JPH01138717A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01138717A
JPH01138717A JP29726387A JP29726387A JPH01138717A JP H01138717 A JPH01138717 A JP H01138717A JP 29726387 A JP29726387 A JP 29726387A JP 29726387 A JP29726387 A JP 29726387A JP H01138717 A JPH01138717 A JP H01138717A
Authority
JP
Japan
Prior art keywords
substrate
type
metal
semiconductor substrate
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29726387A
Other languages
Japanese (ja)
Inventor
Hitoshi Hasegawa
長谷川 斉
Kunihiko Wada
邦彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29726387A priority Critical patent/JPH01138717A/en
Publication of JPH01138717A publication Critical patent/JPH01138717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To contrive formation of an electrode lead-out part having excellent step coverage by a method wherein the transparent electrode provided on the rear side of a P-type semiconductor substrate is used as a cathode, and a metal is deposited in an aperture part by electrolytic plating while a light is being projected from the rear surface of the substrate. CONSTITUTION:An aperture part 25, surrounded by a PSG film 24, which is used to lead out an electrode is formed on the surface of a P-type Si substrate 21. A transparent electrode 27, consisting of ITO (In2O3/SnO2), for example, is provided on the rear surface of the substrate 21. The substrate 21 is dipped into an electrolyte of Au which is compatible to Si and the wiring metal of Al, and the transparent electrode 27 is brought into the negative potential. Then, the backward current of the P-N junction 23 is increased by projecting a light from the rear side of the substrate 21. As a result, Au plating which is compatible with both of Si and Al is grown on the substrate 21 located on the bottom face of the aperture part 25. A current flows freely on the part where an N<+> region is not present, and Au plating is grown irrespective of the irradiation of light. Subsequently, Al is deposited, and an Al wiring is formed by patterning.

Description

【発明の詳細な説明】 〔概要〕 半導体基板上の電極取り出し部の形成方法に関し。[Detailed description of the invention] 〔overview〕 Regarding a method for forming an electrode lead-out portion on a semiconductor substrate.

ステンプカバレージが良好な電極取り出し部を形成でき
るようにすることを目的とし。
The purpose is to form an electrode extraction part with good stamp coverage.

表面にN+型領域(形成され、PN接合を有するP型半
導体基板の上に形成された絶縁膜の、上記N+型領域(
上に設けられた開孔部中に、電極取り出し用の金属を析
出させる半導体装置の製造方法において、上記P型半導
体基板の背面に透明電極を設け、該透明電極を陰極とし
1上記P型半導体基板の背面から光を照射しながら電解
メッキにより上記開孔部中に金属を析出させるように措
成する。
The N+ type region (formed on the surface) and the N+ type region (formed on the insulating film formed on the P-type semiconductor substrate having the PN junction)
In a method of manufacturing a semiconductor device, in which a metal for taking out an electrode is deposited into an opening provided on the substrate, a transparent electrode is provided on the back surface of the P-type semiconductor substrate, and the transparent electrode is used as a cathode. The metal is deposited in the openings by electrolytic plating while irradiating light from the back side of the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法、特に半導体基板上の
電極取り出し部の形成方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming an electrode lead-out portion on a semiconductor substrate.

現在、LSI配線材料として、 AIまたはIN合金が
用いられ、その薄膜形成方法として真空薄着やスパッタ
リングが用いられている。
Currently, AI or IN alloys are used as LSI wiring materials, and vacuum deposition and sputtering are used as methods for forming thin films.

素子の高集積度化、高密度化が進むにつれて。As devices become more highly integrated and densely packed.

AI配線を行うべき下地の段差形状が厳しくなってきて
いる。すなわち、アスペクト比(段差の高さと開孔部の
大きさとの比)が大きくなってきている。このため、良
好なステップカバレージをもったAI膜を形成すること
が困難になってきている。
The shape of the step on the base for AI wiring is becoming stricter. That is, the aspect ratio (the ratio of the height of the step to the size of the opening) is increasing. For this reason, it has become difficult to form an AI film with good step coverage.

この傾向は、多層配線構造を持つ素子ではより深刻であ
る。
This tendency is more serious in devices having a multilayer wiring structure.

〔従来の技術〕[Conventional technology]

第3図は、従来例を示す図である。 FIG. 3 is a diagram showing a conventional example.

