JPWO2019131219A1 - Surface-modified total aromatic polyester fiber and its manufacturing method - Google Patents

Surface-modified total aromatic polyester fiber and its manufacturing method Download PDF

Info

Publication number
JPWO2019131219A1
JPWO2019131219A1 JP2019563000A JP2019563000A JPWO2019131219A1 JP WO2019131219 A1 JPWO2019131219 A1 JP WO2019131219A1 JP 2019563000 A JP2019563000 A JP 2019563000A JP 2019563000 A JP2019563000 A JP 2019563000A JP WO2019131219 A1 JPWO2019131219 A1 JP WO2019131219A1
Authority
JP
Japan
Prior art keywords
aromatic polyester
total aromatic
fiber
polyester fiber
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019563000A
Other languages
Japanese (ja)
Other versions
JP7267206B2 (en
Inventor
貴理博 中野
貴理博 中野
岡本 一晃
一晃 岡本
敬介 浅霧
敬介 浅霧
向尾 良樹
良樹 向尾
利章 小林
利章 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2019131219A1 publication Critical patent/JPWO2019131219A1/en
Application granted granted Critical
Publication of JP7267206B2 publication Critical patent/JP7267206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

本発明は、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維を提供する。本発明の表面改質全芳香族ポリエステル繊維は、全芳香族ポリエステルポリマーを含む。繊維表面における炭素原子数に対する酸素原子数の割合は30〜60%である。繊維表面に存在するカルボキシ基のモル濃度が5〜16%であることが好ましい。本発明の表面改質全芳香族ポリエステル繊維は、全芳香族ポリエステルポリマーを含む全芳香族ポリエステル繊維に対して活性酸素種を作用させて、繊維表面における炭素原子数に対する酸素原子数の割合を30〜60%とする製造方法によって、製造することができる。The present invention provides a surface-modified total aromatic polyester fiber having excellent fiber strength and excellent interfacial adhesiveness with a matrix resin. The surface-modified total aromatic polyester fiber of the present invention contains a total aromatic polyester polymer. The ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface is 30 to 60%. The molar concentration of the carboxy group present on the fiber surface is preferably 5 to 16%. In the surface-modified total aromatic polyester fiber of the present invention, an active oxygen species is allowed to act on the total aromatic polyester fiber containing the total aromatic polyester polymer, and the ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface is 30. It can be produced by a production method of ~ 60%.

Description

本発明は、表面改質全芳香族ポリエステル繊維とその製造方法に関する。 The present invention relates to a surface-modified total aromatic polyester fiber and a method for producing the same.

強化繊維とマトリクス樹脂とを含む繊維強化樹脂(FRP)は、軽量で、比強度および比剛性等の機械特性に優れ、自動車部材、航空機部材、電子機器筐体、家電筐体、スポーツ用品部材、レジャー用品部材、プリント基板、回路基板、多層配線板、セパレータ、ディスプレイ用基材、および太陽電池基材等の用途に好ましく用いられている。
FRPの機械強度の維持には、強化繊維とマトリクス樹脂との界面接着が重要である。例えば炭素繊維とエポキシ系樹脂との複合では、あらかじめ炭素繊維の表面に−OH基および−COOH基等の酸素含有官能基を形成することで、炭素繊維とエポキシ系樹脂とを化学結合させ、これらの界面接着を高めることができる。なお、このときの界面接着力は、酸素含有官能基の導入率(O/C比)に依存する傾向がある。
Fiber reinforced plastic (FRP) containing reinforcing fibers and matrix resin is lightweight and has excellent mechanical properties such as specific strength and specific rigidity, and is used for automobile parts, aircraft parts, electronic equipment housings, home appliance housings, sporting goods parts, etc. It is preferably used in applications such as leisure equipment members, printed circuit boards, circuit boards, multilayer wiring boards, separators, display base materials, and solar cell base materials.
Interfacial adhesion between reinforcing fibers and matrix resin is important for maintaining the mechanical strength of FRP. For example, in the composite of carbon fiber and epoxy resin, oxygen-containing functional groups such as -OH group and -COOH group are formed in advance on the surface of the carbon fiber to chemically bond the carbon fiber and the epoxy resin. It is possible to enhance the interfacial adhesion of. The interfacial adhesive force at this time tends to depend on the introduction rate (O / C ratio) of the oxygen-containing functional group.

一方、全芳香族ポリエステル繊維は高張力および低吸水性等の特性を活かして、FRPへの適用が検討されている。しかしながら、従来の全芳香族ポリエステル繊維はFRPに用いられる汎用マトリクス樹脂との界面接着性が低く、機械特性の高いFRPを実現することが難しい。 On the other hand, all-aromatic polyester fibers are being studied for application to FRP by taking advantage of their properties such as high tension and low water absorption. However, conventional all-aromatic polyester fibers have low interfacial adhesiveness with general-purpose matrix resins used for FRP, and it is difficult to realize FRP with high mechanical properties.

非特許文献1には、炭素繊維および全芳香族ポリエステル繊維の表面改質方法として、大気圧プラズマ、真空プラズマ、アルカリ溶液、およびオゾンマイクロバブルを用いる方法が開示されている。非特許文献1に記載の方法では、繊維表面のO/C比は処理前より向上したものの、そのレベルは低く、改質効果は充分とは言えない。また、繊維表面には荒れが見られ、樹脂との界面接着性の指標である界面せん断応力は処理前に対して微増または減少のレベルである。このように、非特許文献1では、マトリクス樹脂との界面接着性に優れた繊維は得られていない。 Non-Patent Document 1 discloses a method using atmospheric pressure plasma, vacuum plasma, alkaline solution, and ozone microbubbles as a method for surface modification of carbon fibers and totally aromatic polyester fibers. In the method described in Non-Patent Document 1, although the O / C ratio of the fiber surface is improved as compared with that before the treatment, the level is low and the modifying effect cannot be said to be sufficient. In addition, the fiber surface is roughened, and the interfacial shear stress, which is an index of interfacial adhesiveness with the resin, is at a level of slight increase or decrease as compared with that before the treatment. As described above, in Non-Patent Document 1, fibers having excellent interfacial adhesiveness with the matrix resin have not been obtained.

特許文献1には、無機アルカリ化合物と脂肪族アミノアルコールと水との混合液を用いて液晶ポリマーフィルム基材をエッチングする表面改質方法が開示されている(請求項1、4)。特許文献1には、液晶ポリマーとして、全芳香族ポリエステルが挙げられている(請求項3)。この方法を全芳香族ポリエステル繊維に適用する場合、全芳香族ポリエステルの主鎖のエステル結合がアミノアルコールで切断されて繊維表面の重合度が低下するため、繊維の張力が低下する恐れがある。 Patent Document 1 discloses a surface modification method for etching a liquid crystal polymer film base material using a mixed solution of an inorganic alkaline compound, an aliphatic amino alcohol and water (claims 1 and 4). Patent Document 1 mentions a totally aromatic polyester as a liquid crystal polymer (claim 3). When this method is applied to a total aromatic polyester fiber, the ester bond of the main chain of the total aromatic polyester is cleaved with amino alcohol to reduce the degree of polymerization on the fiber surface, which may reduce the tension of the fiber.

特許文献2には、超臨界流体を用いたポリマーの表面改質方法であって、上記ポリマーの表面の所定領域に有機物質を付加することと、上記有機物質が付加されたポリマーの表面に超臨界流体を接触させて上記ポリマー表面に上記有機物質を浸透させることとを含む表面改質方法が開示されている(請求項1)。上記ポリマーの例として、全芳香族ポリエステルが挙げられている(請求項4)。この方法を全芳香族ポリエステル繊維に適用する場合、超臨界状態での処理を含むため、連続プロセス化および装置の大型化が難しく、実用的ではない。 Patent Document 2 describes a method for surface modification of a polymer using a supercritical fluid, in which an organic substance is added to a predetermined region on the surface of the polymer and the surface of the polymer to which the organic substance is added is super-superposed. A surface modification method including contacting a critical fluid to allow the organic substance to permeate the surface of the polymer is disclosed (claim 1). An example of the polymer is a totally aromatic polyester (claim 4). When this method is applied to all aromatic polyester fibers, it is not practical because it involves treatment in a supercritical state, which makes continuous process and large-scale equipment difficult.

特開2006−282791号公報Japanese Unexamined Patent Publication No. 2006-282791 特開2006−328381号公報Japanese Unexamined Patent Publication No. 2006-328381

あいち産業科学技術総合センター 研究報告2013、三河繊維技術センターAichi Industrial Science and Technology Center Research Report 2013, Mikawa Textile Technology Center

本発明は上記事情に鑑みてなされたものであり、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維とその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface-modified total aromatic polyester fiber having excellent fiber strength and excellent interfacial adhesiveness with a matrix resin and a method for producing the same. It is a thing.

