JPH01138379A - Plunger of high pressure water generating pump - Google Patents

Plunger of high pressure water generating pump

Info

Publication number
JPH01138379A
JPH01138379A JP62296493A JP29649387A JPH01138379A JP H01138379 A JPH01138379 A JP H01138379A JP 62296493 A JP62296493 A JP 62296493A JP 29649387 A JP29649387 A JP 29649387A JP H01138379 A JPH01138379 A JP H01138379A
Authority
JP
Japan
Prior art keywords
plunger
pressure water
high pressure
pump
phase diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296493A
Other languages
Japanese (ja)
Inventor
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62296493A priority Critical patent/JPH01138379A/en
Publication of JPH01138379A publication Critical patent/JPH01138379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

PURPOSE:To drastically improve the erosionproofness and abrasion resistance by forming the core member of a plunger from carbon steel and forming a solid phase diffusion joint layer from the alloy powder containing one or the both of Ni and Co having a specific linear expansion coefficient as main constituent on the surface of the core member. CONSTITUTION:A pump for generating high pressure water pressurizes the water sucked into a pump chamber to a high pressure by reciprocating a plunger 1 fitted in slidable ways into a cylinder 12 through a packing 13 and discharges said high pressure water through a connecting rod 15 by the revolution of a crankshaft 16. In this case, the plunger 11 is made by using carbon steel as core member, and a solid phase diffusion joint layer 4 consisting of the alloy powder containing one or the both of Ni and Co having a linear expansion coefficient of 12-15X10<-6>/ deg.C in a temperature range of 20-600 deg.C as main constituent is formed on the surface. The solid phase diffusion joint layer is formed, for example, through the hot hydrostatic pressurizing method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高圧水発生用ポンプのプランジャーに関し
、特にその耐食、耐摩耗性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plunger for a high-pressure water generating pump, and particularly relates to improvements in its corrosion resistance and wear resistance.

〔従来の技術〕[Conventional technology]

高圧水発生用ポンプは、製鉄業、鉱山業を始めとする種
々の産業分野、あるいは消防の分野等において使われて
いる。以下、連続運転されるために稼動率が高く、かつ
苛酷な使用条件下で用いられている製鉄業の場合を例に
とり説明する。
High-pressure water generation pumps are used in various industrial fields including the steel industry and mining industry, as well as in the field of fire fighting. The following will explain the case of the steel manufacturing industry, which operates continuously, has a high operating rate, and is used under severe operating conditions.

製鉄業における高圧水発生用ポンプの使用例の1つとし
ては、圧延工場において、圧延材の表面の酸化スケール
を除去するためのデスケーラ用の高圧水を発生するため
のポンプがある。この場合のポンプの役目は、工業用水
の圧送であり、その圧力は一般に200〜400 kg
/ cs”である、そしてポンプのシリンダ内における
プランジャーの往復動速度は平均1.5〜2 m/se
eと高速である。
One example of the use of a high-pressure water generating pump in the steel industry is a pump for generating high-pressure water for a descaler for removing oxidized scale on the surface of rolled material in a rolling mill. The role of the pump in this case is to forcefully transport industrial water, and the pressure is generally 200 to 400 kg.
/ cs”, and the reciprocating speed of the plunger in the cylinder of the pump is on average 1.5-2 m/sec.
e and high speed.

第3図はこのような高圧水発生用ポンプの模式図であり
、プランジャー11はシリンダ12内にパツキン13を
介して摺動自在に配置されている。
FIG. 3 is a schematic diagram of such a high-pressure water generating pump, in which a plunger 11 is slidably disposed within a cylinder 12 via a packing 13.

このプランジャー11にはクロスへラド14が接続され
ており、これはコンロッド15を介してクランク軸16
で往復駆動される。このようにプランジャー11は、外
部から力を受けてそれを水に伝達する役目をもち、圧力
を発生させる最も重要な部分である。
A cross rod 14 is connected to the plunger 11, which is connected to the crankshaft 16 via a connecting rod 15.
It is driven back and forth. In this way, the plunger 11 has the role of receiving force from the outside and transmitting it to the water, and is the most important part that generates pressure.

このように高圧水発生用ポンプは、水を高圧。In this way, high-pressure water generation pumps generate water at high pressure.

