibers are due to the novel high performance. It is an extremely promising material for fiber-reinforced composite materials.

【0006】ゴム資材や繊維強化複合材料において、こ
のような繊維を使用するにあたっては、マトリックスと
なるゴムあるいは樹脂と補強繊維の接着性は極めて重要
なポイントの一つである。ゴム資材においては、接着性
の悪さは耐疲労性の低下につながり、繊維強化複合材料
においては、繊維−樹脂間の剥離による機械的特性の低
下につながる。
In the use of such fibers in rubber materials and fiber-reinforced composite materials, the adhesiveness between the matrix rubber or resin and the reinforcing fibers is an extremely important point. In rubber materials, poor adhesiveness leads to a reduction in fatigue resistance, and in fiber reinforced composite materials, it leads to a reduction in mechanical properties due to peeling between the fiber and the resin.

【0007】しかし、かかるポリベンゾビスオキサゾー
ル繊維をタイヤコードや伝動ベルト等のゴム資材の補強
用繊維として、あるいは繊維強化複合材料の補強用繊維
として使用する場合、従来のポリベンゾビスオキサゾー
ル繊維は、芳香族ポリアミド繊維と比較し、ゴムやマト
リックス樹脂との接着性がやや劣るという欠点があっ
た。
However, when such a polybenzobisoxazole fiber is used as a reinforcing fiber for a rubber material such as a tire cord or a transmission belt or as a reinforcing fiber for a fiber reinforced composite material, the conventional polybenzobisoxazole fiber is As compared with the aromatic polyamide fiber, there was a drawback that the adhesiveness to rubber and matrix resin was slightly inferior.

【0008】[0008]

【発明が解決しようとする課題】本発明はポリベンゾビ
スオキサゾール繊維における前記従来の欠点、即ち、ゴ
ム材料及び樹脂との接着性が劣るという問題点を解消
し、高強度、高弾性率、高耐熱性を有し、さらに優れた
接着性を有するポリベンゾビスオキサゾール繊維を提供
せんとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks of polybenzobisoxazole fibers, that is, the problem of poor adhesion to rubber materials and resins, and has high strength, high elastic modulus, and high elasticity. It is intended to provide a polybenzobisoxazole fiber having heat resistance and excellent adhesiveness.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、少なく
とも4.0GPaの引張強度と、少なくとも140GP
aの引張弾性率を有し、かつフィラメント表面の酸素原
子数の炭素原子数に対する比(0/C)が0.20以上
であることを特徴とする、接着性の改良されたポリベン
ゾビスオキサゾール繊維、及び少なくとも4.0GPa
の引張強度と、少なくとも140GPaの引張弾性率を
有するポリベンゾビスオキサゾール繊維をコロナ放電処
理する事を特徴とする、接着性の改良されたポリベンゾ
ビスオキサゾール繊維の製造方法である。
That is, the present invention provides a tensile strength of at least 4.0 GPa and at least 140 GP.
Polybenzobisoxazole having improved adhesiveness, which has a tensile modulus of a and a ratio (0 / C) of the number of oxygen atoms to the number of carbon atoms on the filament surface is 0.20 or more. Fiber, and at least 4.0 GPa
And a polybenzobisoxazole fiber having a tensile elastic modulus of at least 140 GPa is subjected to a corona discharge treatment, and a method for producing a polybenzobisoxazole fiber having improved adhesiveness.

【0010】本発明におけるポリベンゾビスオキサゾー
ル繊維は、少なくとも4.0GPaの引張強度と、少な
くとも140GPaの引張弾性率を、さらに好ましくは
少なくとも5.0GPaの引張強度と、少なくとも25
0GPaの引張弾性率を有する。このポリベンゾビスオ
キサゾール繊維は、従来の芳香族ポリアミド繊維と比較
し、優れた強度及び弾性率を有するため、例えば乗用車
用タイヤのカーカス素材として使用した場合、従来達成
できなかった著しい軽量化が可能となる。
The polybenzobisoxazole fiber of the present invention has a tensile strength of at least 4.0 GPa, a tensile modulus of at least 140 GPa, and more preferably at least 5.0 GPa.
It has a tensile modulus of 0 GPa. This polybenzobisoxazole fiber has superior strength and elastic modulus compared to conventional aromatic polyamide fibers, so when used as a carcass material for passenger car tires, for example, it is possible to achieve a significant weight reduction that was previously unattainable. Becomes