本発明は、以下の[1]〜[3]の表面改質全芳香族ポリエステル繊維およびその製造方法を提供する。 The present invention provides the following surface-modified total aromatic polyester fibers [1] to [3] and a method for producing the same.

[1] 全芳香族ポリエステルポリマーを含み、繊維表面における炭素原子数に対する酸素原子数の割合が30〜60%である、表面改質全芳香族ポリエステル繊維。 [1] A surface-modified total aromatic polyester fiber containing a total aromatic polyester polymer in which the ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface is 30 to 60%.

[2] 繊維表面に存在するカルボキシ基のモル濃度が5〜16%である、[1]の表面改質全芳香族ポリエステル繊維。 [2] The surface-modified total aromatic polyester fiber of [1], wherein the molar concentration of the carboxy group present on the fiber surface is 5 to 16%.

[3] 全芳香族ポリエステルポリマーを含む全芳香族ポリエステル繊維に対して活性酸素種を作用させて、繊維表面における炭素原子数に対する酸素原子数の割合を30〜60%とする、表面改質全芳香族ポリエステル繊維の製造方法。 [3] Total surface modification in which the ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface is 30 to 60% by allowing an active oxygen species to act on all aromatic polyester fibers containing the total aromatic polyester polymer. A method for producing aromatic polyester fibers.

本発明によれば、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維とその製造方法を提供することができる。 According to the present invention, it is possible to provide a surface-modified total aromatic polyester fiber having excellent fiber strength and excellent interfacial adhesiveness with a matrix resin and a method for producing the same.

以下、本発明について詳細に説明する。
本発明の表面改質全芳香族ポリエステル繊維は、全芳香族ポリエステルポリマーを含み、液晶性ポリエステルを溶融紡糸することにより得ることができる。液晶性ポリエステルは例えば、芳香族ジオール、芳香族ジカルボン酸、および芳香族ヒドロキシカルボン酸等の酸に由来する反復構成単位からなる。本発明の効果を損なわない限り、芳香族ジオール、芳香族ジカルボン酸、および芳香族ヒドロキシカルボン酸に由来する構成単位の化学的構成は特に限定されない。本発明の効果を損なわない限り、液晶性ポリエステルは、芳香族ジアミン、芳香族ヒドロキシアミン、および芳香族アミノカルボン酸等に由来する他の構成単位を含んでいてもよい。以下に好ましい構成単位の例を示す。
Hereinafter, the present invention will be described in detail.
The surface-modified total aromatic polyester fiber of the present invention contains a total aromatic polyester polymer and can be obtained by melt-spinning a liquid crystal polyester. Liquid polyesters consist of repetitive building blocks derived from acids such as, for example, aromatic diols, aromatic dicarboxylic acids, and aromatic hydroxycarboxylic acids. The chemical composition of the structural unit derived from the aromatic diol, the aromatic dicarboxylic acid, and the aromatic hydroxycarboxylic acid is not particularly limited as long as the effects of the present invention are not impaired. As long as the effects of the present invention are not impaired, the liquidaceous polyester may contain other structural units derived from aromatic diamines, aromatic hydroxyamines, aromatic aminocarboxylic acids and the like. An example of a preferable structural unit is shown below.

Figure 2019131219
Figure 2019131219

上記式中、Yは水素原子または芳香族環の置換基である。Yが置換基である場合、その数は、1〜芳香族環に導入可能な置換基の最大数の範囲内である。置換基としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、およびt−ブチル基等の炭素数1〜4のアルキル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、およびn−ブトキシ基等)、アリール基(例えば、フェニル基、ナフチル基等)、アラルキル基(ベンジル基(フェニルメチル基とも言う)、およびフェネチル基(フェニルエチル基とも言う)等)、アリールオキシ基(例えば、フェノキシ基等)、アラルキルオキシ基(例えば、ベンジルオキシ基等)等が挙げられる。 In the above formula, Y is a substituent of a hydrogen atom or an aromatic ring. When Y is a substituent, the number is in the range of 1 to the maximum number of substituents that can be introduced into the aromatic ring. Substituents include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (eg, methyl group, ethyl group, isopropyl group, t-butyl group, etc.) having 1 to 1 carbon atoms. Alkyl group of 4), alkoxy group (eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryl group (eg, phenyl group, naphthyl group, etc.), aralkyl group (benzyl group (phenyl)). Examples thereof include a methyl group (also referred to as a methyl group), a phenethyl group (also referred to as a phenylethyl group), an aryloxy group (for example, a phenoxy group, etc.), an aralkyloxy group (for example, a benzyloxy group, etc.).

より好ましい構成単位としては、以下の(1)〜(18)に示す構成単位が挙げられる。なお、1つの式で表される構成単位が複数の構造を取り得る場合、1つの式で表される複数の構成単位を組み合わせて使用してもよい。 More preferable structural units include the structural units shown in (1) to (18) below. When the structural unit represented by one equation can have a plurality of structures, the plurality of structural units represented by one equation may be used in combination.

Figure 2019131219
Figure 2019131219

Figure 2019131219
Figure 2019131219

Figure 2019131219
Figure 2019131219

上記式中、nは1または2の整数である。同じ式で表されるnの数の異なる複数の構成単位を併用してもよい。Y1およびY2はそれぞれ独立に水素原子または置換基であり、置換基の例は、Yで挙げたものと同様である。好ましいY1、Y2としては、水素原子、塩素原子、臭素原子、およびメチル基等が挙げられる。 In the above equation, n is an integer of 1 or 2. A plurality of structural units having different numbers of n represented by the same formula may be used in combination. Y1 and Y2 are independent hydrogen atoms or substituents, respectively, and examples of the substituents are the same as those given in Y. Preferred Y1 and Y2 include a hydrogen atom, a chlorine atom, a bromine atom, a methyl group and the like.

上記式中、Zは、下記式で表される基から選択することができる。

Figure 2019131219
In the above formula, Z can be selected from the groups represented by the following formula.
Figure 2019131219

液晶性ポリエステルは、構成単位としてナフタレン骨格を含むことが好ましく、ヒドロキシ安息香酸由来の構成単位(A)と、ヒドロキシナフトエ酸由来の構成単位(B)の両方を含むことがより好ましい。例えば、構成単位(A)としては下記式(A)で表される構成単位が挙げられ、構成単位(B)としては下記式(B)で表される構成単位が挙げられる。溶融成形性を向上する観点から、構成単位(A)と構成単位(B)の比率は、好ましくは9/1〜1/1、より好ましくは7/1〜1/1、特に好ましくは5/1〜1/1の範囲である。ポリマー中の構成単位(A)と構成単位(B)の合計量は、好ましくは65モル%以上、より好ましくは70モル%以上、特に好ましくは80モル%以上である。ポリマー中の構成単位(A)の含有量が50〜70モル%であり、ポリマー中の構成単位(B)の含有量が4〜45モル%であることが好ましい。 The liquid crystal polyester preferably contains a naphthalene skeleton as a constitutional unit, and more preferably contains both a constitutional unit (A) derived from hydroxybenzoic acid and a constitutional unit (B) derived from hydroxynaphthoic acid. For example, the structural unit (A) includes a structural unit represented by the following formula (A), and the structural unit (B) includes a structural unit represented by the following formula (B). From the viewpoint of improving melt moldability, the ratio of the structural unit (A) to the structural unit (B) is preferably 9/1 to 1/1, more preferably 7/1 to 1/1, and particularly preferably 5 /. It is in the range of 1 to 1/1. The total amount of the structural unit (A) and the structural unit (B) in the polymer is preferably 65 mol% or more, more preferably 70 mol% or more, and particularly preferably 80 mol% or more. The content of the structural unit (A) in the polymer is preferably 50 to 70 mol%, and the content of the structural unit (B) in the polymer is preferably 4 to 45 mol%.