かつ高速で圧送するためのものであるから、上記プラン
ジャー、パツキン、スペーサは高圧発生上特に重要であ
り、例えばテフロンを含浸させたカーボン繊維パツキン
、あるいはフェノール樹脂を含浸させたカーボン製スペ
ーサといった新しい素材が次々と開発され、ポンプ性能
を向上せしめている。
The plunger, gasket, and spacer mentioned above are especially important for generating high pressure because they are used for high-speed pressure feeding. Materials are being developed one after another to improve pump performance.

一方、このような高性能ポンプ材の開発にもかかわらず
、プランジャーについてはその開発が遅れており、前述
のカーボンを含む高い耐摩耗性パツキンに対応するもの
としては、メツキ、溶射による表面処理に鎖っているの
が現状である。即ち、プランジャーは耐えず水と接触す
るため、防錆上、その材料はステンレス(SO3304
等)とし、さらに耐食・耐摩耗性を付与するために、そ
の表面に硬質クロムメツキ、あるいは種々の材料の溶射
を施すのが一般的である。
On the other hand, despite the development of such high-performance pump materials, the development of plungers has lagged behind, and surface treatments such as plating and thermal spraying have been used to cope with the aforementioned high wear-resistant packing containing carbon. The current situation is that it is tied to In other words, since the plunger cannot withstand water and comes into contact with water, its material is stainless steel (SO3304) for rust prevention.
etc.), and in order to further impart corrosion and wear resistance, the surface is generally plated with hard chrome or thermally sprayed with various materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらメツキは本質的にその膜厚が数十〜数百μ
mと薄いことから、従来の高圧水発生用ポンプのプラン
ジャーに、メツキによって耐食。
However, the thickness of the film is essentially several tens to hundreds of microns.
Since it is as thin as 1.5 ft (m), it is corrosion resistant by plating on the plunger of conventional high-pressure water generation pumps.

耐摩耗性を付与しようとした場合、このメツキ膜。This plating film is used when trying to impart wear resistance.

が硬いパツキンとの接触でたちまち剥離を起こし、その
効果が小さいという問題がある。
There is a problem in that when it comes into contact with hard packing, it immediately peels off, and its effectiveness is small.

一方、溶射による場合は、その材質によっては厚盛しや
すく、表面皮膜の厚みを0.5〜1mm程度までにする
ことができ、又材質的にもNi基のものではかなり耐食
性に優れたものも開発されている。しかし溶射膜には本
質的に微小空孔が存在するため、高圧水発生用ポンプの
プランジャーに適用した場合、高圧下で水が溶射膜内の
細孔、微小孔を通って該溶射膜と母材との境界に達し、
ここでの高浸透圧のために、溶射膜がやはり使用中に剥
離するという問題がある。さらに溶射膜の大きな問題点
は、溶射材料を溶融して部材にコーティングしているた
め、組織が鋳造組織に近い形態をとり、特に耐衝撃性に
弱く、使用中に皮膜が割れやすいことである。
On the other hand, when thermal spraying is used, depending on the material, it is easy to apply thick layers, and the thickness of the surface coating can be reduced to about 0.5 to 1 mm.Also, Ni-based materials have excellent corrosion resistance. has also been developed. However, since the sprayed film inherently contains micropores, when applied to the plunger of a high-pressure water generation pump, water passes through the pores and micropores in the sprayed film under high pressure and connects to the sprayed film. Reaching the boundary with the base material,
Due to the high osmotic pressure here, there is also the problem that the sprayed film peels off during use. Furthermore, a major problem with thermal sprayed coatings is that because the thermal sprayed material is melted and coated on the component, the structure takes a form similar to that of a cast structure, which is particularly weak in impact resistance, and the coating is prone to cracking during use. .

この発明は、かかる従来の問題点に鑑み、高硬度パツキ
ンとの接触、あるいは水の高浸透圧によって簡単に剥離
したり、衝撃によって割れが発生したりすることのない
耐食・耐摩耗性に優れた高圧水発生用ポンプのプランジ
ャーを提供せんとするものである。
In view of these conventional problems, this invention has excellent corrosion and abrasion resistance that does not easily peel off due to contact with highly hard packing or high osmotic pressure of water, or crack due to impact. The purpose of the present invention is to provide a plunger for a pump for generating high-pressure water.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、高圧水発生用ポンプのプランジャーに
おいて、プランジャー芯材を炭素鋼製とし、この芯材の
表面に、線膨張係数が20〜600℃の温度範囲で12
〜15×10−&/ ℃であるNi、C。
Therefore, the present invention provides a plunger for a high-pressure water generation pump in which the core material of the plunger is made of carbon steel, and the surface of the core material has a linear expansion coefficient of 12
Ni, C which is ~15 × 10−&/°C.