第3図において、31はP型Si基板、32はP型Si
基板31の表面に形成されたN+型領域(33はP型S
i基板31とN+型領域(32で形成されたPN接合、
34はP型Si基板34上に形成され、SiJ、PSG
等からなる絶縁膜、35は絶縁膜34中に形成された電
極取り出し用の開孔部。
In FIG. 3, 31 is a P-type Si substrate, 32 is a P-type Si substrate, and 32 is a P-type Si substrate.
An N+ type region (33 is a P type S) formed on the surface of the substrate 31.
i-substrate 31 and N+ type region (PN junction formed by 32,
34 is formed on a P-type Si substrate 34, and SiJ, PSG
35 is an opening formed in the insulating film 34 for taking out the electrode.

36はへl配線である。36 is a wiring.

従来、 AI配線36は、真空蒸着やスパッタリングに
よりAIを半導体基板の上面から堆積した後。
Conventionally, the AI wiring 36 is formed after AI is deposited from the top surface of the semiconductor substrate by vacuum evaporation or sputtering.

バターニングして形成していた。It was buttered and formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法では、第3図に示したように、開花部35の
アスペクト比が大きい場合、^l配線36に断線、陥没
、盛り上がり等が生じてステップカバレージがよくない
という問題が生じていた。
In the conventional method, as shown in FIG. 3, when the aspect ratio of the flowering portion 35 is large, the problem arises that the wiring 36 is broken, depressed, bulged, etc., resulting in poor step coverage.

本発明は、ステップカバレージが良好な電極取り出し部
を形成することができるようにした半導体装置の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that enables formation of an electrode lead-out portion with good step coverage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電極取り出し用の開孔部の底面の半導体基板
の上から、電解メッキにより、半導体および配線用のA
Iの両方になじみやすい金属を析出させて開花部を充填
した後1表面に八1を堆積させれば、開孔部のステップ
カバレージが良好になるという知見に基づいてなされた
ものである。
In the present invention, a semiconductor and wiring A
This was done based on the knowledge that if a metal that is easily compatible with both I is precipitated to fill the flowering part and then 81 is deposited on the surface of the first part, step coverage of the opening part will be improved.

しかしながら、半導体および配線用のAtの両方になじ
みやすい金属を電解メッキにより析出させる際に、半導
体基板がP型で、その表面に設けられたN型領域の上に
電極取り出し用の開孔部が形成されている場合に問題が
生じる。ずなわち、電解メッキの際に、基板は常に負の
電位にされるので、P型半導体基板とN型領域とで形成
されるPN接合は逆バイアスされ、電流がほとんど流れ
ず。
However, when depositing a metal that is compatible with both semiconductors and At for wiring by electrolytic plating, the semiconductor substrate is of P type, and an opening for taking out an electrode is formed on the N type region provided on the surface of the semiconductor substrate. A problem arises when the formation of That is, during electrolytic plating, the substrate is always brought to a negative potential, so the PN junction formed between the P-type semiconductor substrate and the N-type region is reverse biased, and almost no current flows.

したがって、メッキ金属がほとんど析出されない。Therefore, almost no plating metal is deposited.

この問題を解決するために、半導体基板に光やネへを加
えることにより、PN接合の逆方向電流を増加させてメ
ッキ生長を生じさせる。
To solve this problem, applying light or energy to the semiconductor substrate increases the reverse current in the PN junction and causes plating growth.

半導体基板に光を照射する場合、半導体基板の表面には
絶縁膜や析出金属等があるので、光の照射は半導体基板
の背面から行う必要がある。
When a semiconductor substrate is irradiated with light, it is necessary to irradiate the light from the back side of the semiconductor substrate because there is an insulating film, deposited metal, etc. on the surface of the semiconductor substrate.

この場合、半導体基板の背面に設ける電極を金属にする
と光の吸収は半導体基板の全面ではなく一部だけ心なっ
てしまう。これを解決するために。
In this case, if the electrode provided on the back surface of the semiconductor substrate is made of metal, light will be absorbed only in a portion of the semiconductor substrate rather than over the entire surface. To solve this.

本発明では、半導体基板の背面に設iJる電極を透明電
極とした。
In the present invention, the electrode provided on the back surface of the semiconductor substrate is a transparent electrode.