【0011】さらに本発明におけるポリベンゾビスオキ
サゾール繊維は、フィラメント表面の酸素原子数の炭素
原子数に対する比(0/C)が0.20以上である事を
特徴とする。ポリベンゾビスオキサゾールの化学構造式
から計算される0/Cの値は0.14であるが、本発明
で開示される。コロナ処理を施したポリベンゾビスオキ
サゾール繊維は、フィラメント表面の0/Cの値が0.
20以上という、高い酸素濃度比を有する。0/Cの値
が0.20未満の場合には、本発明の目的とする接着性
の向上効果が得られなくなるため好ましくない。
Further, the polybenzobisoxazole fiber of the present invention is characterized in that the ratio (0 / C) of the number of oxygen atoms to the number of carbon atoms on the filament surface is 0.20 or more. The value of 0 / C calculated from the chemical structural formula of polybenzobisoxazole is 0.14, which is disclosed in the present invention. The polybenzobisoxazole fiber subjected to corona treatment has a 0 / C value of 0.
It has a high oxygen concentration ratio of 20 or more. When the value of 0 / C is less than 0.20, the effect of improving the adhesiveness, which is the object of the present invention, cannot be obtained, which is not preferable.

【0012】ポリベンゾビスオキサゾールフィラメント
表面の、酸素原子数の炭素原子数に対する比(0/C)
の測定は、X線電子分光装置(島津製作所製ESCA8
50型)を用い、両面をテープでサンプルを固定した試
料台を導入し、真空度5×10-6パスカルにした後、光
源としてMgKα(1254eV)を用いて、C1S及び
1Sの測定を行った。測定後、波形処理を行った後、そ
れぞれのピーク面積を算出し、炭素原子に対する酸素原
子の比を求めた。
Ratio of the number of oxygen atoms to the number of carbon atoms (0 / C) on the surface of the polybenzobisoxazole filament
X-ray electron spectrometer (ESCA8 manufactured by Shimadzu Corporation)
50 type), the sample table with the sample fixed on both sides with tape was introduced, and the degree of vacuum was set to 5 × 10 −6 Pascal, and then C 1S and O 1S were measured using MgKα (1254 eV) as a light source. went. After the measurement, waveform processing was performed, and then each peak area was calculated to obtain the ratio of oxygen atoms to carbon atoms.

【0013】本発明におけるポリベンゾビスオキサゾー
ル繊維は、ヤーンをコロナ放電処理する事により製造す
る。ヤーンをコロナ処理する方法としては、紡糸、抽
出、乾燥または紡糸、抽出、乾燥、熱処理された繊維
を、一旦巻き取った後処理する方法及び一旦巻き取るこ
となく、紡糸、抽出、乾燥または紡糸、抽出、乾燥、熱
処理の工程に引き続いて連続で処理する方法が可能であ
るが、生産性等を考慮すると、連続で処理する方法が好
ましい。
The polybenzobisoxazole fiber in the present invention is produced by subjecting the yarn to corona discharge treatment. As a method of corona-treating the yarn, a method of spinning, extracting, drying or spinning, extracting, drying, and heat-treating the fiber, winding and then treating, and once winding, spinning, extracting, drying or spinning, A continuous treatment method is possible following the extraction, drying and heat treatment steps, but a continuous treatment method is preferable in view of productivity and the like.