の一方又は両方を主成分とする合金粉末の固相拡散接合
層を形成するようにしたものである。
A solid phase diffusion bonding layer is formed using an alloy powder containing one or both of these as main components.

ここで、本発明における固相拡散接合層は、例えば熱間
静水圧加圧法(HrP)によって実現できる。
Here, the solid phase diffusion bonding layer in the present invention can be realized by, for example, hot isostatic pressing (HrP).

〔作用〕[Effect]

この発明においては、プランジャー芯材の表面に固相拡
散接合法によって接合層を形成したことから、微小空孔
のない100%の接合層が任意の厚さで形成でき、又芯
材とほぼ等しい線膨張係数のNi、Co合金粉末を用い
て接合層を形成したことから、固相拡散接合時に割れ等
が発生せず、健全な耐食・耐摩耗性接合層が形成される
In this invention, since the bonding layer is formed on the surface of the plunger core material by solid-phase diffusion bonding, a 100% bonding layer without micropores can be formed with any thickness, and it is almost the same as the core material. Since the bonding layer was formed using Ni and Co alloy powders with the same coefficient of linear expansion, no cracks or the like occur during solid-phase diffusion bonding, and a sound corrosion-resistant and wear-resistant bonding layer is formed.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を説明する。 Hereinafter, the present invention will be explained based on Examples.

員上叉見斑 第1表は本発明の高圧水発生用ポンプのプランジャーに
おける固相拡散接合層の合金粉末の化学成分の1例を示
す。ここで第1表の化学成分範囲は耐食・耐摩耗性を考
慮したものであるがそれぞれの成分範囲を限定した理由
は下記の通りである。
Table 1 shows an example of the chemical composition of the alloy powder of the solid-phase diffusion bonding layer in the plunger of the high-pressure water generating pump of the present invention. Here, the chemical component ranges in Table 1 take into consideration corrosion resistance and wear resistance, but the reason for limiting the respective component ranges is as follows.

C:O,t〜2%。CはCr及びWと炭化物を形成し、
耐摩耗性を高めるうえで欠くことのできない元素であり
、0.1%未満ではその効果が有効に発揮されない。一
方、Cが多すぎると耐食性及び靭性が乏しくなるので2
%以下に抑えなければならない、Cのこれらの点を考慮
したより好ましい含有率は0.5〜1.5%である。
C: O, t~2%. C forms a carbide with Cr and W,
It is an indispensable element for improving wear resistance, and its effect is not effectively exhibited if it is less than 0.1%. On the other hand, if there is too much C, corrosion resistance and toughness will be poor.
Considering these points, a more preferable content of C, which must be suppressed to 0.5 to 1.5%, is 0.5 to 1.5%.

st:o、s〜3%。本発明に係るプランジャーの作製
は、後述する如く所定化学成分の合金溶湯からアトマイ
ズ法によって合金粉を得た後、熱間静水圧加圧法(HI
 P)等により所定の寸法・形状に成形することによっ
て行われるが、Siはアトマイズ処理時における合金溶
湯の流動性を高め、粉末粒径を均一化するための必須元
素であり、0.5%未満ではこうした効果が有効に発揮
されない。しかし多過ぎると靭性に顕著な悪影響を及ぼ
すので3%以下に抑えなければならない、Siのこのよ
うな点を考慮したより好ましい範囲は1〜2%である。
st: o, s~3%. The plunger according to the present invention is manufactured by obtaining an alloy powder from a molten alloy having a predetermined chemical composition by an atomization method, as described later, and then using a hot isostatic pressing method (HI).
Si is an essential element to improve the fluidity of the molten alloy during atomization and to make the powder particle size uniform, and Si is an essential element for making the powder particle size uniform. If the amount is less than that, these effects will not be effectively exhibited. However, if too much Si is present, it will have a significant negative effect on toughness, so it must be kept at 3% or less. Considering these points, a more preferable range of Si is 1 to 2%.