第1図は5本発明の原理説明図である。FIG. 1 is a diagram explaining the principle of the present invention.

第1図において、1はP型半導体基板、2はP型土4体
基板lの表面に形成されたN+型領域(3はP型半導体
基板1およびN+型領域(2で形成されるPN接合、4
は絶縁膜、5は絶縁膜4中に設けられた電極取り出し用
の開孔部、6は析出金属、7は透明電極である。
In FIG. 1, 1 is a P-type semiconductor substrate, 2 is an N+ type region formed on the surface of a P-type substrate 1 (3 is a PN junction formed by the P-type semiconductor substrate 1 and an N+ type region (2). , 4
5 is an insulating film, 5 is an opening provided in the insulating film 4 for taking out an electrode, 6 is a deposited metal, and 7 is a transparent electrode.

〔作用〕[Effect]

第1図に示すように1表面に絶縁膜4で囲まれた電極取
り出し用の開花部5が形成され、背面に透明電極7が設
けられたP型半導体基板1を、半導体および配線用金属
の両方になじみやすい金属の電解液中に浸すと共に透明
電極7を負の電位にし、P型半導体基板1の背面から光
を照射する。
As shown in FIG. 1, a P-type semiconductor substrate 1, which has a flowering part 5 for taking out electrodes surrounded by an insulating film 4 on one surface and a transparent electrode 7 on the back side, is used as a substrate for semiconductor and wiring metal. The P-type semiconductor substrate 1 is immersed in an electrolytic solution of a metal that is compatible with both, the transparent electrode 7 is set to a negative potential, and light is irradiated from the back side of the P-type semiconductor substrate 1.

P型半導体基板1の背面から照射された光は。The light irradiated from the back side of the P-type semiconductor substrate 1 is as follows.

透明型+!i7をi3遇してP型半導体基板1に吸収さ
れ、P型半導体基板1およびi<゛型領域2により形成
されるPN接合3に到達し、PN接合3の逆方向電流i
を増加させる。これにより、電極取り出し用の開孔部5
の底面のP型半辱体基板1の上から半導体および配線用
金属の両方になじみやすい金属6がメッキ生長する。
Transparent +! i7 is absorbed by i3 into the P-type semiconductor substrate 1, reaches the PN junction 3 formed by the P-type semiconductor substrate 1 and the i<゛ type region 2, and the reverse current i of the PN junction 3
increase. As a result, the opening 5 for taking out the electrode
A metal 6, which is compatible with both semiconductors and wiring metals, is plated and grown on the P-type semicircular substrate 1 on the bottom surface of the substrate.

第1図の左側に示したように、N″領域存在しない部分
は、逆方向バイアスされるPN接合がないから、電流i
は自由に流れ、光の照射に関係無くメッキが生長する。
As shown on the left side of FIG. 1, in the part where the N'' region does not exist, there is no reverse biased PN junction, so the current i
flows freely and the plating grows regardless of light irradiation.

半導体および配線用金属の両方になじみやすい金属6の
メッキ生長は、電極取り出し用の開孔部5の上端まで行
う。その後9表面に配線用の金属を堆積させ、パターニ
ングを行って金属配線を形成する。
The plating growth of the metal 6, which is compatible with both the semiconductor and the wiring metal, is carried out to the upper end of the opening 5 for taking out the electrode. Thereafter, a metal for wiring is deposited on the surface of 9 and patterned to form metal wiring.

〔実施例〕〔Example〕

第2図は1本発明の1実施例構成図である。 FIG. 2 is a block diagram of one embodiment of the present invention.

第2図において、21は比抵抗10Ω口のP型511g
板、22はP型Sii板21上に形成されたN°碩域、
23はP型St基板21およびN″領域22とで形成さ
れたPN接合、24は厚さ1μmのPSG膜、25は電
極取り出し用の開孔部、26はメッキ金属、27は透明
電極としての厚さ2000人のI T O(InzO3
/ Snow>膜である。
In Figure 2, 21 is a P-type 511g with a resistivity of 10Ω.
The plate 22 is an N degree area formed on the P-type Sii plate 21,
23 is a PN junction formed between the P-type St substrate 21 and the N″ region 22, 24 is a PSG film with a thickness of 1 μm, 25 is an opening for taking out an electrode, 26 is a plated metal, and 27 is a transparent electrode. ITO (InzO3) with a thickness of 2000 people
/Snow>Membrane.