Figure 2019131219
Figure 2019131219

本発明で好適に用いられる液晶性ポリエステルの融点は特に制限されず、好ましくは250〜360℃、より好ましくは260〜320℃である。なお、ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)を用いて測定し、観察される主吸熱ピーク温度である。この方法では、上記DSC装置を用い、サンプル10〜20mgをアルミ製パンに入れ、キャリアガスとして窒素を100cc/分の条件で流し、20℃/分の昇温速度で昇温したときの吸熱ピークを測定する。
ポリマーの種類によってはDSC測定において1st runで明確なピークが現れない場合がある。この場合、いったん50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間保持して完全に溶融した後、−80℃/分の降温速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。
The melting point of the liquid crystal polyester preferably used in the present invention is not particularly limited, and is preferably 250 to 360 ° C, more preferably 260 to 320 ° C. The melting point referred to here is the main endothermic peak temperature measured and observed using a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER CORPORATION) in accordance with the JIS K7121 test method. In this method, using the above DSC device, 10 to 20 mg of a sample is placed in an aluminum pan, nitrogen is flowed as a carrier gas under the condition of 100 cc / min, and the endothermic peak when the temperature is raised at a heating rate of 20 ° C./min. To measure.
Depending on the type of polymer, a clear peak may not appear at 1st run in DSC measurement. In this case, the temperature is once raised to a temperature 50 ° C. higher than the expected flow temperature at a heating rate of 50 ° C./min, held at that temperature for 3 minutes to completely melt, and then lowered to -80 ° C./min. It is advisable to cool to 50 ° C. at a rate and then measure the heat absorption peak at a heating rate of 20 ° C./min.

なお、液晶性ポリエステルは、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、およびフッ素樹脂等の他の熱可塑性ポリマーを含むものであってもよい。液晶性ポリエステルは、酸化チタン、カオリン、シリカ、および酸化バリウム等の無機物;カーボンブラック;染料および顔料等の着色剤;酸化防止剤、紫外線吸収剤、光安定剤;等の各種添加剤を含むものであってもよい。 The liquid crystal polyester contains other thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin, as long as the effects of the present invention are not impaired. It may be a thing. Liquid polyester contains various additives such as titanium oxide, kaolin, silica, and barium oxide; carbon black; colorants such as dyes and pigments; antioxidants, ultraviolet absorbers, light stabilizers; etc. It may be.

本発明の表面改質全芳香族ポリエステル繊維は、繊維表面における炭素原子数に対する酸素原子数の割合(以下、「O/C比」と略記する場合がある)が30〜60%である。
なお、本明細書において、特に明記しない限り、「主成分」は50質量%以上の成分である。
The surface-modified total aromatic polyester fiber of the present invention has a ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface (hereinafter, may be abbreviated as "O / C ratio") of 30 to 60%.
In the present specification, unless otherwise specified, the "main component" is a component of 50% by mass or more.

本発明の表面改質全芳香族ポリエステル繊維は、繊維表面に好適な量の極性官能基を有するため、マトリクス樹脂との界面接着性に優れる。また、O/C比が30〜60%となる条件で表面改質処理を行うことで、繊維強度を低下させずに好適な量の極性官能基を導入することができる。したがって、本発明によれば、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維を提供することができる。 Since the surface-modified total aromatic polyester fiber of the present invention has a suitable amount of polar functional groups on the fiber surface, it has excellent interfacial adhesiveness with a matrix resin. Further, by performing the surface modification treatment under the condition that the O / C ratio is 30 to 60%, a suitable amount of polar functional groups can be introduced without lowering the fiber strength. Therefore, according to the present invention, it is possible to provide a surface-modified total aromatic polyester fiber having excellent fiber strength and excellent interfacial adhesiveness with a matrix resin.

本発明の表面改質全芳香族ポリエステル繊維において、繊維表面に存在するカルボキシ基のモル濃度は、好ましくは5〜16%である。かかる態様の表面改質全芳香族ポリエステル繊維は、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れ、好ましい。
O/C比およびカルボキシ基のモル濃度は、後記[実施例]の項に記載の方法にて測定することができる。
In the surface-modified total aromatic polyester fiber of the present invention, the molar concentration of the carboxy group present on the fiber surface is preferably 5 to 16%. The surface-modified total aromatic polyester fiber of such an embodiment is preferable because it has excellent fiber strength and excellent interfacial adhesiveness with a matrix resin.
The O / C ratio and the molar concentration of the carboxy group can be measured by the method described in the section [Examples] below.

本発明の表面改質全芳香族ポリエステル繊維の製造方法は、特に制限されない。一態様において、全芳香族ポリエステルポリマーを含む表面改質前の全芳香族ポリエステル繊維に対して、繊維表面におけるO/C比が30〜60%となるように活性酸素種を作用させることで、上記の本発明の表面改質全芳香族ポリエステル繊維を製造することができる。 The method for producing the surface-modified total aromatic polyester fiber of the present invention is not particularly limited. In one embodiment, an active oxygen species is allowed to act on the total aromatic polyester fiber containing the total aromatic polyester polymer before surface modification so that the O / C ratio on the fiber surface is 30 to 60%. The surface-modified total aromatic polyester fiber of the present invention described above can be produced.

表面改質前の全芳香族ポリエステル繊維は、公知方法により製造することができる。以下、製造方法の例について、説明する。 The total aromatic polyester fiber before surface modification can be produced by a known method. Hereinafter, an example of the manufacturing method will be described.

はじめに、公知方法にて全芳香族ポリエステルポリマーおよび必要に応じて1種以上の他の熱可塑性ポリマーを含む原料を溶融紡糸して、紡糸原糸を得る。この工程においては、全芳香族ポリエステルポリマーが溶融液晶を形成する温度範囲内において全芳香族ポリエステルポリマーの融点より10℃以上高い紡糸温度で、せん断速度103sec−1以上、紡糸ドラフト20以上の条件で、溶融紡糸を行うのが好ましい。かかる条件で紡糸を行うことにより、分子配向化が進行し、強度等の機械特性に優れた紡糸原糸を得ることができる。First, a raw material containing a total aromatic polyester polymer and, if necessary, one or more other thermoplastic polymers is melt-spun by a known method to obtain a spun yarn. In this step, the spinning temperature is 10 ° C. or higher than the melting point of the total aromatic polyester polymer within the temperature range in which the total aromatic polyester polymer forms the molten liquid crystal, the shear rate is 103 sec -1 or more, and the spinning draft is 20 or more. , It is preferable to perform melt spinning. By spinning under such conditions, molecular orientation progresses, and a spinning yarn having excellent mechanical properties such as strength can be obtained.

次に、強度、弾性率、耐摩耗性、および耐疲労性等の機械特性を向上させるために、好ましくは紡糸原糸を熱処理する。熱処理は、緊張下または無緊張下で行うことができる。熱処理は、繊維を延伸させながら行ってもよい。
熱処理の雰囲気は特に制限されず、不活性雰囲気のみでもよいし、不活性雰囲気下で開始し、途中から活性雰囲気下に切り替えてもよい。ここで、「不活性雰囲気」とは酸素等の活性ガスの濃度が0.1体積%以下の雰囲気であり、具体的には窒素ガス、アルゴンガス、およびヘリウムガス等の不活性ガス雰囲気または減圧雰囲気である。「活性雰囲気」とは酸素等の活性ガスの濃度が1体積%以上の雰囲気であり、好ましくは酸素濃度が10体積%以上の酸素含有雰囲気である。コスト的には、酸素含有ガスとしては空気が好ましい。なお、水分存在下では加水分解反応が進行するため、不活性雰囲気および活性雰囲気はいずれも乾燥雰囲気とする。
Next, in order to improve mechanical properties such as strength, elastic modulus, abrasion resistance, and fatigue resistance, the spinning yarn is preferably heat-treated. The heat treatment can be performed under tension or no tension. The heat treatment may be performed while stretching the fibers.
The atmosphere of the heat treatment is not particularly limited, and may be only the inert atmosphere, or may be started in the inert atmosphere and switched to the active atmosphere in the middle. Here, the "inert atmosphere" is an atmosphere in which the concentration of an active gas such as oxygen is 0.1% by volume or less, and specifically, an inert gas atmosphere such as nitrogen gas, argon gas, and helium gas or reduced pressure. The atmosphere. The "active atmosphere" is an atmosphere in which the concentration of an active gas such as oxygen is 1% by volume or more, and preferably an oxygen-containing atmosphere in which the oxygen concentration is 10% by volume or more. In terms of cost, air is preferable as the oxygen-containing gas. Since the hydrolysis reaction proceeds in the presence of water, both the inert atmosphere and the active atmosphere are set to a dry atmosphere.