S:O,S〜3%。BはCrやWと硼化物を形成して耐
食性及び耐摩耗性の向上に寄与すると共に、Ni又はC
Oマトリックスの硬さを高める作用があり、これらの作
用を有効に発揮させるためには0.5%以上含有させな
ければならない。しかし3%を越えると合金の靭性が低
下するばかりでなく、合金の融点が過度に低下し、アト
マイズ作業及びHIP作業が困難になる。Bのこれらの
点を考慮したより好ましい含有率は1〜2%である。
S: O, S ~ 3%. B forms boride with Cr and W, contributing to improvement of corrosion resistance and wear resistance, and also contributes to improving corrosion resistance and wear resistance.
It has the effect of increasing the hardness of the O matrix, and in order to effectively exhibit these effects, it must be contained in an amount of 0.5% or more. However, if it exceeds 3%, not only the toughness of the alloy decreases, but also the melting point of the alloy decreases excessively, making atomization and HIP operations difficult. Considering these points, a more preferable content of B is 1 to 2%.

Cr:10〜40%、CrはB及びCと硼化物及び炭化
物を形成すると共に、Ni又はCoマトリックス中に固
溶し、耐食性及び耐摩耗性を高めるうえで不可欠の元素
であり、10%未満ではこれらの効果が有効に発揮され
ず、特に耐硝酸腐食性が劣悪になる。しかし多過ぎると
合金の靭性が低くなるので40%以下に抑えなければな
らない。
Cr: 10-40%, Cr forms borides and carbides with B and C, and is also dissolved in the Ni or Co matrix, and is an essential element for improving corrosion resistance and wear resistance, less than 10%. In this case, these effects are not effectively exhibited, and the nitric acid corrosion resistance is particularly poor. However, if it is too large, the toughness of the alloy will decrease, so it must be kept below 40%.

W:10〜30%、WはB及びCと硼化物及び炭化物を
形成し、耐食性及び耐摩耗性を高める作用があるが、1
0%未満ではそれらの効果が十分に発揮されない。しか
し30%を越えると合金が過度に硬質化し、靭性が劣悪
になる。
W: 10-30%, W forms borides and carbides with B and C and has the effect of increasing corrosion resistance and wear resistance, but 1
If it is less than 0%, these effects will not be fully exhibited. However, if it exceeds 30%, the alloy becomes excessively hard and its toughness deteriorates.

Cu:  0.5〜3%、CuはNi又はCoマトリッ
クス中に固溶し、耐腐食性の向上に寄与する。
Cu: 0.5 to 3%, Cu is dissolved in the Ni or Co matrix and contributes to improving corrosion resistance.

0.5%未満ではその効果が有効に発揮されず、−方3
%を越えると合金の靭性が劣悪になる。
If it is less than 0.5%, the effect will not be exhibited effectively, and - method 3
%, the toughness of the alloy deteriorates.

残部成分:Ni、Coのいずれか一方又は両方、マトリ
ックス成分として最低限の耐食性及び耐摩耗性を確保す
るため、残部成分はNi、C。
Remaining components: Either or both of Ni and Co. As a matrix component, the remaining components are Ni and C to ensure minimum corrosion resistance and wear resistance.

の一方又は両方とする。なおNi、Co及び上記必須合
金成分の配合に伴う不可避不純物として、P、S、Fe
、Mn、Aj+等が微量混入してくることがあるが、こ
れらはいずれも不純物量(1%程度以下)である限り格
別の悪影響を及ぼすことはない。
Either or both. In addition, unavoidable impurities accompanying the blending of Ni, Co and the above essential alloy components include P, S, and Fe.
, Mn, Aj+, etc. may be mixed in in trace amounts, but none of these will have any particular adverse effect as long as they are contained in impurity amounts (approximately 1% or less).

そして本件発明者は、合金粉末の接合層の接合状態を確
認すべく次のような実験を行った。
The inventor of the present invention conducted the following experiment in order to confirm the bonding state of the bonding layer of the alloy powder.