【0014】従来、コロナ処理により高性能繊維の接着
性改善する方法として、超高分子量ポリエチレン繊維の
例が特開昭60−146078号に開示されている。し
かしながら、この方法では処理中に繊維が高温になるた
め、耐熱性の低いポリエチレン繊維においては、高い照
射線量エネルギーを繊維に与える事ができず、0.05
〜3.0ワット/m2/分という極めて低い照射線量で
のコロナ処理を実施しており、コロナ処理により著しい
接着性の改善は達成されていない。また、特開昭63−
213530号にはポリオレフィン、特に超高分子量ポ
リエチレン成形品のコロナ放電処理による接着性の改善
方法が開示されており、75ワット/m 2/分の照射線
量でコロナ放電処理する事が実施例に記載されている。
しかし、このような比較的低い照射線量により処理にも
かかわらず、既に約5%の引張強度及び引張弾性率の低
下が生じており、さらに接着性を向上させるために、高
い照射線量で処理する事は実質的に不可能であった。
Conventionally, high-performance fiber adhesion by corona treatment
As a method to improve the properties of ultra high molecular weight polyethylene fiber
An example is disclosed in JP-A-60-146078. Shi
However, this method causes the fibers to become hot during processing.
Therefore, for polyethylene fibers with low heat resistance,
The irradiation energy cannot be given to the fiber, and 0.05
~ 3.0 watt / m2With an extremely low irradiation dose of
The corona treatment of
No improvement in adhesion has been achieved. In addition, JP-A-63-
No. 213530 includes polyolefins, especially ultra high molecular weight polymers.
Improvement of adhesiveness of polyethylene molded product by corona discharge treatment
A method is disclosed, 75 watts / m 2/ Min irradiation line
A corona discharge treatment in an amount is described in the examples.
However, due to such relatively low irradiation dose
Nevertheless, the tensile strength and tensile modulus are already low by about 5%.
Underside, and in order to further improve the adhesiveness,
It was virtually impossible to process with a high irradiation dose.

【0015】これに対して、本発明に用いるポリベンゾ
ビスオキサゾール繊維では100ワット/m2/分以上
の、さらには1000ワット/m2/分維持用の高い照
射線量を与えて処理を行っても、処理後の繊維の機械的
特性が全く低下しないという事が明らかになった。この
事により、従来にない優れた機械的特性と接着性を有す
るポリベンゾビスオキサゾール繊維の製造が可能とな
り、本発明に到達したわけである。
On the other hand, the polybenzobisoxazole fiber used in the present invention is treated by giving a high irradiation dose of 100 watt / m 2 / min or more, and further 1000 watt / m 2 / min. However, it was revealed that the mechanical properties of the treated fiber were not deteriorated at all. This has made it possible to produce polybenzobisoxazole fibers having unprecedented excellent mechanical properties and adhesiveness, and reached the present invention.

【実施例】【Example】

【0016】実施例1 <ポリベンゾビスオキサゾール繊維の製造>固有粘度2
5(メタンスルホン酸溶液、25℃)のポリベンゾビス
オキサゾールポリマーを、ポリリン酸中に、14wt%
の濃度で含有する紡糸ドープを、直径0.3mmの紡糸
孔を有し160℃に加熱された紡糸口金から空気中に紡
出し、凝固浴槽を通過せしめた後、ポリリン酸の抽出工
程、乾燥工程、熱処理工程を経た後巻き取った。この工
程中、実質的に延伸は行っていない。
Example 1 <Production of polybenzobisoxazole fiber> Intrinsic viscosity 2
14% by weight of polybenzobisoxazole polymer of 5 (methanesulfonic acid solution, 25 ° C.) in polyphosphoric acid
The spin dope contained in the above-mentioned concentration was spun into the air from a spinneret having a spin hole having a diameter of 0.3 mm and heated to 160 ° C., passed through a coagulation bath, and then a polyphosphoric acid extraction step and a drying step. After passing through the heat treatment step, it was wound up. During this step, substantially no stretching is performed.

【0017】得られたマルチフィラメントは、986デ
ニール/680フィラメントの糸構成で、引張強度5.
1GPa(37グラム/デニール)、引張弾性率230
GPa(1660グラム/デニール)の高い機械的特性
を有していた。
The resulting multifilament has a yarn constitution of 986 denier / 680 filament and a tensile strength of 5.
1 GPa (37 g / denier), tensile elastic modulus 230
It had high mechanical properties of GPa (1660 grams / denier).

【0018】<マルチフィラメントのコロナ放電処理>
この繊維を、春日電気社製のコロナ放電処理装置を用い
て、バー状電極を使用し、第1表に示した各照射条件で
処理を行った。
<Corona discharge treatment of multifilament>
This fiber was treated using a corona discharge treatment device manufactured by Kasuga Denki Co., Ltd. using bar-shaped electrodes under each irradiation condition shown in Table 1.

【0019】コロナ放電処理後の各マルチフィラメント
の引張強度及び引張弾性率の値を第1表に示すが、高い
エネルギーで放電処理した後も、引張強度及び引張弾性
率の値の低下は全く認められなかった。
The values of the tensile strength and the tensile elastic modulus of each multifilament after corona discharge treatment are shown in Table 1. The reduction of the tensile strength and the tensile elastic modulus value is observed even after the discharge treatment with high energy. I couldn't do it.