熱処理方法は公知方法を適用することができ、加熱ガス等の加熱媒体を用いる方法、加熱板および赤外ヒータ等からの輻射熱を利用する方法、熱ローラおよび熱プレート等に接触させる方法、および高周波等を利用した内部加熱方法等が挙げられる。
熱処理温度は特に制限されず、溶融紡糸前の原料の全芳香族ポリエステルポリマーの融点をTmとしたとき、好ましくはTm−35℃〜Tm−2℃の温度範囲である。かかる温度条件で熱処理することにより高温下において高い強度をおよび弾性率を有する全芳香族ポリエステル繊維を得ることができる。なお、熱処理は、一定の温度下で行ってもよいし、加熱により漸進的に上昇する繊維の融点にあわせて順次昇温する温度プロファイルで行ってもよい。
A known method can be applied as the heat treatment method, that is, a method using a heating medium such as a heating gas, a method using radiant heat from a heating plate and an infrared heater, a method of contacting with a heat roller and a heat plate, and a high frequency. An internal heating method or the like using the above can be mentioned.
The heat treatment temperature is not particularly limited, and is preferably in the temperature range of Tm-35 ° C. to Tm-2 ° C. when the melting point of the total aromatic polyester polymer of the raw material before melt spinning is Tm. By heat-treating under such temperature conditions, a total aromatic polyester fiber having high strength and elastic modulus at high temperature can be obtained. The heat treatment may be performed under a constant temperature, or may be performed with a temperature profile in which the temperature is gradually raised according to the melting point of the fiber that gradually rises due to heating.

製造された全芳香族ポリエステル繊維は必要に応じて、任意の形態に加工することができる。
全芳香族ポリエステル繊維は、他の樹脂繊維との混糸の形態としてもよい。
全芳香族ポリエステル繊維に対して、機械捲縮または牽切等の処理を施し、紡績または不織布の加工を行ってもよい。
複数本の全芳香族ポリエステル繊維を一方向に引き揃えてヤーンを得、さらに、複数のヤーンを繊維方向に対して垂直方向に並列配置した異方性二次元構造体に加工してもよい。
織機を用いて、全芳香族ポリエステル繊維を平織または綾織の布状としてもよい。さらにブレーディング処理により、三次元構造体としてもよい。
The produced total aromatic polyester fiber can be processed into any form, if necessary.
The total aromatic polyester fiber may be in the form of a mixed yarn with another resin fiber.
All aromatic polyester fibers may be subjected to a treatment such as mechanical crimping or truncation to be spun or non-woven fabric processed.
A plurality of all aromatic polyester fibers may be aligned in one direction to obtain yarns, and further, a plurality of yarns may be processed into an anisotropic two-dimensional structure in which the yarns are arranged in parallel in the direction perpendicular to the fiber direction.
A loom may be used to shape the all-aromatic polyester fibers into a plain or twill cloth. Further, it may be formed into a three-dimensional structure by braiding.

上記のように公知方法にて製造および必要に応じて加工された表面改質前の全芳香族ポリエステル繊維に対して、表面改質処理を行う。一態様において、表面改質前の全芳香族ポリエステル繊維の表面に対して活性酸素種を作用させて表面酸化処理を行うことで、繊維表面におけるO/C比を制御することができる。 The surface modification treatment is performed on the total aromatic polyester fiber before surface modification, which is produced by a known method as described above and processed as necessary. In one aspect, the O / C ratio on the fiber surface can be controlled by allowing active oxygen species to act on the surface of the total aromatic polyester fiber before surface modification to perform surface oxidation treatment.

活性酸素種(ROS:reactive oxygen species)とは、反応性の高い酸素種の総称で、オゾン、酸素プラズマ、スーパーオキシド(O .−)、過酸化水素(H)、ヒドロキシラジカル(.OH)、および一重項酸素()等が挙げられる。Reactive oxygen species (ROS) is a general term for highly reactive oxygen species, such as ozone, oxygen plasma, superoxide (O 2 .- ), hydrogen peroxide (H 2 O 2 ), and hydroxy radical (H 2 O 2 ). . OH), and singlet oxygen (1 O 2), and the like.

活性酸素種は様々な方法で得ることができ、例えば、大気中または減圧雰囲気下で、酸素源に対して、電子線、紫外線(UV)、電場、および熱等を作用させることで得ることができる。酸素源としては特に制限されず、コスト的には大気中の酸素が好ましい。活性酸素種を生成する雰囲気は、窒素ガス、アルゴンガス、およびヘリウムガス等の不活性ガスを含んでいてもよい。
電子線、UV、電場、および熱等は繊維表面に直接作用させてもよいし、別の空間で生成された活性酸素種を繊維表面に作用させてもよい。
Reactive oxygen species can be obtained by various methods, for example, by applying an electron beam, ultraviolet rays (UV), an electric field, heat, etc. to an oxygen source in an atmosphere or a reduced pressure atmosphere. it can. The oxygen source is not particularly limited, and oxygen in the atmosphere is preferable in terms of cost. The atmosphere for producing reactive oxygen species may include an inert gas such as nitrogen gas, argon gas, and helium gas.
The electron beam, UV, electric field, heat, etc. may act directly on the fiber surface, or active oxygen species generated in another space may act on the fiber surface.

電子線、UV、電場、および熱等を繊維表面に直接作用させる場合、繊維表面に高い活性を与え、繊維表面に効果的に極性官能基を生成させ、O/C比を効果的に向上させることができ、好ましい。この作用効果は、電子線、UV、電場、および熱等のエネルギーが高い程、効果的である。中でも、エキシマUVおよび高周波電場等を用いて、オゾンおよび酸素プラズマ等を生成するのが好ましい。なお、UVを用いる場合、発光中心波長は特に制限されず、活性酸素種の発生効率の観点から、好ましくは254nm未満、より好ましくは220nm以下、特に好ましくは200nm以下、最も好ましくは180nm以下である。 When an electron beam, UV, electric field, heat, etc. are applied directly to the fiber surface, it gives high activity to the fiber surface, effectively generates polar functional groups on the fiber surface, and effectively improves the O / C ratio. Can be preferred. This effect is more effective as the energy such as electron beam, UV, electric field, and heat is higher. Above all, it is preferable to generate ozone, oxygen plasma and the like by using excimer UV, a high frequency electric field and the like. When UV is used, the emission center wavelength is not particularly limited, and is preferably less than 254 nm, more preferably 220 nm or less, particularly preferably 200 nm or less, and most preferably 180 nm or less from the viewpoint of the generation efficiency of active oxygen species. ..

具体的には、例えば、エキシマオゾン処理が好ましい。この方法では、オゾン等の活性酸素種が作用すると考えられる。また、エキシマ光も活性種として作用すると考えられる。エキシマオゾン処理については、後記実施例1を参照されたい。 Specifically, for example, excimer ozone treatment is preferable. In this method, it is considered that active oxygen species such as ozone act. Excimer light is also considered to act as an active species. For excimer ozone treatment, refer to Example 1 below.

その他、高周波(RF)酸素プラズマ処理が好ましい。この方法では、酸素プラズマ等の活性酸素種が作用すると考えられる。この方法では、均一な表面処理が可能であり、好ましい。高周波(RF)酸素プラズマ処理については、後記実施例2を参照されたい。 In addition, radio frequency (RF) oxygen plasma treatment is preferable. In this method, it is considered that active oxygen species such as oxygen plasma act. This method is preferable because uniform surface treatment is possible. For radio frequency (RF) oxygen plasma treatment, see Example 2 below.

その他、大気圧プラズマ(APプラズマとも言う)処理が好ましい。この方法では、スーパーオキシド(O .−)等の活性酸素種が作用すると考えられる。この方法では、繊維表面に直接作用させる場合でも電子線が繊維表面に到達し難く、繊維の損傷が少ないため、好ましい。大気圧プラズマ(APプラズマ)処理については、後記実施例3を参照されたい。In addition, atmospheric pressure plasma (also referred to as AP plasma) treatment is preferable. In this method, it is considered that active oxygen species such as superoxide (O 2 .- ) act. This method is preferable because the electron beam does not easily reach the fiber surface and the fiber is less damaged even when the electron beam acts directly on the fiber surface. For atmospheric pressure plasma (AP plasma) treatment, refer to Example 3 below.

電子線、UV、電場、および熱等を繊維表面に直接作用させることで繊維が極端に劣化する場合、これらを繊維に直接作用させず、別の空間で生成された活性酸素種を繊維表面に作用させることが好ましい。この場合、別の空間で生成された活性酸素種は必要に応じて、キャリアガスを用いて、繊維に供給することができる。キャリアガスとしては、窒素ガス、アルゴンガス、およびヘリウムガス等の不活性ガスが好ましい。 When the fiber is extremely deteriorated by directly acting electron beam, UV, electric field, heat, etc. on the fiber surface, these are not directly acted on the fiber, and the active oxygen species generated in another space is applied to the fiber surface. It is preferable to make it act. In this case, the reactive oxygen species generated in another space can be supplied to the fibers by using a carrier gas, if necessary. As the carrier gas, an inert gas such as nitrogen gas, argon gas, and helium gas is preferable.