C:0.95%、S i : 2.35%、B :  
2.70%、W:11.5%、Ni:15.8%、Cr
:23.7%、残部COからなる合金粉末AをArガス
アトマイズ法で製造した。この粉末を分級して100メ
ツシユ(147μm)以下の粉末とした。
C: 0.95%, Si: 2.35%, B:
2.70%, W: 11.5%, Ni: 15.8%, Cr
:23.7%, and the balance was CO. Alloy powder A was produced by an Ar gas atomization method. This powder was classified into powders of 100 meshes (147 μm) or less.

一方、第1図に示すように、芯材としての母材(材質は
下記■、■の2種類)1の周囲に9.5 m+aの隙間
をあけて軟鋼製カプセル(厚さ3mm)2を配設し、上
面側に粉末充填口3を設けるとともに、下面側は母材l
に溶接により取付けた。
On the other hand, as shown in Fig. 1, a mild steel capsule (thickness: 3 mm) 2 is placed around the base material (materials are of the following two types, ■ and ■) 1 with a gap of 9.5 m + a. The powder filling port 3 is provided on the upper surface side, and the base material l is provided on the lower surface side.
It was attached by welding.

母材■: ステンレス5US304 (比較例であり、
従来と同じ材質)とする。前述のように、溶射皮膜は一
喰に多孔質のため、工業水が母材に浸透するので、従来
は錆ない材質のものを使用する必要があった。このよう
な材質とした場合の固相拡散接合層の接合状態を調査す
るため、従来と同一材質とした。
Base material ■: Stainless steel 5US304 (This is a comparative example,
(same material as before). As mentioned above, thermal spray coatings are porous and allow industrial water to penetrate into the base material, so conventionally it was necessary to use materials that do not rust. In order to investigate the bonding state of the solid phase diffusion bonding layer when such a material is used, the same material as the conventional one was used.

母材■: 炭素[5S41(本実施例)とする。Base material ■: Carbon [5S41 (this example).

本発明では皮膜は100%密度が期待でき、工業水の浸
透の問題がないので、5S41のような材質は低級であ
るが、加工の容易なものを母材として使える可能性があ
り、これを確認するためにこの材質とした。
In the present invention, the film can be expected to have 100% density, and there is no problem of industrial water penetration, so although materials such as 5S41 are low grade, it is possible to use a material that is easy to process as the base material. This material was used for confirmation.

そしてカプセル2内を10− ’Torrに保ちながら
、前述の合金粉末Aを同じ< 1O−5Torrの真空
下で粉末充填口3から、カプセル2の隙間内に完全に充
填した後、粉末充填口3を気密に封止した。この組立体
をHIP装置内に装入し、950℃、1000 Kg/
cd、3時間の加圧処理を行い、HIP処理終了後、機
械加工により第2図に示すプランジャー11に仕上げた
Then, while maintaining the inside of the capsule 2 at 10-' Torr, the alloy powder A mentioned above is completely filled into the gap of the capsule 2 from the powder filling port 3 under the same vacuum of <10-5 Torr, and then the powder filling port 3 is filled with the alloy powder A. was hermetically sealed. This assembly was loaded into a HIP device and heated at 950°C and 1000 kg/
After the HIP treatment, the plunger 11 shown in FIG. 2 was finished by machining.

この製品に対して、超音波探傷検査を行ったところ、母
材にSUS 304を用いたプランジャーでは、母材1
とコーティング層4との界面に割れが発見された。
When this product was subjected to ultrasonic flaw detection, it was found that the plunger using SUS 304 as the base material
A crack was discovered at the interface between the coating layer 4 and the coating layer 4.

一方、母材に3341を用いたプランジャーでは、探傷
検査で割れ等の欠陥は発見されず、合金粉末層4は10
0%の密度で固まっており、完全に母材に拡散接合して
いた。
On the other hand, in the plunger using 3341 as the base material, no defects such as cracks were found in the flaw detection test, and the alloy powder layer 4 was 10
It had solidified with a density of 0% and was completely diffusion bonded to the base material.

そこでこの割れ発生原因について、さらに母材の種類を
かえ試験を繰り返したところ以下のことが判った。
To investigate the cause of this cracking, we repeated the test by changing the type of base material and found the following.

即ち、第2表に示す5種類の材料からなる母材■〜■と
、コーティング層としての上述の合金粉末Aを前述と同
様の方法でHIP接合したところ、■−八へ■−A、■
−Aの組み合わせではすべてコーティング層に割れが発
生した。一方、■−A。
That is, when the base materials ■ to ■ consisting of the five types of materials shown in Table 2 and the above-mentioned alloy powder A as a coating layer were HIP-joined in the same manner as described above, the results were as follows: ■-8, ■-A, ■
In all combinations of -A, cracks occurred in the coating layer. On the other hand, ■-A.