第2図に示すように1表面にPSG膜24で囲まれた電
極取り出し用の開孔部25が形成され。
As shown in FIG. 2, an opening 25 for taking out an electrode surrounded by a PSG film 24 is formed on one surface.

背面にTTOからなる透明電極27が設けられたP型S
i基板21を、 Stおよび配線用金属であるA1の両
方になじみやすい金属9例えばAuの電解液中に浸すと
共にITOからなる透明電極27を負の電位にし、P型
si5板21の背面から光を照射する。
P-type S with a transparent electrode 27 made of TTO on the back side
The i-substrate 21 is immersed in an electrolytic solution of a metal 9, for example, Au, which is compatible with both St and wiring metal A1, and the transparent electrode 27 made of ITO is set to a negative potential, and light is emitted from the back side of the P-type Si5 board 21. irradiate.

P型St基板21の背面から照射された光は、ITOか
らなる透明電極27を透過してP型Si基板21に吸収
され、P型Si基板21およびN+型領域(22より形
成されるPN接合23に到達し。
The light irradiated from the back side of the P-type St substrate 21 is transmitted through the transparent electrode 27 made of ITO and absorbed by the P-type Si substrate 21, and the PN junction formed by the P-type Si substrate 21 and the N+ type region (22) is absorbed by the P-type Si substrate 21. Reached 23.

PN接合23の逆方向電流を増加させる。これにより、
′gL極取り出し用の開孔部25の底面のP型St基板
21の上からSiおよび配線用金属であるAIの両方に
なじみやすい金属261例えばAuがメッキ生長する。
The reverse current in the PN junction 23 is increased. This results in
'gA metal 261 such as Au, which is compatible with both Si and wiring metal, is grown by plating on the P-type St substrate 21 at the bottom of the opening 25 for taking out the L pole.

第2図の左側に示したように、N″領域存在しない部分
は、逆方向バイアスされるPN接合がないから、電流は
自由に流れ、光の照射に関係無<Auのメッキが生長す
る。
As shown on the left side of FIG. 2, in the part where the N'' region does not exist, there is no PN junction that is biased in the reverse direction, so current flows freely and the Au plating grows regardless of the light irradiation.

1例として、電流密度2 m A / caで10分間
メッキを行った場合、開孔部に^Uが約1.2μm生長
した。
As an example, when plating was performed for 10 minutes at a current density of 2 mA/ca, approximately 1.2 μm of ^U grew in the open pores.

Auのメッキ生長が終了した後1表面に真空蒸着やスパ
ッタリングによりA1を堆積し、パターニングを行って
^1配線を形成する。
After the growth of Au plating is completed, A1 is deposited on one surface by vacuum evaporation or sputtering, and patterned to form a ^1 wiring.

以上の説明では透明電極27としてITO(Inzo3
/SnO□)を用いた例を示したが、その他の材料とし
て、 Sn0g、InzO3,Ti01.CdO,Zn
O,CdzSn04等が用いられる。
In the above explanation, ITO (Inzo3) is used as the transparent electrode 27.
/SnO□), but other materials include Sn0g, InzO3, Ti01. CdO,Zn
O, CdzSn04, etc. are used.

また、メッキ金属としてAu0例を示したが、その他の
材料として、 Pb、Sn、ハンダ、N++Cu+Ag
+Cr+Zn+ Rh+ In+ Pd等が用いられる
In addition, although Au0 is shown as an example of plating metal, other materials include Pb, Sn, solder, N++Cu+Ag
+Cr+Zn+Rh+In+Pd, etc. are used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ステンプカバレージの良好な電極取り
出し部を形成することができる。
According to the present invention, an electrode lead-out portion with good stamp coverage can be formed.