活性酸素種と全芳香族ポリエステル繊維とを反応させる際の圧力は特に制限されず、好ましくは0.1Pa〜0.1MPaである。活性種の失活を抑えるには真空度は高い方が良く、0.1〜100Paであることがより好ましい。 The pressure at which the active oxygen species and the total aromatic polyester fiber are reacted is not particularly limited, and is preferably 0.1 Pa to 0.1 MPa. In order to suppress the deactivation of the active species, the degree of vacuum is preferably high, and more preferably 0.1 to 100 Pa.

表面改質は、ある程度までは処理の進行に伴ってO/C比が向上するが、あるレベルに到達すると、表面官能基の減少と炭化の進行によりO/C比が減少に転じる傾向がある。また、処理が過剰になると、繊維表面に荒れが生じる恐れがある。繊維表面の荒れは、繊維強度の低下およびマトリクス樹脂との界面接着力の低下を招く恐れがあり、好ましくない。
表面改質処理は、繊維表面のO/C比が30〜60%となる条件で行う。表面改質処理は、好ましくは繊維表面に存在するカルボキシ基のモル濃度が5〜16%となる条件で行う。かかる条件で処理することで、繊維強度を低下させずに、好適な量の極性官能基を導入することができる。
In surface modification, the O / C ratio improves as the treatment progresses to a certain extent, but when a certain level is reached, the O / C ratio tends to decrease due to the decrease in surface functional groups and the progress of carbonization. .. Further, if the treatment is excessive, the fiber surface may be roughened. Roughness of the fiber surface may lead to a decrease in fiber strength and a decrease in interfacial adhesive force with the matrix resin, which is not preferable.
The surface modification treatment is performed under the condition that the O / C ratio of the fiber surface is 30 to 60%. The surface modification treatment is preferably carried out under the condition that the molar concentration of the carboxy group present on the fiber surface is 5 to 16%. By treating under such conditions, a suitable amount of polar functional groups can be introduced without lowering the fiber strength.

本発明の表面改質全芳香族ポリエステル繊維は、強化繊維として用いることができる。本発明の表面改質全芳香族ポリエステル繊維とマトリクス樹脂とを含む複合材は、繊維強化樹脂(FRP)等として好適に使用することができる。 The surface-modified total aromatic polyester fiber of the present invention can be used as a reinforcing fiber. The composite material containing the surface-modified total aromatic polyester fiber of the present invention and the matrix resin can be suitably used as a fiber reinforced plastic (FRP) or the like.

FRPは、公知方法にて製造することができる。
第1の態様のFRPの製造方法は、表面改質全芳香族ポリエステル繊維に対して、マトリクス樹脂となる液状の原料を含浸させた後、液状の原料を固化させる方法である。
第2の態様のFRP化の製造方法は、表面改質全芳香族ポリエステル繊維と、マトリクス樹脂となる液状の原料とを混合した後、液状の原料を固化させる方法である。
FRP can be produced by a known method.
The method for producing FRP according to the first aspect is a method of impregnating a surface-modified total aromatic polyester fiber with a liquid raw material to be a matrix resin and then solidifying the liquid raw material.
The method for producing FRP in the second aspect is a method of mixing a surface-modified total aromatic polyester fiber and a liquid raw material to be a matrix resin, and then solidifying the liquid raw material.

FRPの製造に用いる表面改質全芳香族ポリエステル繊維は、内部に空隙を有して複数の繊維が集合した繊維集合体および他の各種繊維加工物等、任意の形態のものを用いることができる。 As the surface-modified total aromatic polyester fiber used for producing FRP, any form such as a fiber aggregate having voids inside and a plurality of fibers aggregated and various other processed fiber products can be used. ..

マトリクス樹脂としては特に制限されず、不飽和ポリエステル、エポキシ系樹脂、アミド系樹脂、およびフェノール系樹脂等の熱硬化性樹脂;(メタ)アクリル系樹脂等の熱可塑性樹脂等が挙げられる。 The matrix resin is not particularly limited, and examples thereof include thermosetting resins such as unsaturated polyesters, epoxy resins, amide resins, and phenol resins; and thermoplastic resins such as (meth) acrylic resins.

マトリクス樹脂となる液状の原料、およびその固化方法は、公知技術を適用することができる。
マトリクス樹脂として熱硬化性樹脂を用いる場合、マトリクス樹脂となる液状の原料は、熱硬化によりマトリクス樹脂となる熱硬化性の液体原料である。熱硬化性の液体原料は公知のものを使用することができ、熱硬化性樹脂のモノマー、ダイマー、または、比較的低分子の熱硬化性樹脂の前駆体ポリマー等を含むことができる。熱硬化性の液体原料は、熱硬化により固化させることができる。
マトリクス樹脂として熱可塑性樹脂を用いる場合、マトリクス樹脂となる液状の原料としては、熱可塑性樹脂の加熱溶融物、熱可塑性樹脂を溶媒に溶解させた溶液、および、熱可塑性樹脂を分散媒に分散させた分散液等が挙げられる。熱可塑性樹脂の加熱溶融物は、冷却により固化させることができる。熱可塑性樹脂の溶液または分散液は、溶媒または分散媒を乾燥除去することで、固化させることができる。
Known techniques can be applied to the liquid raw material to be the matrix resin and the solidification method thereof.
When a thermosetting resin is used as the matrix resin, the liquid raw material to be the matrix resin is a thermosetting liquid raw material to be a matrix resin by heat curing. As the thermosetting liquid raw material, known ones can be used, and can include a monomer of a thermosetting resin, a dimer, a precursor polymer of a relatively low molecular weight thermosetting resin, and the like. The thermosetting liquid raw material can be solidified by thermosetting.
When a thermoplastic resin is used as the matrix resin, as the liquid raw material to be the matrix resin, a heated melt of the thermoplastic resin, a solution in which the thermoplastic resin is dissolved in a solvent, and a thermoplastic resin are dispersed in a dispersion medium. Examples thereof include a dispersion liquid. The heated melt of the thermoplastic resin can be solidified by cooling. The thermoplastic resin solution or dispersion can be solidified by drying and removing the solvent or dispersion medium.

以上説明したように、本発明によれば、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維とその製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide a surface-modified total aromatic polyester fiber having excellent fiber strength and excellent interfacial adhesiveness with a matrix resin and a method for producing the same.

本発明の表面改質全芳香族ポリエステル繊維は、強化繊維として用いることができる。
本発明の表面改質全芳香族ポリエステル繊維とマトリクス樹脂とを含む繊維強化樹脂(FRP)は、軽量で、比強度および比剛性等の機械特性に優れ、自動車部材、航空機部材、電子機器筐体、家電筐体、スポーツ用品部材、レジャー用品部材、プリント基板、回路基板、多層配線板、セパレータ、ディスプレイ用基材、および太陽電池基材等の用途に好ましく用いることができる。
The surface-modified total aromatic polyester fiber of the present invention can be used as a reinforcing fiber.
The fiber reinforced plastic (FRP) containing the surface-modified total aromatic polyester fiber and the matrix resin of the present invention is lightweight, has excellent mechanical properties such as specific strength and specific rigidity, and is used for automobile members, aircraft members, and electronic device housings. , Home appliances housings, sports equipment members, leisure equipment members, printed circuit boards, circuit boards, multilayer wiring boards, separators, display base materials, solar cell base materials, and the like.

以下、本発明に係る実施例および比較例について、説明する。
[HT−1536平織布サンプル、表面改質処理、O/C比および官能基量の測定、界面せん断応力の測定]
全芳香族ポリエステル繊維として、クラレ社製の「ベクトラン繊維平織クロス(HT−1536)」を用意し、15cm角に切り出した。このサンプルをアセトン中で30分間超音波洗浄し、さらにヘキサン中で30分間超音波洗浄した。比較例1では、洗浄後のHT−1536平織布サンプルをそのまま評価に供した。実施例1〜3、比較例2では、洗浄後のHT−1536平織布サンプルに対して、表面改質処理を実施した後、評価に供した。
表面改質処理前後のHT−1536平織布サンプルに対して、繊維表面のO/C比および官能基量の測定を行った。また、表面改質処理前後のサンプルから単糸を抜き出し、界面せん断応力の測定を行った。
Hereinafter, examples and comparative examples according to the present invention will be described.
[HT-1536 plain weave sample, surface modification treatment, measurement of O / C ratio and functional group amount, measurement of interfacial shear stress]
As a total aromatic polyester fiber, "Vectran fiber plain weave cloth (HT-1536)" manufactured by Kuraray Co., Ltd. was prepared and cut into 15 cm squares. The sample was ultrasonically cleaned in acetone for 30 minutes and further in hexane for 30 minutes. In Comparative Example 1, the washed HT-1536 plain weave fabric sample was used as it was for evaluation. In Examples 1 to 3 and Comparative Example 2, the washed HT-1536 plain weave fabric sample was subjected to surface modification treatment and then subjected to evaluation.
The O / C ratio and the amount of functional groups on the fiber surface were measured on the HT-1536 plain weave fabric sample before and after the surface modification treatment. In addition, single yarn was extracted from the sample before and after the surface modification treatment, and the interfacial shear stress was measured.