■−Aの組み合わせでは共に健全な接合が得られた。こ
の理由は第2表から分かるように、平均線膨張係数の相
違が原因であり、高温のHTP中に十分に接合されても
、処理後の冷却過程で膨張係数の違いにより大きな内部
応力が発生してコーティング層が割れることが分かった
。従って健全な接合を得るには、母材とコーティング層
の平均膨張係数ができるだけ近似していることが必要で
ある。
In combination ①-A, sound bonding was obtained in both cases. As can be seen from Table 2, the reason for this is the difference in the average coefficient of linear expansion. Even if the bond is sufficiently bonded during high-temperature HTP, a large internal stress is generated during the cooling process after treatment due to the difference in the coefficient of expansion. It was found that the coating layer cracked. Therefore, in order to obtain a sound bond, it is necessary that the average expansion coefficients of the base material and the coating layer be as similar as possible.

そこでどの程度に両者の線膨張係数が近似していればよ
いのか見極めるために、さらに次の実験を行った。
Therefore, in order to determine to what extent the linear expansion coefficients of the two should be approximated, the following experiment was further conducted.

まず第3表に示すように、上述の範囲内の組成をもった
合金粉末A−Fを作った。これらは意識的に線膨張係数
が変わるように、上記組成の範囲内で各元素量を調整し
て製造した0例えば添加元素B、Wの量を減少させるこ
とによって線膨張係数は容易に小さくできる。これを大
きくする場合はその逆にB、Wのlを増加させればよい
First, as shown in Table 3, alloy powders A to F having compositions within the above range were prepared. These are manufactured by adjusting the amount of each element within the above composition range so that the linear expansion coefficient can be changed intentionally.For example, the linear expansion coefficient can be easily reduced by reducing the amount of additive elements B and W. . To increase this, conversely, l of B and W may be increased.

これらの合金粉末A−Fを前述と同じ方法で母材の炭素
鋼に0.42%C)とHTPで接合し、処理後の接合状
態を禰査したところ、C,Hのコーティング層に割れが
認められた。原因は前述のように、母材の炭素鋼の線膨
張係数(14,OX 10−”/ ’C)との差が大き
すぎたためである。この゛結果から、炭素鋼と良好に接
合するためには、粉末合金の線膨張係数は12〜15X
10−”/ ℃の範囲にすることが必要であることが判
明した。
These alloy powders A-F were bonded to the base material carbon steel (0.42% C) using HTP using the same method as described above, and when the bonded state was inspected after treatment, cracks were found in the C and H coating layers. was recognized. As mentioned above, the reason is that the difference between the coefficient of linear expansion (14, OX 10-"/'C) of the base material carbon steel was too large. From this result, it was found that in order to bond well with carbon steel, The coefficient of linear expansion of the powder alloy is 12~15X
It has been found that a range of 10-''/°C is necessary.

第1z隻貫 また本件発明者は実際に製鉄所圧延工場のデスケーラに
組込んで耐久テストを行うために、プランジャーを製作
した。
The inventor of the present invention also manufactured a plunger in order to actually incorporate it into a descaler in a rolling mill at a steel mill and conduct a durability test.

製造方法は第1実施例と全く同じで、母材は炭素鋼5S
41とし、第2図に示す最終加工品を得た。一方、比較
例として現在量も一般的に行われているように、母材を
5US304とし、その表面に、C:Q、5%、B: 
4%、Cr:16%、Mo: 3%、Cu:3%、Fe
:2.5%、残部Niの合金粉末を溶射でコーティング
し、層厚を1IINとし、表面研摩後、第2図と同じ外
径寸法に仕上げた。これらのプランジャーをそれぞれプ
ランジャーポンプに装填し、工場循環水を圧力200 
Kg/d、プランジャー速度1.5 tg/secで圧
送した。
The manufacturing method is exactly the same as the first example, and the base material is carbon steel 5S.
41, and the final processed product shown in FIG. 2 was obtained. On the other hand, as a comparative example, the base material was 5US304, and the surface was coated with C:Q, 5%, B:
4%, Cr: 16%, Mo: 3%, Cu: 3%, Fe
: 2.5%, the balance being Ni, was coated by thermal spraying to a layer thickness of 1IIN, and after surface polishing, the outer diameter was finished to be the same as that shown in Fig. 2. Each of these plungers is loaded into a plunger pump, and the factory circulating water is brought to a pressure of 200
Kg/d, and the plunger speed was 1.5 tg/sec.