【0020】<0/C値の測定>前述した測定法に従っ
て、フィラメント表面の酸素原子数の炭素原子数に対す
る比(0/C)の測定を、X線電子分光装置を用いて行
った。測定結果を第1表に示す。
<Measurement of 0 / C value> The ratio (0 / C) of the number of oxygen atoms to the number of carbon atoms on the filament surface was measured by an X-ray electron spectrometer according to the above-mentioned measuring method. The measurement results are shown in Table 1.

【0021】<層間せん断強さ(ILSS)の測定>上
記、各コロナ処理マルチフィラメントを用い、ILSS
の測定を行った。ILSS測定用の試験片は、エポキシ
樹脂を用いて作成した。エポン9102A、エポン91
02B、エポン9102C(いずれも油化シェル社製)
を、それぞれ100/76/1の重量比で混合した樹脂
に含浸し、135℃で1.5時間硬化させ、厚さ3m
m、幅6mm、長さ18mmの一方向補強複合材の試験
片とした。なお、Vf=50に調整した。この試験片
を、支点間距離12mm(1/h=4)、クロスヘッド
速度1mm/分の条件でせん断応力を測定した後、最大
せん断応力P(Kg)と試験片断面積A(mm2)か
ら、ILSS値=3.P/4・A(Kg/mm2)を算
出した。ILSS測定結果を第1表に示す。
<Measurement of Interlaminar Shear Strength (ILSS)> Using the above corona-treated multifilaments, ILSS
Was measured. The test piece for ILSS measurement was created using an epoxy resin. Epon 9102A, Epon 91
02B, Epon 9102C (all manufactured by Yuka Shell Co., Ltd.)
Was impregnated with a resin mixed in a weight ratio of 100/76/1 and cured at 135 ° C. for 1.5 hours to give a thickness of 3 m.
m, width 6 mm, length 18 mm was used as a test piece of a unidirectionally reinforced composite material. In addition, it adjusted to Vf = 50. The test piece, point distance 12mm (1 / h = 4) , after measuring the shear stress at a crosshead speed of 1 mm / min conditions, the maximum shear stress P (Kg) and specimen cross-sectional area A (mm 2) , ILSS value = 3. P / 4 · A (Kg / mm 2 ) was calculated. The ILSS measurement results are shown in Table 1.

【0022】比較例1 実施例1で作成したポリベンゾビスオキサゾールマルチ
フィラメントを、何の処理も施さずに試料とし、実施例
1と同一の条件をX線電子分光装置による0/C値の測
定及びILSSの測定を行った。結果を第1表に示す。
Comparative Example 1 The polybenzobisoxazole multifilament prepared in Example 1 was used as a sample without any treatment, and the 0 / C value was measured by an X-ray electron spectrometer under the same conditions as in Example 1. And ILSS were measured. The results are shown in Table 1.