[HT不織布サンプル、表面改質処理、FRPの製造、引張強度の測定]
全芳香族ポリエステル繊維として、HT−1536と同繊維からなる不織布を用意した。具体的には、クラレ社製のHT繊維(15dtex)を38mm長にカットした後に捲縮をかけ、水圧15MPaの圧力で水流絡合にて不織布形態にし、80℃で乾燥した。目付けは89g/mであった。この不織布を20cm角に切り出した。比較例1では、得られたHT不織布サンプルをそのまま評価に供した。実施例1〜3、比較例2では、得られた不織布に対して、表面改質処理を実施した後、評価に供した。
表面改質処理前後のHT不織布サンプルに対して、熱硬化性エポキシ系樹脂のモノマーを含むエポキシ系硬化液を滴下し、0.01MPa以下の真空下でプレスしてエポキシ系樹脂を含浸させた。この処理後に80℃で15分間加熱して熱硬化させて、繊維強化樹脂(FRP)を得た。得られたFRPについて、引張強度を測定した。
[HT non-woven fabric sample, surface modification treatment, FRP production, tensile strength measurement]
As the total aromatic polyester fiber, a non-woven fabric made of the same fiber as HT-1536 was prepared. Specifically, HT fiber (15 dtex) manufactured by Kuraray Co., Ltd. was cut into a length of 38 mm, crimped, and entangled with water at a pressure of 15 MPa to form a non-woven fabric, which was dried at 80 ° C. The basis weight was 89 g / m 2 . This non-woven fabric was cut into 20 cm squares. In Comparative Example 1, the obtained HT non-woven fabric sample was used as it was for evaluation. In Examples 1 to 3 and Comparative Example 2, the obtained non-woven fabric was subjected to surface modification treatment and then subjected to evaluation.
An epoxy-based curing solution containing a thermosetting epoxy-based resin monomer was added dropwise to the HT nonwoven fabric sample before and after the surface modification treatment, and pressed under a vacuum of 0.01 MPa or less to impregnate the epoxy-based resin. After this treatment, it was heated at 80 ° C. for 15 minutes and thermosetting to obtain a fiber reinforced plastic (FRP). The tensile strength of the obtained FRP was measured.

[評価項目および評価方法]
評価項目および評価方法は、以下の通りである。
(O/C比および官能基量)
X線光電子分光分析(XPS分析)により、表面改質処理前後のHT−1536平織布サンプルに対して、繊維表面のO/C比および官能基量を求めた。測定条件は以下の通りとした。
XPS装置:PHI Quantera SXM、
X線励起条件:100μm−25W−15kV、
対陰極:Al、
測定範囲:1000μm×1000μm。
O/C比は、528〜538eVに現れるO1sに由来するピークの面積強度に対する、282〜298eVに現れるC1sに由来するピークの面積強度から算出した。
また、282〜298eVに現れるC1sに由来するピークのうち、以下に示す結合種によるピーク分離を行い、ヒドロキシ基とカルボキシ基の官能基量をそれぞれ算出した。
C−C、C=C:284.8eV、
C−O:286.4eV、
C=O:287.6eV、
O−C=O:288.6eV、
O−C(=O)−O:290.3eV。
[Evaluation items and evaluation methods]
The evaluation items and evaluation methods are as follows.
(O / C ratio and functional group amount)
The O / C ratio and the amount of functional groups on the fiber surface were determined for the HT-1536 plain woven fabric sample before and after the surface modification treatment by X-ray photoelectron spectroscopy (XPS analysis). The measurement conditions were as follows.
XPS device: PHI Quantera SXM,
X-ray excitation conditions: 100 μm-25W-15 kV,
Anti-cathode: Al,
Measuring range: 1000 μm × 1000 μm.
The O / C ratio was calculated from the area intensity of the peak derived from C1s appearing at 228 to 298 eV with respect to the area intensity of the peak derived from O1s appearing at 528 to 538 eV.
Further, among the peaks derived from C1s appearing in 228 to 298 eV, peak separation was performed by the following binding species, and the amounts of functional groups of hydroxy group and carboxy group were calculated respectively.
CC, C = C: 284.8eV,
CO: 286.4 eV,
C = O: 287.6eV,
OC = O: 288.6 eV,
OC (= O) -O: 290.3 eV.

(界面せん断応力)
表面改質処理前後の全芳香族ポリエステル繊維のマトリクス樹脂との界面接着性の評価として、複合材界面特性評価装置を用いたマイクロドロップレット法により、界面せん断応力(IFSS)を測定した。装置としては、東栄産業社製「HM410」を用いた。
表面改質処理前後のHT−1536平織布サンプルから抜き出した単糸に対して、熱硬化性エポキシ系樹脂のモノマーを含むエポキシ系硬化液を滴下した。この操作を繰り返して、サンプル繊維の複数箇所に、間隔を空けてエポキシ系硬化液の液滴を付着させた。その後、付着させたエポキシ系硬化液を大気雰囲気中、80℃で3時間加熱して熱硬化させて、複数のマイクロドロップレットを形成した。
次に、得られたサンプルを複合材界面特性評価装置の台座にセットし、一対のブレードで上記複数のマイクロドロップレットを挟んで固定した。
次に、台座を移動させて引抜試験を行い、引抜荷重をロードセルで検出した。
引抜荷重のデータから、下記式に基づいて、界面せん断強度(IFSS)を算出した。
τ=F/π・d・L
(上記式中、各記号は以下の意味を示す。τ:界面せん断強度、F:引抜荷重、d:繊維径、L:ドロップレット長。)
(Interfacial shear stress)
As an evaluation of the interfacial adhesiveness of all aromatic polyester fibers with the matrix resin before and after the surface modification treatment, the interfacial shear stress (IFSS) was measured by the microdroplet method using a composite interfacial property evaluation device. As an apparatus, "HM410" manufactured by Toei Sangyo Co., Ltd. was used.
An epoxy-based curing solution containing a monomer of a thermosetting epoxy-based resin was added dropwise to the single yarn extracted from the HT-1536 plain weave fabric sample before and after the surface modification treatment. By repeating this operation, droplets of the epoxy-based curing liquid were attached to a plurality of locations of the sample fiber at intervals. Then, the adhered epoxy-based curing liquid was heated at 80 ° C. for 3 hours in an air atmosphere and thermosetting to form a plurality of microdroplets.
Next, the obtained sample was set on the pedestal of the composite material interface characteristic evaluation device, and the plurality of microdroplets were sandwiched and fixed by a pair of blades.
Next, the pedestal was moved to perform a pull-out test, and the pull-out load was detected by the load cell.
From the pull-out load data, the interfacial shear strength (IFSS) was calculated based on the following formula.
τ = F / π ・ d ・ L
(In the above formula, each symbol has the following meaning. τ: Interfacial shear strength, F: Pull-out load, d: Fiber diameter, L: Droplet length.)

[FRPの引張強度]
幅25mmで切り出したFRPサンプル(0.5mm厚)について、引張破断強度を測定した。測定条件は以下の通りとした。
装置:島津製作所社製「AUTOGRAPH AG−2000B」、
チャック間距離:15cm、
引張速度:500mm/分。
[Tensile strength of FRP]
The tensile breaking strength was measured for an FRP sample (0.5 mm thick) cut out with a width of 25 mm. The measurement conditions were as follows.
Equipment: "AUTOGRAPH AG-2000B" manufactured by Shimadzu Corporation,
Distance between chucks: 15 cm,
Tensile speed: 500 mm / min.

[実施例1〜3、比較例1、2]
実施例1〜3、比較例1、2の各例における表面改質処理条件は、以下の通りである。なお、これらの例において、表面改質処理条件以外の条件は共通条件とした。
[Examples 1 to 3, Comparative Examples 1 and 2]
The surface modification treatment conditions in each of Examples 1 to 3 and Comparative Examples 1 and 2 are as follows. In these examples, the conditions other than the surface modification treatment conditions were set as common conditions.