そして実際の圧延工場において、はぼ連続運転を続けた
ところ、比較例では5ケ月でプランジャーの直径が0.
6 mm摩耗して寿命に達し、新品と交換しなければな
らな(なった。
When continuous operation was continued in an actual rolling mill, the diameter of the plunger in the comparative example decreased to zero after 5 months.
It wore out by 6 mm and reached the end of its lifespan, so I had to replace it with a new one.

一方、炭素鋼に耐食・耐摩耗性合金粉末をHIPで接合
して作った本発明のプランジャーは非常に長寿命を示し
、24ケ月の連続使用で0.6 vwの摩耗に達し、寿
命となった。
On the other hand, the plunger of the present invention, which is made by bonding corrosion-resistant and wear-resistant alloy powder to carbon steel by HIP, has an extremely long life, reaching 0.6 vw of wear after 24 months of continuous use. became.

なお本発明は、高圧水発生用ポンプのプランジャーとし
て大きな効果を示すが、本発明の考え方は耐食・耐摩耗
品としてこれ以外の摺動部品にも応用できることは十分
に想定できる。
Although the present invention is highly effective as a plunger for a pump for generating high-pressure water, it can be fully assumed that the concept of the present invention can be applied to other sliding parts as corrosion-resistant and wear-resistant products.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る高圧水発生用ポンプのプラ
ンジャーによれば、プランジャー芯材を炭素鋼製とし、
この芯材の表面に、線膨張係数が20〜600℃で12
〜15×10−b/ ’cであるNi、C。
As described above, according to the plunger of the high-pressure water generation pump according to the present invention, the plunger core material is made of carbon steel,
The surface of this core material has a linear expansion coefficient of 12 at 20 to 600°C.
~15×10−b/′c for Ni,C.

の一方又は両方を主成分とする合金粉末の固相拡散接合
層を形成するようにしたので、プランジャーの耐食・耐
摩耗性を大幅に改善でき、これは従来のプランジャーの
ような頻繁な交換作業を考慮した場合そのメリットは極
めて大きく、又従来は高価で、難削材であるステンレス
を使用する必要があったのに対し、本発明では、安価で
かつ加工性のよい炭素鋼の使用が可能となり、大幅なコ
スト低減が可能になる効果がある。
By forming a solid phase diffusion bonding layer of alloy powder mainly composed of one or both of The benefits are extremely significant when considering replacement work, and whereas conventionally it was necessary to use stainless steel, which is an expensive and difficult-to-cut material, the present invention uses carbon steel, which is inexpensive and has good workability. This has the effect of making it possible to significantly reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1実施例を説明するため
の図で、第1図はHIP作業を説明するための断面図、
第2図は最終加工品を示す断面図、第3図は一般的な高
圧発生用ポンプの模式図である。 図において、lは母材(芯材)、4は固相拡散接合層、
11はプランジャー、12はシリンダ、13はパツキン
である。 特許出願人  株式会社神戸製鋼所 代理人    弁理士 下布 努 第2図 第3図
1 and 2 are diagrams for explaining the first embodiment of the present invention, and FIG. 1 is a sectional view for explaining the HIP operation,
FIG. 2 is a sectional view showing the final processed product, and FIG. 3 is a schematic diagram of a general high pressure generation pump. In the figure, l is the base material (core material), 4 is the solid phase diffusion bonding layer,
11 is a plunger, 12 is a cylinder, and 13 is a packing. Patent applicant: Kobe Steel, Ltd. Representative: Patent attorney: Tsutomu Shimofu Figure 2: Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)シリンダ内周に配置された高硬度パッキンに当接
しながら摺動される高圧水発生用ポンプのプランジャー
において、プランジャー芯材を炭素鋼製とし、該芯材の
表面に、線膨張係数が20〜600℃の温度範囲で12
〜15×10^−^6/℃であるNi、Coの一方又は
両方を主成分とする合金粉末の固相拡散接合層を形成し
たことを特徴とする高圧水発生用ポンプのプランジャー
(1) In the plunger of a high-pressure water generation pump that slides while contacting a high-hardness packing placed on the inner circumference of the cylinder, the core material of the plunger is made of carbon steel, and the surface of the core material has linear expansion. The coefficient is 12 in the temperature range of 20-600℃
A plunger for a pump for high-pressure water generation, characterized in that a solid phase diffusion bonding layer of alloy powder containing one or both of Ni and Co as a main component is formed with a temperature of ~15×10^-^6/°C.
JP62296493A 1987-11-25 1987-11-25 Plunger of high pressure water generating pump Pending JPH01138379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296493A JPH01138379A (en) 1987-11-25 1987-11-25 Plunger of high pressure water generating pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296493A JPH01138379A (en) 1987-11-25 1987-11-25 Plunger of high pressure water generating pump