【0023】第1図は、本発明の実施例1(第1表試料
4)及び比較例1で作成したポリベンゾビスオキサゾー
ルマルチフィラメントの、X線電子分光装置による酸素
原子の測定結果の一例である。試料にコロナ放電処理を
することにより、酸素原子のピーク面積が著しく増加す
る事が明らかである。
FIG. 1 shows an example of the oxygen atom measurement results of the polybenzobisoxazole multifilament prepared in Example 1 of the present invention (Sample 4 in Table 1) and Comparative Example 1 by an X-ray electron spectrometer. is there. It is clear that the peak area of oxygen atoms is significantly increased by subjecting the sample to corona discharge treatment.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 実施例1で作成、コロナ放電処理を施した各ポリベンゾ
ビスオキサゾール繊維を撚数49×49(回/10c
m)の双糸となし、乳化剤として、ジドデシルスルホサ
クシネートナトリウム塩を0.2重量%添加したグリセ
リンとエピクリルヒドリンとの反応物であるエポキシ樹
脂(長瀬産業社製、ディナコールEX313)の2重量
%分散液を第1処理液(1浴)とし、第2処理液(2
浴)として、RFL(レゾルシン5.7重量部とを水1
85.7重量部に加え、25℃で6時間熟成後にニッポ
ール2518FS(日本ゼオン社製 ブタジエン−スチ
レン−ビニルピリジン共重合ラテックス 固形分41
%)を用いて、1浴乾燥温度130℃、乾燥時間50
秒、熱処理温度220℃、熱処理時間50秒にて、2浴
乾燥温度130℃、乾燥時間50秒、熱処理温度50
秒、ストレッチ率0%の条件でディップ処理を行った。
ディップ処理後、ゴム中に埋め込み、加硫処理を行った
後引き抜き試験を行い、ゴムとの接着製を評価した。測
定結果を第2表に示す。
Example 2 Each polybenzobisoxazole fiber prepared in Example 1 and subjected to corona discharge treatment had a twist number of 49 × 49 (times / 10 c).
m) a twine, an epoxy resin (Dinacol EX313, Nagase & Co., Ltd.), which is a reaction product of glycerin and epicrylhydrin with 0.2% by weight of sodium salt of didodecylsulfosuccinate added as an emulsifier. 2% by weight of the dispersion liquid as the first treatment liquid (1 bath), and the second treatment liquid (2
As a bath, RFL (5.7 parts by weight of resorcinol) and water 1
In addition to 85.7 parts by weight, after aging at 25 ° C. for 6 hours, Nipol 2518FS (Nippon Zeon Co., Ltd. butadiene-styrene-vinylpyridine copolymer latex solid content 41)
%), 1 bath drying temperature 130 ° C., drying time 50
Second, heat treatment temperature 220 ° C., heat treatment time 50 sec, 2 bath drying temperature 130 ° C., drying time 50 sec, heat treatment temperature 50
The dip treatment was performed under the conditions of second and stretch ratio of 0%.
After the dip treatment, it was embedded in rubber, vulcanized, and then subjected to a pull-out test to evaluate the adhesiveness with rubber. The measurement results are shown in Table 2.

【0026】比較例2 実施例1で作成したポリベンゾビスオキサゾールマルチ
フィラメントを、何の処理も施されずに試料とし、実施
例2と同一の条件でディップ処理を行い、加硫処理後、
引き抜き試験によりゴムとの接着性を評価した。測定結
果を第2表に示す。
Comparative Example 2 The polybenzobisoxazole multifilament prepared in Example 1 was used as a sample without any treatment, and was subjected to dip treatment under the same conditions as in Example 2 and after vulcanization treatment,
Adhesion with rubber was evaluated by a pull-out test. The measurement results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、従来に無い、高い引張
強度と引張弾性率を有し、かつ接着性に優れたポリベン
ゾビスオキサゾール繊維を得る事ができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a polybenzobisoxazole fiber which has a high tensile strength and a tensile elastic modulus which are unprecedented and which is excellent in adhesiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1(第1表の試料4)及び比較
例1で作成したポリベンゾビスオキサゾールマルチフィ
ラメントの、X線電子分光装置(ESCA)による酸素
原子の測定結果の一例である。
FIG. 1 is an example of measurement results of oxygen atoms by an X-ray electron spectrometer (ESCA) of the polybenzobisoxazole multifilament prepared in Example 1 of the present invention (Sample 4 in Table 1) and Comparative Example 1. is there.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも4.0GPaの引張強度と、
少なくとも140GPaの引張弾性率を有し、かつフィ
ラメント表面の酸素原子数の炭素原子数に対する比(0
/C)が0.20以上であることを特徴とする接着性の
改良されたポリベンゾビスオキサゾール繊維。
1. A tensile strength of at least 4.0 GPa,
It has a tensile elastic modulus of at least 140 GPa and the ratio of the number of oxygen atoms on the filament surface to the number of carbon atoms (0
/ C) is 0.20 or more, a polybenzobisoxazole fiber with improved adhesion.
【請求項2】 少なくとも4.0GPaの引張強度と、
少なくとも140GPaの引張弾性率を有するポリベン
ゾビスオキサゾール繊維をコロナ放電処理する事を特徴
とする、接着性の改良されたポリベンゾビスオキサゾー
ル繊維の製造方法。
2. A tensile strength of at least 4.0 GPa,
A method for producing a polybenzobisoxazole fiber having improved adhesiveness, which comprises subjecting a polybenzobisoxazole fiber having a tensile elastic modulus of at least 140 GPa to corona discharge treatment.
JP16711493A 1993-07-06 1993-07-06 Polybenzobisoxazole fiber having improved adhesiveness and its production Pending JPH0726415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16711493A JPH0726415A (en) 1993-07-06 1993-07-06 Polybenzobisoxazole fiber having improved adhesiveness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16711493A JPH0726415A (en) 1993-07-06 1993-07-06 Polybenzobisoxazole fiber having improved adhesiveness and its production