(実施例1)
表面改質処理:エキシマオゾン処理、
装置:エム・ディ・エキシマ社製「MEIRH−M−200−HK−R2」、
ランプ:MEBF−270BHQ(Xeエキシマランプ)、波長172nm、
照度:140mW/cm
照射距離:17mm、
処理電圧:14.8V、
空気流量:1000cc/min、
搬送速度:16.6mm/秒、
搬送回数:5回(処理条件1)、25回(処理条件2)、50回(処理条件3)。
(Example 1)
Surface modification treatment: excimer ozone treatment,
Equipment: "MEIRH-M-200-HK-R2" manufactured by MD Excimer,
Lamp: MEBF-270BHQ (Xe excimer lamp), wavelength 172 nm,
Illuminance: 140mW / cm 2 ,
Irradiation distance: 17 mm,
Processing voltage: 14.8V,
Air flow rate: 1000cc / min,
Transport speed: 16.6 mm / sec,
Number of transports: 5 times (processing condition 1), 25 times (processing condition 2), 50 times (processing condition 3).

(実施例2)
表面改質処理:高周波(RF)酸素プラズマ処理、
装置:Mec社製「Plasma matine V−1000」、
電極:サイズ900cmの一対の電極、電極間距離13.5cm、片方の電極近傍にサンプルを載置、
雰囲気:真空度5.0Pa、酸素を流量115cc/分で流入、
周波数:25MHz、
処理電力:300W(処理条件1)、600W(処理条件2)、900W(処理条件3)、
印加時間:1分。
(Example 2)
Surface modification treatment: Radio frequency (RF) oxygen plasma treatment,
Equipment: "Plasma matine V-1000" manufactured by Mec,
Electrodes: A pair of electrodes with a size of 900 cm 2, a distance between the electrodes of 13.5 cm, and a sample placed near one of the electrodes.
Atmosphere: Vacuum degree 5.0 Pa, oxygen inflow at flow rate 115 cc / min,
Frequency: 25MHz,
Processing power: 300W (processing condition 1), 600W (processing condition 2), 900W (processing condition 3),
Application time: 1 minute.

(実施例3)
表面改質処理:大気圧プラズマ(APプラズマ)処理、
装置:PSM社製「APS−70S」、
雰囲気:窒素ガス(流速150L/分)とドライ純エアー(流速0.5L/分)との混合ガス、
処理電圧:11kV、
照射口の搬送方向の幅:20mm、
照射口−サンプル間距離:2mm、
搬送速度:30mm/秒(処理条件1)、10mm/秒(処理条件2)、0.167mm/秒(処理条件3)(サンプルが幅2cmの照射口の直下を通過する時間が0.67秒(処理条件1)、2秒(処理条件2)、2分(処理条件3)となるように、搬送速度を設定)。
(Example 3)
Surface modification treatment: Atmospheric pressure plasma (AP plasma) treatment,
Equipment: PSM "APS-70S",
Atmosphere: Mixed gas of nitrogen gas (flow velocity 150 L / min) and dry pure air (flow velocity 0.5 L / min),
Processing voltage: 11kV,
Width of irradiation port in transport direction: 20 mm,
Distance between irradiation port and sample: 2 mm,
Transport speed: 30 mm / sec (treatment condition 1), 10 mm / sec (treatment condition 2), 0.167 mm / sec (treatment condition 3) (time for the sample to pass directly under the irradiation port with a width of 2 cm is 0.67 seconds. (Processing condition 1), 2 seconds (processing condition 2), 2 minutes (processing condition 3), the transport speed is set).

(比較例1)
表面改質処理:なし。
(Comparative Example 1)
Surface modification treatment: None.

(比較例2)
表面改質処理:UV−オゾン処理、
装置:セン特殊光源社製「PL21−200S」、
ランプ:EUV200GS−14(低圧水銀ランプ)、波長254nm、
照射距離:20mm、
処理力:15mW/cm
処理時間:5分(処理条件1)、10分(処理条件2)、15分(処理条件3)。
(Comparative Example 2)
Surface modification treatment: UV-ozone treatment,
Equipment: Sen Special Light Source Co., Ltd. "PL21-200S",
Lamp: EUV200GS-14 (low pressure mercury lamp), wavelength 254 nm,
Irradiation distance: 20 mm,
Processing power: 15 mW / cm 2 .
Processing time: 5 minutes (processing condition 1), 10 minutes (processing condition 2), 15 minutes (processing condition 3).

[評価結果]
実施例1〜3、比較例1、2の各例における表面改質処理条件と評価結果を表1に示す。
表1に示すように、実施例1〜3ではいずれの処理条件においても、表面改質処理なしの比較例1に対して、繊維表面におけるO/C比の向上が見られ、繊維表面におけるO/C比が30〜60%、繊維表面に存在するカルボキシ基のモル濃度が5〜16%である表面改質全芳香族ポリエステル繊維が得られた。これら実施例(一部未測定)では、表面改質処理なしの比較例1に対して、繊維の界面せん断応力およびFRPの引張強度の評価項目において、顕著な向上が見られた。このように、実施例1〜3では、繊維強度に優れ、かつ、マトリクス樹脂との界面接着性に優れる表面改質全芳香族ポリエステル繊維が得られた。
比較例2ではいずれの処理条件においても、表面改質処理なしの比較例1に対して、繊維表面におけるO/C比の向上は見られなかった。
[Evaluation results]
Table 1 shows the surface modification treatment conditions and evaluation results in each of Examples 1 to 3 and Comparative Examples 1 and 2.
As shown in Table 1, in Examples 1 to 3, the O / C ratio on the fiber surface was improved as compared with Comparative Example 1 without the surface modification treatment under any of the treatment conditions, and O on the fiber surface was observed. A surface-modified total aromatic polyester fiber having a / C ratio of 30 to 60% and a molar concentration of carboxy groups present on the fiber surface of 5 to 16% was obtained. In these examples (partially unmeasured), remarkable improvements were observed in the evaluation items of the interfacial shear stress of the fibers and the tensile strength of the FRP as compared with Comparative Example 1 without the surface modification treatment. As described above, in Examples 1 to 3, surface-modified total aromatic polyester fibers having excellent fiber strength and excellent interfacial adhesiveness with the matrix resin were obtained.
In Comparative Example 2, no improvement in the O / C ratio on the fiber surface was observed as compared with Comparative Example 1 without the surface modification treatment under any of the treatment conditions.

Figure 2019131219
Figure 2019131219

本発明は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above embodiments and examples, and the design can be appropriately changed as long as the gist of the present invention is not deviated.

この出願は、2017年12月27日に出願された日本出願特願2017−250387号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese application Japanese Patent Application No. 2017-250387 filed on December 27, 2017, the entire disclosure of which is incorporated herein by reference.

Claims (9)