Publications (1)

Publication Number Publication Date
JPH01138379A true JPH01138379A (en) 1989-05-31

Family

ID=17834267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296493A Pending JPH01138379A (en) 1987-11-25 1987-11-25 Plunger of high pressure water generating pump

Country Status (1)

Country Link
JP (1) JPH01138379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899531A (en) * 2014-04-08 2014-07-02 常熟市创新陶瓷有限公司 Ceramic plunger for pump
CN105464937A (en) * 2015-12-15 2016-04-06 芜湖市甬微制冷配件制造有限公司 Novel piston rod of air condition compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206540A (en) * 1985-03-11 1986-09-12 San Alloy Kogyo Kk Joining type tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206540A (en) * 1985-03-11 1986-09-12 San Alloy Kogyo Kk Joining type tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899531A (en) * 2014-04-08 2014-07-02 常熟市创新陶瓷有限公司 Ceramic plunger for pump
CN105464937A (en) * 2015-12-15 2016-04-06 芜湖市甬微制冷配件制造有限公司 Novel piston rod of air condition compressor
CN105464937B (en) * 2015-12-15 2018-10-23 中山金菱机械有限公司 A kind of piston of air-conditioning compressor bar

Similar Documents

Publication Publication Date Title
CN109321861B (en) Corrosion-resistant and wear-resistant coating with lamellar and columnar composite structure and preparation method thereof
US9346101B2 (en) Cladded articles and methods of making the same
CN109023342B (en) Gradient ceramic coating micro-texture self-lubricating cutter and preparation method thereof
CN113122841B (en) Corrosion-resistant and wear-resistant coating with gradient composite structure and preparation method thereof
CN110318690B (en) Drill rod joint wear-resistant belt and preparation method thereof
JP2000219953A (en) Thermal spraying coating for gate and sheet
CN107267909B (en) A kind of plasma spray Ni base WC/TiC/LaAlO3Wear-resistant coating
CN104162676A (en) Fracturing pump valve body and valve seat vacuum fusion covering surface strengthening method
CN103659050B (en) A kind of high abrasion of resistance to crackle three-eccentric-butterfly-valve plasma spray dusty material
CN111778504A (en) Laser cladding coating powder and preparation method thereof
US11000921B2 (en) Composite welding rods and associated cladded articles
JPH01138379A (en) Plunger of high pressure water generating pump
CN112662977B (en) Preparation method of thermal spraying Ni-based alloy self-lubricating coating
CN109622973A (en) A kind of preparation process of wearability stainless steel alloy coating
CN205996407U (en) A kind of lamellar composite pricker applies material
JP2000266055A (en) Corrosion- and abrasion-resistant sliding member and manufacturing of the same
CN110273154A (en) A kind of high temperature wear resistant alloy coat and preparation method thereof, a kind of reinforcing ring rolls backing plate and preparation method thereof
CN111270186A (en) Diamond-iron-based composite coating and application thereof as sealing layer of high-temperature valve
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JP2002069563A (en) Composite material for sliding member having excellent corrosion resistance and wear resistance and sliding member
JP3460160B2 (en) Manufacturing method of mold for continuous casting
JPS5839228B2 (en) Composite hot tool material and its manufacturing method
TWI784294B (en) Composite ceramic reinforcement material
Singh et al. Past, present and future-the characterization of surface of topography of plasma transferred arc coating
JPS63203221A (en) Metallic die