Publications (1)

Publication Number Publication Date
JPH0726415A true JPH0726415A (en) 1995-01-27

Family

ID=15843701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16711493A Pending JPH0726415A (en) 1993-07-06 1993-07-06 Polybenzobisoxazole fiber having improved adhesiveness and its production

Country Status (1)

Country Link
JP (1) JPH0726415A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064737A1 (en) * 2002-01-28 2003-08-07 Toyo Boseki Kabushiki Kaisha Polybenzazole fiber and production method therefor
KR20140060345A (en) * 2011-09-06 2014-05-19 허니웰 인터내셔널 인코포레이티드 High performance ballistic composites and method of making
KR20140072082A (en) * 2011-09-06 2014-06-12 허니웰 인터내셔널 인코포레이티드 Low bfs composite and process for making the same
KR20140072885A (en) * 2011-09-06 2014-06-13 허니웰 인터내셔널 인코포레이티드 A surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making
US9718237B2 (en) 2011-09-06 2017-08-01 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9821515B2 (en) 2011-09-06 2017-11-21 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9880080B2 (en) 2011-09-06 2018-01-30 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064737A1 (en) * 2002-01-28 2003-08-07 Toyo Boseki Kabushiki Kaisha Polybenzazole fiber and production method therefor
KR20140060345A (en) * 2011-09-06 2014-05-19 허니웰 인터내셔널 인코포레이티드 High performance ballistic composites and method of making
KR20140072082A (en) * 2011-09-06 2014-06-12 허니웰 인터내셔널 인코포레이티드 Low bfs composite and process for making the same
KR20140072885A (en) * 2011-09-06 2014-06-13 허니웰 인터내셔널 인코포레이티드 A surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making
JP2014529017A (en) * 2011-09-06 2014-10-30 ハネウェル・インターナショナル・インコーポレーテッド Surface-treated yarns and fabrics having improved physical and adhesive properties and manufacturing methods
JP2014529691A (en) * 2011-09-06 2014-11-13 ハネウェル・インターナショナル・インコーポレーテッド Low BFS composite material and method for producing the same
US9718237B2 (en) 2011-09-06 2017-08-01 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9821515B2 (en) 2011-09-06 2017-11-21 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9880080B2 (en) 2011-09-06 2018-01-30 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US10562238B2 (en) 2011-09-06 2020-02-18 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US11027501B2 (en) 2011-09-06 2021-06-08 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making

Similar Documents

Publication Publication Date Title
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
KR100849087B1 (en) Cord for reinforcing rubber and preparing method thereof
US4148963A (en) Adhesive-coating composition for organic or mineral filaments
US20060033231A1 (en) Monofilament reinforced rubber component and method of producing
JPH07102473A (en) Production of polybenzazole fiber improved in adhesiveness
JPH0726415A (en) Polybenzobisoxazole fiber having improved adhesiveness and its production
US3549740A (en) Treatment of polyester fibers to improve adhesion of rubber
JPS61276830A (en) Production of polyolefin product
JP3912586B2 (en) Polybenzazole fiber and method for producing the same
JP3379142B2 (en) Nylon 66 rubber reinforcement cord
TW202003653A (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP4465514B2 (en) Polyester fiber cord processing method
JP5542084B2 (en) Polyester fiber for rubber reinforcement
JPH1046468A (en) Production of polybenzazole fiber having improved adhesion property with rubber
KR102573974B1 (en) Nylon cord having high modulus and method for preparing the same
JPH06207338A (en) Polyvinyl alcohol cord and its production
JPS60104580A (en) Production of tire reinforcing code
JPH0820651A (en) Fiber-reinforced composite material
JPS5988942A (en) Polyamide tire cord and production thereof
JPH02216288A (en) Cord for reinforcing power transmission belt and production thereof
JP2545915B2 (en) Rubber reinforcing cord and manufacturing method thereof
JP3157590B2 (en) Polyamide fiber cord for rubber reinforcement
JPH10310980A (en) Production of polyester fiber for rubber reinforcement
JPS6071240A (en) Manufacture of tire reinforcing cord
JP3157587B2 (en) Polyamide fiber cord for rubber reinforcement