全芳香族ポリエステルポリマーを含み、繊維表面における炭素原子数に対する酸素原子数の割合が30〜60%である、表面改質全芳香族ポリエステル繊維。 A surface-modified total aromatic polyester fiber containing a total aromatic polyester polymer and having a ratio of oxygen atoms to carbon atoms on the fiber surface of 30 to 60%. 繊維表面に存在するカルボキシ基のモル濃度が5〜16%である、請求項1に記載の表面改質全芳香族ポリエステル繊維。 The surface-modified total aromatic polyester fiber according to claim 1, wherein the molar concentration of the carboxy group present on the fiber surface is 5 to 16%. 前記全芳香族ポリエステルポリマーは、下記式(A)で表される構成単位と下記式(B)で表される構成単位とを含み、ポリマー中の構成単位(A)と構成単位(B)の合計量が80モル%以上であり、ポリマー中の構成単位(A)の含有量が50〜70モル%である、請求項1又は2に記載の表面改質全芳香族ポリエステル繊維。
Figure 2019131219
The total aromatic polyester polymer contains a structural unit represented by the following formula (A) and a structural unit represented by the following formula (B), and the structural unit (A) and the structural unit (B) in the polymer. The surface-modified total aromatic polyester fiber according to claim 1 or 2, wherein the total amount is 80 mol% or more, and the content of the structural unit (A) in the polymer is 50 to 70 mol%.
Figure 2019131219
全芳香族ポリエステルポリマーを含む全芳香族ポリエステル繊維に対して活性酸素種を作用させて、繊維表面における炭素原子数に対する酸素原子数の割合を30〜60%とする、表面改質全芳香族ポリエステル繊維の製造方法。 A surface-modified total aromatic polyester in which an active oxygen species is allowed to act on the total aromatic polyester fiber containing the total aromatic polyester polymer so that the ratio of the number of oxygen atoms to the number of carbon atoms on the fiber surface is 30 to 60%. Fiber manufacturing method. 前記全芳香族ポリエステルポリマーは、下記式(A)で表される構成単位と下記式(B)で表される構成単位とを含み、ポリマー中の構成単位(A)と構成単位(B)の合計量が80モル%以上であり、ポリマー中の構成単位(A)の含有量が50〜70モル%である、請求項4に記載の表面改質全芳香族ポリエステル繊維の製造方法。
Figure 2019131219
The total aromatic polyester polymer contains a structural unit represented by the following formula (A) and a structural unit represented by the following formula (B), and the structural unit (A) and the structural unit (B) in the polymer. The method for producing a surface-modified total aromatic polyester fiber according to claim 4, wherein the total amount is 80 mol% or more, and the content of the structural unit (A) in the polymer is 50 to 70 mol%.
Figure 2019131219
前記活性酸素種の酸素源が大気中の酸素である、請求項4又は5に記載の表面改質全芳香族ポリエステル繊維の製造方法。 The method for producing a surface-modified total aromatic polyester fiber according to claim 4 or 5, wherein the oxygen source of the active oxygen species is atmospheric oxygen. 前記活性酸素種は、酸素源に対して、電子線、紫外線、電場、および熱からなる群より選ばれた少なくとも1種を作用させて発生させる、請求項4〜6のいずれか1項に記載の表面改質全芳香族ポリエステル繊維の製造方法。 The active oxygen species are generated by causing at least one selected from the group consisting of an electron beam, ultraviolet rays, an electric field, and heat to act on an oxygen source to generate the active oxygen species, according to any one of claims 4 to 6. A method for producing a surface-modified total aromatic polyester fiber. 前記活性酸素種は、窒素ガス、アルゴンガス、およびヘリウムガスからなる群より選ばれた少なくとも1種の不活性ガスと混合して用いる、請求項4〜7のいずれか1項に記載の表面改質全芳香族ポリエステル繊維の製造方法。 The surface modification according to any one of claims 4 to 7, wherein the active oxygen species is used by mixing with at least one inert gas selected from the group consisting of nitrogen gas, argon gas, and helium gas. Quality Total aromatic polyester fiber manufacturing method. 前記活性酸素種と前記全芳香族ポリエステル繊維とを反応させる際の圧力が0.1Pa〜0.1MPaである、請求項4〜8のいずれか1項に記載の表面改質全芳香族ポリエステル繊維の製造方法。 The surface-modified total aromatic polyester fiber according to any one of claims 4 to 8, wherein the pressure at the time of reacting the active oxygen species with the total aromatic polyester fiber is 0.1 Pa to 0.1 MPa. Manufacturing method.
JP2019563000A 2017-12-27 2018-12-14 Surface-modified wholly aromatic polyester fiber, method for producing the same, and fiber-reinforced resin Active JP7267206B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017250387 2017-12-27
JP2017250387 2017-12-27
PCT/JP2018/046110 WO2019131219A1 (en) 2017-12-27 2018-12-14 Surface-modified wholly aromatic polyester fiber and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019131219A1 true JPWO2019131219A1 (en) 2020-12-17
JP7267206B2 JP7267206B2 (en) 2023-05-01

Family

ID=67063562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019563000A Active JP7267206B2 (en) 2017-12-27 2018-12-14 Surface-modified wholly aromatic polyester fiber, method for producing the same, and fiber-reinforced resin

Country Status (3)

Country Link
JP (1) JP7267206B2 (en)
TW (1) TWI798323B (en)
WO (1) WO2019131219A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884864B2 (en) 2019-03-06 2024-01-30 Honshu Chemical Industry Co., Ltd. Method for producing liquid-crystal polyester processed product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104795A (en) * 1985-10-31 1987-05-15 Toray Ind Inc Screen cloth
JPH06146136A (en) * 1992-10-30 1994-05-27 Toray Ind Inc Base fabric for adhesive tape and its production and adhesive tape
JP2003297680A (en) * 2001-04-27 2003-10-17 Mitsubishi Paper Mills Ltd Separator for electrochemical element
JP2004207333A (en) * 2002-12-24 2004-07-22 Mitsubishi Paper Mills Ltd Separator and wound type electric double-layered capacitor using the same
JP2008050557A (en) * 2005-11-24 2008-03-06 Sekisui Chem Co Ltd Fiber composite and method for producing the same
JP2011063636A (en) * 2009-09-15 2011-03-31 Kuraray Co Ltd Impact-resistant composite
WO2017090270A1 (en) * 2015-11-24 2017-06-01 株式会社サンライン Thread and method for production of same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658308B2 (en) * 1988-12-06 1997-09-30 住友化学工業株式会社 Surface-modified inorganic fiber, method for producing the same, and method for reinforcing resin using the same
TWI244514B (en) * 2002-11-19 2005-12-01 Nanya Plastics Corp Modified polyester fiber, differential shrinkage composite long fiber and fabric thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104795A (en) * 1985-10-31 1987-05-15 Toray Ind Inc Screen cloth
JPH06146136A (en) * 1992-10-30 1994-05-27 Toray Ind Inc Base fabric for adhesive tape and its production and adhesive tape
JP2003297680A (en) * 2001-04-27 2003-10-17 Mitsubishi Paper Mills Ltd Separator for electrochemical element
JP2004207333A (en) * 2002-12-24 2004-07-22 Mitsubishi Paper Mills Ltd Separator and wound type electric double-layered capacitor using the same
JP2008050557A (en) * 2005-11-24 2008-03-06 Sekisui Chem Co Ltd Fiber composite and method for producing the same
JP2011063636A (en) * 2009-09-15 2011-03-31 Kuraray Co Ltd Impact-resistant composite
WO2017090270A1 (en) * 2015-11-24 2017-06-01 株式会社サンライン Thread and method for production of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884864B2 (en) 2019-03-06 2024-01-30 Honshu Chemical Industry Co., Ltd. Method for producing liquid-crystal polyester processed product

Also Published As

Publication number Publication date
JP7267206B2 (en) 2023-05-01
TWI798323B (en) 2023-04-11
TW201932655A (en) 2019-08-16
WO2019131219A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
CN102803600B (en) Modified cellulose fiber and cellulose complex comprising same
Luo et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism
WO2004050764A1 (en) Composite fiber comprising wholly aromatic polyamide and carbon nanotube
JP7368923B2 (en) Method for producing carbon fibers from recycled cotton and use of the fibers obtained by this method for forming articles from composite materials
JP2009149787A (en) Fluorescent material
US11040516B2 (en) Graphite sheet and method for manufacturing same
TW200400299A (en) Compound material composed of heat-resistant fiber and siloxane polymer
CN109233286A (en) A kind of luffa/nano silver polymer composite material and preparation method
CN1373245A (en) Conductive carbon fibre slice and solid polymer electrolytic fuel cell
JPWO2019131219A1 (en) Surface-modified total aromatic polyester fiber and its manufacturing method
CN86100950A (en) Laminate fabric and production technology thereof
TW201231525A (en) Method for producing liquid crystalline polyester impregnated fiber sheet
JP2008231289A (en) Method for producing fiber-reinforced molded base material
JP2013209629A (en) Polycarbonate resin molding material and molding
He et al. Advanced Aramid Fibrous Materials: Fundamentals, Advances, and Beyond
JP3862267B2 (en) Composite composed of heat-resistant fiber and siloxane polymer
Xia et al. Cellulose/Poly (meta-phenylene isophthalamide) Light-Management Films with High Antiultraviolet and Tunable Haze Performances
JP4953410B2 (en) Carbon fiber and method for producing the same
KR101959111B1 (en) Sizing agent for carbon fiber and carbon fiber using the same
Sha et al. Effect of surface modification process conditions on properties of aramid paper
JP6470976B2 (en) Workpiece holding material
Kim et al. Preparation and characterization of poly [(butylene succinate)‐co‐(butylene adipate)]/carbon nanotube‐coated silk fiber composites
WO2020138139A1 (en) Sizing agent, sizing agent-adhered carbon fibers and method for producing same, aqueous dispersion of sizing agent, prepreg and method for producing same, and method for producing carbon fiber-reinforced composite material
JP4980107B2 (en) Substrate for resin reinforcement and manufacturing method thereof
WO2020085246A1 (en) Compound sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7267206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150