また、半導体基板の背面に透明電極を設けてメッキを行
うので、半導体基板の背面から照射される光が遮蔽され
ることがなく、背面電極の形状の影響を受けずに、充分
なメッキを行うことができる。
In addition, since plating is performed with a transparent electrode provided on the back of the semiconductor substrate, the light emitted from the back of the semiconductor substrate is not blocked, and sufficient plating is performed without being affected by the shape of the back electrode. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は本発明の1実施
例構成図、第3図は従来例を示す図である。 第1図において ■=P型半導体基板 2:N゛型領領 域:PN接合 4:絶縁膜 5:開孔部 6:析出金属 7:透明電極 本発明の原理説明図 第1図 本発明の1実施例構成図 第2図
FIG. 1 is a diagram illustrating the principle of the present invention, FIG. 2 is a configuration diagram of one embodiment of the present invention, and FIG. 3 is a diagram showing a conventional example. In FIG. 1, ■ = P-type semiconductor substrate 2: N-type region: PN junction 4: Insulating film 5: Opening 6: Deposited metal 7: Transparent electrode Example configuration diagram Fig. 2

Claims (1)

【特許請求の範囲】  表面にN^+型領域(2)が形成され、PN接合(3
)を有するP型半導体基板(1)の上に形成された絶縁
膜(4)の、上記N^+型領域(2)の上に設けられた
開孔部(5)中に、電極取り出し用の金属(6)を析出
させる半導体装置の製造方法において、 上記P型半導体基板(1)の背面に透明電極(7)を設
け、該透明電極(7)を陰極とし、上記P型半導体基板
(1)の背面から光を照射しながら電解メッキにより上
記開孔部(5)中に金属(6)を析出させることを特徴
とする半導体装置の製造方法。
[Claims] An N^+ type region (2) is formed on the surface, and a PN junction (3
) in the opening (5) provided above the N^+ type region (2) of the insulating film (4) formed on the P-type semiconductor substrate (1) having a A method for manufacturing a semiconductor device in which a transparent electrode (7) is provided on the back surface of the P-type semiconductor substrate (1), the transparent electrode (7) is used as a cathode, and a metal (6) is deposited on the P-type semiconductor substrate (1). 1) A method for manufacturing a semiconductor device, characterized in that metal (6) is deposited in the opening (5) by electrolytic plating while irradiating light from the back side of the semiconductor device.
JP29726387A 1987-11-25 1987-11-25 Manufacture of semiconductor device Pending JPH01138717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29726387A JPH01138717A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29726387A JPH01138717A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01138717A true JPH01138717A (en) 1989-05-31

Family

ID=17844258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29726387A Pending JPH01138717A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01138717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296222A (en) * 1990-04-13 1991-12-26 Nec Corp Semiconductor device and its manufacture
JP2008057035A (en) * 2006-06-05 2008-03-13 Rohm & Haas Electronic Materials Llc Plating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296222A (en) * 1990-04-13 1991-12-26 Nec Corp Semiconductor device and its manufacture
JP2008057035A (en) * 2006-06-05 2008-03-13 Rohm & Haas Electronic Materials Llc Plating process

Similar Documents

Publication Publication Date Title
US3751292A (en) Multilayer metallization system
US4124455A (en) Method of making solar cell with multiple-metal contacts
JPS63252427A (en) Stable ohmic contact which is contacted with thin film of ii-vi semiconductor containing p-type tellurium
JP2013507781A (en) Devices including electrical contacts and manufacturing processes thereof
CN109148614B (en) Silicon heterojunction solar cell and preparation method thereof
CN101182642A (en) Method of electroplating combined vacuum coating preparing Au-Sn alloy solder
JP2000058885A (en) Solar battery and manufacture thereof
JP3619681B2 (en) Solar cell and manufacturing method thereof
JP3682227B2 (en) Electrode formation method
CN207398154U (en) Silicon heterojunction solar battery
JPS62232973A (en) Method of forming conductive pattern on semiconductor surface
CN102222630A (en) Method for preparing Sn-Ag-In ternary lead-free flip salient point
JP2004103975A (en) Optical semiconductor element, method for manufacturing the same, and optical semiconductor device mounting optical semiconductor element
JPH01138717A (en) Manufacture of semiconductor device
JP2983746B2 (en) Solar cell manufacturing method
JPS59208789A (en) Solar cell
JPS59154041A (en) Formation of electrode of semiconductor device
KR100852689B1 (en) Solar cell and fabrication method thereof
NO830781L (en) SOLAR
CN207398153U (en) Silicon heterojunction solar battery
JPS6320025B2 (en)
JPH0458710B2 (en)
JPS5732621A (en) Fabrication of semiconductor device
TWI626760B (en) Solar cell and method for manufacturing the same
CN107369752A (en) Semiconductor light emitting device and method for manufacturing the same